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Abstract

Gradual typing integrates static and dynamic typing by introducing a dynamic type and a consistency
relation. A problem of gradual type systems is that dynamic types can easily hide erroneous data
flows since consistency relations are not transitive. Therefore, a more rigorous static check is required
to reveal these hidden data flows statically. However, in order to preserve the expressiveness of
gradually typed languages, static checks for gradually typed languages cannot simply reject programs
with potentially erroneous data flows. By contrast, a more reasonable request is to show how these
data flows can affect the execution of the program. In this paper, we propose and formalize Static
Blame, a framework that can reveal hidden data flows for gradually typed programs and establish the
correspondence between static-time data flows and runtime behavior. With this correspondence, we
build a classification of potential errors detected from hidden data flows and formally characterize the
possible impact of potential errors in each category on program execution, without simply rejecting
the whole program. We implemented Static Blame on Grift, an academic gradually typed language,
and evaluated the effectiveness of Static Blame by mutation analysis to verify our theoretical results.
Our findings revealed that Static Blame exhibits a notable level of precision and recall in detecting
type-related bugs. Furthermore, we conducted a manual classification to elucidate the reasons behind
instances of failure. We also evaluated the performance of Static Blame, showing a quadratic growth
in run time as program size increases.

1 Introduction

1.1 Gradual typing

Gradual typing (Siek & Taha, 2006) is a language feature designed to combine com-
plementary benefits of static typing and dynamic typing languages. A gradual typing
program allows the integration of dynamically typed code and statically typed code.
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While dynamically typed fragment requires additional runtime safety check as dynamic
typing language, the statically typed fragment is guaranteed blame-free by the gradual
type system. Thus, gradual typing enables developers to do rapid prototyping and seam-
lessly evolve into statically typed programs. Over the past decade, there have been many
advances in gradual typing, both in academia and industry.

The academic field is mainly dedicated to combining gradual typing with other language
features, including both expressiveness (object (Siek & Taha, 2007; Chung et al., 2018),
effect (Bañados Schwerter et al., 2014, 2016; Wadler, 2021), polymorphism (Ahmed et al.,
2011, 2017; Igarashi et al., 2017), set theoretic types (Toro & Tanter, 2017; Castagna
et al., 2019)), and implementation optimization (Pycket (Bauman et al., 2015), Grift
(Kuhlenschmidt et al., 2019)).

In the industrial field, there are some practical gradually typed languages and optional
type checkers. Practical gradually typed languages include including Typed Racket (Tobin-
Hochstadt & Felleisen, 2008), TypeScript (Bierman et al., 2014), mypy (Lehtosalo et al.,
2014), Typed Clojure (Bonnaire-Sergeant et al., 2016), FLOW (Chaudhuri et al., 2017), and
so on. Most of them add unsound type systems to existing dynamically typed languages1.

1.2 A gradual type system hides erroneous data flows

A gradual type system can be viewed as a normal static type system with two extensions:
a dynamic type � (also known as ? or Dyn) that represents dynamically typed code and
a binary consistency relation that is used in place of equality to accommodate dynamic
types in type rules. When only static types are involved, the consistency relation works the
same as the type equality relation, while dynamic types are consistent with all types, which
enables dynamically typed code to be integrated with statically typed code. However, the
consistency relation is intransitive. For example, we have both Int ∼ � and � ∼ Bool, but
not Int ∼ Bool, since Int �= Bool in a static type system.

The consistency relation weakens the static type system, as a well-placed � can easily
make a buggy program pass type checking. For example, consider the following STLC
(Simply Typed Lambda Calculus) expression:

(λx : Int.x + 1)true

This program will be rejected by the static type system of STLC, and the result of run-
ning this program will be a dynamic type error, since a value of type Bool cannot be added
to an integer value. However, in GTLC (Gradually Typed Lambda Calculus), this program
will pass type checking if we change the type annotation from Int to �. As we state, we
have both � ∼ Bool and � ∼ Int.

(λx : �.x + 1)true (1)

Dynamic type is ubiquitous in many real-world gradually typed languages, where every
omitted type annotation is treated as a dynamic type. To recover type soundness, a grad-
ually typed language will check such dynamic inconsistency by runtime enforcement.

1 Note that Typed Racket is sound.
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Static blame for gradual typing 3

The formal semantics of gradually typed language consists of two parts: (1) an indepen-
dent statically typed intermediate language like blame calculus (Wadler & Findler, 2009),
which extends the source gradually typed language with explicit type cast, and (2) a trans-
lation process, which inserts casts to the source program where consistency relation is used
in static type checking.

A cast 〈A ⇐b B〉v indicates that the guarded value v of type B is required to have type
A, and this cast is identified with the blame label b. At runtime, casts in the translated
program will catch dynamic inconsistency as cast error, and the responsible cast will be
assigned blame. Such a mechanism is called blame tracking, derived from related research
on contracts (Findler & Felleisen, 2002; Tobin-Hochstadt et al., 2017). Compared with
statically typed languages, the type safety property of gradually typed languages is char-
acterized by blame behavior, which is one of the original results of Tobin-Hochstadt and
Felleisen (2006) and subsequently improved in the follow-up research.

Informally, type safety of gradually typed languages ensures that every dynamic type
error should be caught by a blame message. As a result, in a gradually typed programming
language with type safety, a program without blame cannot go wrong. Every blame is
triggered by a type cast failure, thus we can use the notion of the cast error to represent
dynamic type error. In this paper, we equate dynamic type error and dynamic cast error for
gradually typed languages, both of which represent type inconsistency detected at runtime.

The mentioned program 1 will be translated into the following program in blame
calculus:

(λx : �. (〈Int ⇐b1 �〉x) + 1)〈� ⇐b2 Bool〉true (2)

This program will abort with blame b1 immediately after beta reduction.

(λx : �. (〈Int ⇐b1 �〉x) + 1)〈� ⇐b2 Bool〉true
�−→(〈Int ⇐b1 � ⇐b2 Bool〉true) + 1

�−→blame b1

This example shows that the consistency relation makes the gradual type system too
weak to reject programs with even obvious type errors. Specifically, a gradual type system
cannot detect erroneous data flows imposed by the passing of values during program exe-
cution. The inserted cast 〈Int ⇐b1 �〉 will be executed on every argument of the lambda
expression, but a naive static analysis tells us that the only possible argument is a boolean
that cast to dynamic. Therefore, this cast never succeeds—and the gradual type system
cannot detect such a problem.

1.3 Our work: Static Blame

Recovery of data flows in gradual typing programs amounts to a more strict static check.
However, we cannot simply reject a program if a hidden inconsistency is detected, since
we cannot assert that the detected inconsistency will necessarily trigger a runtime error in
the program. For example, it may be due to a commonly used idiom in dynamic languages:
a dynamic parameter accepts values of multiple types and each control flow branch handles
a different type (Castagna et al., 2022). Therefore, there is a natural question as to how data
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flow relates to the results of running the program, and under what circumstances we can
assert the existence of errors in gradual typing programs by detecting erroneous data flows.

One way to tackle this problem is from the blame mechanism. Data flows are monitored
by type casts at runtime, and blame messages will be thrown when a cast fails. By the
blame safety property, every dynamic error can be caught by a blame message. Therefore,
if we can establish the correspondence between data flows and runtime blame information,
then we can prove some properties of the runtime behavior indirectly through these data
flows. Consider the following trivial example program:

(λx : �.if t then 1 else x + 1) true (3)

where the meta-variable t represents a complicated computation hard to analyze statically.
In this case, the hidden erroneous data flow is that a boolean value is passed as a dynamic
value and cast to type int, but Int �∼ Bool. Although we cannot assert whether the program
will abort with a blame message or not, we can still assert the cast 〈Int ⇐ �〉 that will be
inserted to the else branch is erroneous. This is because the only value passed into x is of
type Bool.

With this principle, we introduce Static Blame in this paper, a framework for establishing
the correspondence between static-time data flow information and runtime behavior for
gradually typed programs. As its name suggests, the goal of Static Blame is to determine
possible runtime blame messages of a program at static time, enabling a more rigorous
static check than type checking.

The key concept of Static Blame is type flow, which gives a uniform treatment to type
casts and flow constraints. As the standard flow constraints, type flow models the value
passing relation among the contexts of a program, while type casts can be viewed as spe-
cial value passing monitored by blame mechanism. By intuition, a type flow T̂ 
b Ŝ denotes
that values in context T̂ may flow into context Ŝ during program execution. T̂ (resp. Ŝ) is
a labeled type, which is used to formalize the notion of runtime context, as the standard
technique program labels (Nielson et al., 1999). Moreover, we say that T̂ is an inflow of Ŝ,
while Ŝ is an outflow of T̂ . With type flow, Static Blame can reveal data flows mediated by
dynamic types by type flow analysis, which consists of a generation process and a transitiv-
ity analysis. We develop Static Blame on a standard formal gradual typing lambda calculus
λ�, an extension of GTLC by adding subtyping relation. It bears strong resemblance to the
language Ob?

<: in Siek and Taha (2007), albeit without object-oriented features. Its run-
time semantics is defined by a translation process into a blame calculus λB, which admits
a standard Natural semantics 2 of gradually typed languages.

The form of the type flow is designed to be similar to type casts in blame calculus
and indicate a direct correspondence between type flows and type casts. With the formal
system that will be developed later, every type cast 〈S ⇐b T〉 occurring in the execution
corresponds directly to a type flow T̂ 
b Ŝ. The type flow analysis ensures that for every
possible type cast combination 〈S ⇐b1 G〉〈G ⇐b2 T〉 occurring in the execution, there will
be type flows Ĝ 
b1 Ŝ, T̂ 
b2 Ĝ generated by type flow analysis. As a result, Static Blame
can exploit the possible failure of a gradually typed program statically.

2 The same semantics is also called “guarded semantics” by Vitousek et al. (2014) and “higher-order
embedding” by Greenman and Felleisen (2018). The term “natural” originates from Matthews and Findler
(2007)
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However, flow analysis requires minor changes to fit in gradually typed languages. The
compilation and evaluation of a gradually typed program will generate cast expressions
that are not presented in the source code, which therefore cannot be simply denoted by
certain textual positions in the source code. For example, in the blame calculus, the evalu-
ation of term application v′w involves a cast decomposition when the applied term v′ is a
cast 〈T1 → S2 ⇐b S1 → T2〉v between function types.

((〈T1 → S2 ⇐b S1 → T2〉v)w) −→ (〈S2 ⇐b T2〉(v(〈S1 ⇐b T1〉w)))

The sub-expression (〈T2 ⇐b T1〉w) inside the right hand is newly generated and cannot be
viewed as an evaluation result of any proper sub-expression inside the left hand. As a result,
labeled types encode more information than program labels. Besides a textual identifier, a
labeled type T̂ also carries a gradual type T and a list (maybe empty) of context refinements
to indicate these new contexts. The carried type T in T̂ is just a designed redundancy to
keep the similarity between type flow and type cast in form.

1.4 Potential error and error classification

To demonstrate the effects of the Static Blame framework, we also develop a classification
of potential errors detected from type flow analysis and prove formal properties of each
category in the classification. Generally speaking, for a type flow �̂1 
b1 Ŝ gotten in type
flow analysis, if there is also a type flow T̂ 
b2 
�̂2 such that T �∼ S and �̂1 = �̂2, then a
potential error is detected. In other words, a potential error is an inconsistent flow via
dynamic types. Specifically, we classify detected potential errors into three categories in a
way similar to may-must information (Nielson et al., 1999) in software analysis. Namely,

1. normal potential errors for type flows that may be an erroneous data flow.
2. strict potential errors for type flows that must be an erroneous data flow.
3. wrong dynamic types for dynamic types that always hide erroneous data flows.

For example, consider the following example program as a variant of expression: 3:

(λx : �.{l1 = ¬x, l2 = x + 1})
In the compiled blame calculus code, any value passed to x will be cast to a boolean by
〈Bool ⇐ �〉x in the ¬x and to an integer by 〈Int ⇐ �〉x in the x + 1. Suppose that these two
type casts correspond to type flows �̂ 
b1

ˆBool and �̂ 
b2
ˆInt where �̂ denotes the labeled

type of x, then we can induce that:

1. if there exists an inflow of type T inconsistent with Bool (resp. Int) via �̂, the type
flow �̂ 
b1

ˆBool (resp. �̂ 
b2
ˆInt) may fail;

2. if every inflow via �̂ is inconsistent with Bool (resp. Int), the type flow �̂ 
b1
ˆBool

(resp. �̂ 
b2
ˆInt) must fail;

3. if each inflow of �̂ is inconsistent with each outflow of �̂, �̂ is a wrong dynamic type.

The correspondence of type flow and type cast by the Static Blame framework guaran-
tees several formal properties of our classification. For normal potential errors, we prove
that the detection is complete, namely if no normal potential error is detected in a program,
then no cast can fail at runtime, implying that the program will not abort with any blame.
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In other words, every type cast that fails at runtime will be reported as a normal potential
error.

As we explained earlier, a detected potential error is not guaranteed to lead to an actual
runtime cast failure. Therefore, the detection of normal potential errors is not sound, and
mere completeness is a weak property. Note that it is also complete to naively treat every
cast as a potential error. In contrast, the detection of strict potential errors is more precise.
We claim that strict potential errors are sound with respect to erroneous type casts, whereas
erroneous type casts are type casts that can never succeed.

The main difficulty of proof is how to define erroneous type casts formally. An intuitive
attempt is to state that every program with erroneous type casts must abort with a blame
message. But a cast inserted in the compiled gradual typing program may not execute.
Moreover, a higher-order cast will not trigger a cast failure until it is used.

Therefore, we define erroneous type cast with respect to its runtime execution and prove
that if an erroneous type cast is executed at runtime, then the whole program must abort
with a blame message in one or more steps. Then, we can conclude our claim with a
proof that strict potential error is sound with respect to erroneous type casts under the
correspondence developed by the Static Blame framework.

Finally, a wrong dynamic type is a labeled dynamic type that always hides wrong data
flows, which means that every non-dynamic inflow is inconsistent with every non-dynamic
outflow. We will show that every non-dynamic outflow is a strict potential error. With the
soundness of strict potential error, running a gradual typing program will immediately
abort with a blame message whenever a value of wrong dynamic type is used. Or, values
that are held in wrong dynamic types (recall that labeled types represent contexts) can
never be safely used.

The notion of type flow and correspondence originated from a previous work of Rastogi
et al. (2012). The goal of their work is also known as automatic type migration now. That
is, they tried to infer a more precise type for every dynamic type in source code, and not
reject any statically well-typed program. A more detailed comparison between our work
and studies on type migration is presented in Section 6.

Our contributions are summarized as follows:

• We propose the Static Blame framework on a standard gradually typed language λ�.
Static blame establishes the correspondence between static-time data flow informa-
tion and runtime behavior for gradually typed programs. It consists of three parts:
the concepts labeled type and type flow, which give a uniform treatment to type
cast and data flow relations (Section 3.1); type flow analysis, a method to generate
type flows by transitivity analysis (Section 3.2); flow-cast correspondence, a direct
correspondence between type flows and type casts for a λ� program (Section 3.3).

• We present a practical application of Static Blame by detecting potential errors from
type flow analysis. We successfully characterize how potential errors affect program
execution by classifying detected potential errors into three categories and prov-
ing formal properties of them, including: completeness of normal potential error
(Section 4.1); soundness up to erroneous casts of strict potential error (Section 4.2);
and inhabitants of wrong dynamic types are unsafe to use (Section 4.3).
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• We implemented a bug detector SLOG (Static Blame fOr Grift) based Static Blame
on Grift, a gradually typed variant of STLC (Section 5.1.1). We evaluated SLOG
on a benchmark generated by mutation analysis from the original benchmark of
Grift (Section 5.3). The effectiveness of Static Blame is validated that SLOG can
successfully detect potential errors, and its performance is acceptable for programs
of small and medium sizes within two or three thousand lines of code (Section 5.4).
The implementation and data are publicly available3.

The rest of this paper is organized as follows. Section 2 introduces the syntax and seman-
tics of a gradually typed language, including a surface language λ� and an intermediate
language λB. Section 3 introduces the formal definition of the Static Blame framework.
Section 4 develops the detection and classification of potential errors based on Static
Blame. Section 5 evaluates effectiveness and performance of Static Blame. Section 6
reviews related work.

2 Background: Program syntax and semantics

In this section, we give formal definitions of the gradual typing lambda calculus λ� and
blame calculus λB. The blame calculus λB is not space-efficient (Herman et al., 2010),
allowing unbounded accumulation of runtime casts, to simplify development and proof of
relevant properties. This choice does not impair the validity of our framework, since space-
efficient semantics can be designed equivalent to a normal semantic (Siek & Wadler, 2010;
Siek et al., 2015).

2.1 Syntax

The syntax of λB and λ� are both given in figure 1. Since λB is an extension of λ�, they
share some common syntactic categories. The parts without highlighting are common to
both of them, the light-gray highlighted part belongs to λB, and the gray highlighted part
belongs to λ�. In other words, λB extends λ� by substituting light-gray part for dark-gray
part in λ�. In this paper, the denotation of shared syntactic symbols will be clear from
context.

We let G, T or S range over types. A gradual type is either a base type ι, the dynamic
type �, a function type T → S, or a record type {li : Gi}. Each field label l belongs to a
countably infinite set L, which is assumed to be disjoint with other syntactic categories.
With subscripted �, type metavariables G�, T� and S� indicate gradual types that are not �.
Note that types like � → �, {l : �} are still G� types. We give an inductive definition of them
in Figure 1. We let x, y, z range over term variables, which belong to another countably
infinite set V . We let t range over terms, and e, s range over expressions.

An expression is a term with a context label attached to it. In the source code of a
gradually typed programming language, a context label is merely a syntactical program
label ω which belongs to another denumerable set �. In the semantics Section 2.2, we
will explore how context labels can be employed to identify and subsequently track the

3 https://github.com/SuChengHao/Static-Blame
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Fig. 1. Syntax of λ� and λB.

evaluation of expressions in the source code. Importantly, context labels have no impact
on the semantics of λB. In Section 3, context labels play a fundamental role in Static Blame
as the definition of type flow is based on them. Consequently, the entire type flow analysis
algorithm relies on context labels.

A context label also contains a list of context refinements to denote newly generated
contexts during compilation and evaluation, the precise meaning will be explained later in
the semantics Section 2.2.

A term may be a variable x, a constant c, a lambda expression λx : G.e, an appli-
cation e1e2, a record {li = ei}, a record projection e.l, or a conditional expression
if e1 then e2 else e3.

Terms of λ� also contain ascription e :: G, which does not exist in the blame calculus
λB. Ascriptions denote manual type casts by programmers and will be replaced by explicit
type casts in λB during translation. A type cast 〈S ⇐b T〉e denotes casting the type of term
t from T to S at run-time and is identified by a blame label b which is also a program label.
In this paper, 〈T1 ⇐b1 T2 ⇐b2 T3...Tn ⇐bn Tn+1〉 is an abbreviation of the sequence of casts
〈T1 ⇐b1 T2〉〈T2 ⇐b2 T3〉...〈Tn ⇐bn Tn+1〉. Whenever employing this abbreviation, we will
provide further clarification if it is not trivial to omit context labels.

The reuse of context label as blame label is nothing deep. It is just a convenient way
to make the compilation process deterministic, which needs to generate fresh blame label
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to identify different type casts occurring in the compiled program. The blame label itself
is just an identifier to distinguish different casts without additional semantics. Therefore,
the main task of the blame label generation process is to ensure that different casts have
different blame labels in the compilation result (see Proposition 2.9).

We also assume a denumerable set of constants as the definition of blame calculus
of Walder and Findler (2009). Constants include values of base types and operations
on them. Therefore, each constant is static. Specifically, We assume a meta function
ty that maps every constant to its predefined type in the standard way. For example,
ty(true) and ty(false) are defined as type Bool, while ty(+) and ty(−) are defined as
Int → Int → Int. Being static means that for any constant c, the type ty(c) does not
contain any � within it.

Since λ� is a gradually typed language extended by subtyping relation, consistent sub-
typing T <′ S is used in typing rules rather than consistency. The declarative definition of
consistent subtyping is given in Figure 1 along with standard consistency. The distinction
between T <′ S and consistency is the width subtyping rule for records.

Consistency is a structural relation. A base type is consistent with itself. A dynamic type
is consistent with every type. Two function types are consistent if their domains and ranges
are consistent. Two record types are consistent if they have the same fields and their fields
are consistent. We refer to Garcia et al. (2016) for more details about the design principle
of consistency relation.

The consistent subtyping relation merely extends standard subtyping relation with two
additional rules stating that a dynamic type � satisfies consistent subtyping with any grad-
ual type in both directions. This definition shows that consistent subtyping is mostly a
structural relation. T <′ S if every pair (T ′, S′) of corresponding parts in type trees of T and
S satisfies subtyping relation or one of them is �. We refer to Xie et al. (2020) for a fairly
comprehensive research of consistent subtyping.

Figure 2 describes the static type system and translation relation of λ� simultaneously.
By omitting the highlighted parts, it defines the type system of λ� as a ternary relation
� � e : G. And by adding the highlighted parts, it defines the translation static semantics as
a relation � � t� s : G, where s denotes terms in λB.

We let � range over type environments, which are partial functions that map term vari-
ables into gradual types and are represented by unordered sets of pairs x : G. The extension
of type environment �, (x : G) is an abbreviation of set union, where we assume the new
variable x is not in the domain of �.

There are two points we need to clarify in Figure 2. First, the rule T_IF involves a join
operator ∨ ensuring that branches of a conditional expression can have different types.

Definition 2.1 (∨ and ∧). The operation ∨ and ∧ is defined as

� ∨G = G ∨ � = � � ∧G = G ∧ � = G ι ∨ ι = ι ∧ ι = ι

(T11 → T12) ∨ (T21 → T22) = (T11 ∧ T21) → (T12 ∨ T22)

(T11 → T12) ∧ (T21 → T22) = (T11 ∨ T21) → (T12 ∧ T22)

{li : Ti1, lj : Tj} ∨ {li : Ti2, lk : Tk} = {li : Ti1 ∨ Ti2} , where {lj} ∩ {lk} = ∅
{li : Ti1, lj : Tj} ∧ {li : Ti2, lk : Tk} = {li : Ti1 ∧ Ti2, lj : Tj, lk : Tk} , where {lj} ∩ {lk} = ∅
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Fig. 2. Static semantics of λ�.

If defined, T ∨ S is a common consistent supertype of T and S, while T ∧ S is a common
consistent subtype of T and S.

Proposition 2.2. For every gradual types T and S,

1. if T ∨ S is defined, then T <′ T ∨ S and S <′ T ∨ S;
2. if T ∧ S is defined, then T ∧ S <′ T and T ∧ S <′ S.

Second, the translation process requires context refinement by � for every newly gener-
ated sub-expression. The symbol � is used for cast expressions. The expression with the
label p� will be cast to the expression with label p. For example, in T_APP the argument
expression e2 in λ� is assumed to be translated to an expression t p2

2 , and a cast is inserted
to form a new argument expression (〈T1 ⇐ p2 T2〉t p2�

2 ) p2 in λB. We let the new argument
expression keep the label p2 after translation. To maintain the uniqueness of context labels

https://doi.org/10.1017/S0956796824000029 Published online by Cambridge University Press
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(Proposition 2.9), the label of the term t2 is a refined label p2 �, which means “the value
of this expression will be cast to the value of p2”. Similarly in T_APPDYN and T_IF, this
kind of context refinement by � happens where casts are inserted. Note that T_ANN does
not need context refinement, since an ascription is directly transformed into a cast and no
new sub-expression is generated. Other type rules are standard.

Definition 2.3 (sub-expressions and S(e)). The sub-expressions of an expression e in λ�

or λB, denoted by S(e), is a multi-set defined by

S(xp) = {xp}
S(cp) = {cp}

S((λx : G.e) p) = {(λx : G.e) p} ∪S(e)

S((e1e2) p) = {(e1e2) p} ∪S(e1) ∪S(e2)

S({li = ei}p) = {{li = ei}p} ∪ (
⋃

i

S(ei))

S((e.l) p) = {(e.l) p} ∪S(e)

S((if e1 then e2 else e3) p) = {(if e1 then e2 else e3) p} ∪S(e1) ∪S(e2) ∪S(e3)

S((e :: G) p) = {(e :: G) p} ∪S(e)

S((〈S ⇐b T〉e) p) = {(〈S ⇐b T〉e) p} ∪S(e)

The light-gray highlighted part belongs to λB, and the gray highlighted part belongs to λ�.
Other parts are common.

Definition 2.4 (mS(e)). Let mS(e) denote the multiplicity function of S(e) that maps every
expression to the number of its occurrence in S(e).

Definition 2.5 (expression occurring in e). We say an expression e′ occurs in e if
mS(e)(e′) > 0.

Definition 2.6 (well-labeled). An expression e is well-labeled if:

1. for all e′ occurring in e, mS(e)(e′) = 1;
2. for every context label p, there is at most one sub-expression e′ occurring in e with

context label p, i.e., the cardinal of the set {e′occurring in e | e′ = tp for some t} is at
most 1.

That is, there will not be two exactly the same sub-expressions in e. Every sub-expression
has a unique program label attached to it.

Definition 2.7. (cast occurring in e)
We say a type cast 〈S ⇐b T〉 occurs in e for e an expression in λB, if there is a sub-

expression (〈S ⇐b T〉e′) p occurring in e. Similarly, we say that a type cast combination
〈T1 ⇐b1 T2 ⇐b2 T3...Tn ⇐bn Tn+1〉 occurs in e if there is a sub-expression (〈T1 ⇐b1 T2 ⇐b2

T3...Tn ⇐bn Tn+1〉e′) p (where the omitted context labels are kept the same) occurring in e.
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Definition 2.8. (occurring as an attached label; occurring as a blame label)
We say a context label p occurs as an attached label in e, if there is a sub-expression tp

occurring in e. Similarly, we say p occurs as a blame label in e, if there is a sub-expression
(〈S ⇐b T〉e′) p′

occurring in e satisfying b = p.

Now we can formally assert that our representation of blame label is appropriate.

Proposition 2.9. Suppose that � � e� s : G where e is a well-labeled expression in λ�, s
is also well-labeled, and for every blame label b there is at most one type cast expression
occurring in e with blame label b, i.e., the cardinal of set {e′occurring in e | e′ = (〈S ⇐b

T〉e′′) p) for some S, T , e′′} is at most 1.

Well-labeled is just an auxiliary definition to formalize the assumption that every sub-
expression has a unique label attached to it.

Proof It is sufficient to show that, in each step of the translation process, newly inserted
casts will use fresh blame labels. By an easy induction, we will show that, for every pro-
gram e, if � � e� tp : G, then p does not occur as a blame label in t. That is, the out-most
attached context label p will never be used as a blame label inside t.

The proposition we need to prove is a direct corollary. Indeed, in the translation process
defined in Figure 2, the newly generated blame labels are always the out-most attached
context labels of the (translation result of) direct sub-terms. Since these context labels do
not occur as blame labels in these direct sub-terms, the generated blame labels are therefore
fresh.

Recall that every context label p occurs at most once in e. Moreover, we give two trivial
observations about � � e� tp : G without proof: (1) p must occur in e as an attached label
(2) if a cast 〈S ⇐ p′

T〉 occurs in t, then p′ must occur in e as an attached label.
Induction on � � e� tp. Case T_VAR and Case T_CON are direct.

Case T_ANN: � � e� t p1 : T and � � (e :: G) p2 � (〈G ⇐ p1 T〉t p1 ) p2 . From the induction
hypothesis and our observation, there is no cast with blame label p1 or p2 occurs in t, thus
the conclusion holds for (〈G ⇐ p1 T〉t p1 ) p2 .
Case T_LAM: �, (x : G) � e� s : T and � � (λx : G.e) p� (λx : G.s) p : G → T . From our
observation, p does not occur as a blame label in s. Apply the induction hypothesis, we
know that every p occurs in s as a blame label at most once. Then the conclusion holds for
(λx : G.s) p.
Case T_APPDYN: � � e1� t p1

1 : � and � � e2� t p2
2 : G. The result is e = ((〈� → � ⇐ p1

�〉t p1�
1 ) p1 (〈� ⇐ p2 G〉t p2�

2 ) p2 ) p3 . By the induction hypothesis and our observation, we
know that p1, p2, p3 does not occur as a blame label in t1, nor in t2. Then the conclusion
holds for e. Other cases are similar. �

2.2 Semantics of λB

The whole definition of λB is given in Figure 3, extending the syntax in Figure 1. As an
intermediate language of gradual languages, the type system and runtime semantics of λB

are standard. We let u, v, w range over values, r over intermediate evaluation results, and
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Fig. 3. The language λB.

E over evaluation contexts. A value expression vp is an expression whose inner term v is
a value. A value v is either a constant, a variable, a function, a record where each field is a
value expression, a cast between functions or records, or an injection into dynamic from a
non-dynamic type. Note this definition of value admits unbounded accumulation of casts
on values.

Since λB is an extension of λ�, we reuse the relation � � e : G to represent the type
system of λB. λB is a statically typed language. For a program t in λ�, it is trivial that
∅ � e� s : G implies ∅ � s : G.

We use a binary relation e −→ r to indicate a single-step reduction from an expression
e to a result r. We say an expression e is a −→-redex if there exists an r such that e −→ r.
The standard reduction relation e �−→ r is a simple closure of −→. By induction, if e can
be decomposed to E[e′] as a combination of an evaluation context E and a −→-redex e′,
then e can reduce in one step by reducing e′ in one step. We use e �−→∗ r to indicate zero
or more steps of reduction.
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The reader can disregard the manipulation of context labels momentarily and observe
that the definition of e −→ r is straightforward. A detailed explanation of context label
manipulation will will be provided later. We assume an interpreting function �� which
interprets a constant c with respect to ty(c). If ty(c) is a function type, we assume the
return value of �c� is still a constant. For example, �+�v is itself a constant which can be
interpreted as a computable function that maps any integer n to the result of v + n if v is
an integer, and undefined otherwise. Rules for application, record projection, conditional
expression, cast elimination, and cast decomposition are standard. Note that we also give
a rule concerning record type besides function type. A cast between two record types is
resolved into a less complicated cast between types of the fields being accessed.

In Figure 3, blame is always assigned to the downcast. Therefore, λB resembles the
D strategy in Siek et al. (2009). Static Blame is easy to migrate between different blame
strategies by simply changing the process of flow analysis that will be introduced in Section
3 to match the runtime semantics.

Now we give a detailed explanation of context label manipulation in reduction. Note that
context labels occurring in an expression do not affect its evaluation. The general design
principle which we will prove later is that if t p1

1 �−→ t p2
2 then p1 = p2. In other words,

context label is a way to track evaluation steps similar to program labels in standard flow
analysis. As a result, t[x := v] is still defined as a term substitution to preserve attached
context labels. More specifically, xp[x := v] = vp.

Additionally, context labels enable us to encode type cast, specifying both the source
and the target. For a type cast expression (〈S ⇐b T〉t p1 ) p2 , we can interpret it not only as
“the type of t is cast to S” but also as “the value of expression p1 will become the value
of expression p2 through the cast 〈S ⇐b T〉”. By regarding type casts as a special form of
value passing, it becomes possible to statically infer all possible combinations of type casts
if one can obtain all flow information within the program. This is precisely the approach
employed by Static Blame as formally demonstrated in Corollary 3.15.

As in compilation relation, context refinement happens when cast expressions are gen-
erated. The refined context label p attached to an expression tp expresses which expression
tp will cast to. For example, in function cast decomposition,

((〈T1 → S2 ⇐b S1 → T2〉vp1 ) p2 w p3 )p −→ (〈S2 ⇐b T2〉(vp1 (〈S1 ⇐b T1〉w p3 ) p1?) p1!)p

the generated expression (〈S1 ⇐b T1〉w p3 ) p1? will be cast to the argument of the expression
vp1 inside the left hand. Therefore, it has the refined context label p1?. Also, note that aban-
doning the context label p2 is acceptable in this reduction rule. First, considering that vp1 is
a value, we already know that the only possible value that will flow into p2 is exactly vp1 .
Second, the expression p2 will be eliminated and disappear after reduction. Consequently,
preserving the context label p1 is sufficient to maintain the necessary information for the
remaining reduction steps.

Static Blame has four different kinds of context refinement ε, namely�, ?, ! and l. All of
them express a cast-to relation. In detail, an expression with context label p� means that
e will cast to an expression with context label p; an expression with context label p? (resp.
p!/pl) means that e will cast to a parameter (resp. a return value/an l field) of expressions
with context label p. The concept context refinement is highly inspired by the concept
“type kind” in Rastogi et al. (2012) and shares the same notation. It also has something in
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common with the concept “Tag” in Vitousek et al. (2017), and a more detailed discussion
is listed in related work.

We conclude this section with several formal properties of λB.

Lemma 2.10. Suppose that t p is an expression in λB with � � tp : G, if t p �−→∗ (t′) p′
, then

p = p′.

Proof It is sufficient to consider the single-step case t p �−→ (t′) p′
. Suppose that t p =

E[t p1
1 ], (t′) p′ = E[t p2

2 ] and t p1
1 −→ t p2

2 , the conclusion is trivial if E is not a hole, hence
we can assume that t p −→ (t′) p′

, but the conclusion is also immediate from the definition
of e −→ r. �

The determinism of our semantics is ensured by the unique decomposition theorem.

Theorem 2.11 (Unique Decomposition). For a well-typed closed expression e in λB, either
e is a value expression, or there exists an unique decomposition e = E[s], where s is a
−→-redex.

The type safety property consists of a progress lemma and a preservation lemma. The
progress lemma is a corollary of the unique decomposition theorem.

Theorem 2.12 (Type Safety). For blame calculus λB, we have:

1. (Preservation) For a λB expression e, if � � e : G and e �−→ s, then � � s : G.
2. (Progress) For a λB expression e, if ∅ � e : G, then one of the following is true:

a. there exists an s such that e �−→ s,
b. e is a value expression vp,
c. there exists a blame label b such that e �−→ blame b.

3 The Static Blame framework

In this section, we introduce the formal definition of the Static Blame framework.

3.1 Labeled type and type flow

Recall that the main purpose of the Static Blame framework is to exploit data flows and
develop a correspondence between static constraints and runtime behavior. The Static
Blame framework achieves its goal with the concept of type flow which corresponds
straightforwardly to type cast, and the type flow analysis which computes type flows
statically.

The syntax of labeled type and type flow is given in Figure 4. Type flow consists of
labeled types. As we explained in Section 1.3, a labeled type is an identifier used for track-
ing expression evaluation as program labels in standard flow analysis. Formally, a labeled
type Ĝ is just a pair 〈G, p〉 of a gradual type G and a context label p. By intuition, the
labeled type represents an expression tp in λB with the same context label. The gradual type
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Fig. 4. Syntax for labeled type and type flow.

G is a design redundancy since λB is a statically typed language. The type of an expres-
sion e will not change during evaluation by preservation property. This redundancy gives
Static Blame a straightforward correspondence: for a cast expression (〈S ⇐b T〉t p1 ) p2 ,
it corresponds to type flow T̂ 
b Ŝ where T̂ = 〈T , p1〉 and Ŝ = 〈S, p2〉. Similarly, for a
cast combination (〈Tn+1 ⇐bn Tn...T3 ⇐b2 T2 ⇐b1 T1〉t p1 ) pn+1 where the omitted context
labels are p2...pn, it corresponds to a type flow combination T̂1 
b1 ... 
bn T̂n+1 where
T̂i = 〈Ti, pi〉. The notation T̂1 
b1 ... 
bn T̂n+1 is an abbreviation for a collection of type flows
T̂1 
b1 T̂2, T̂2 
b2 ...T̂n 
bn T̂n+1.

Type flow is an instance of constraint in standard flow analysis. Static Blame views a
cast expression as a special value passing monitored by the blame mechanism. By intuition,
a type flow 〈T , p1〉 
b 〈S, p2〉 means that the value of expression t p1

1 will be passed into
expression t p2

2 , and a blame may be assigned to b if cast fails. In contrast, the ordinary
value passing and variable binding relations are not monitored by the blame mechanism
and are denoted by the dummy kind d, which serves as a flag that is distinct from any
blame label.

Definition 3.1 (dummy type flow). A dummy type flow is a type flow T̂ 
ς Ŝ where ς = d.

The whole type flow generation process consists of a dummy type flow generation pro-
cess and a direct conversion from type casts to non-dummy type flows. The definition
of dummy type flow generation relation � � e : G | C is given in Figure 5, where e is an
expression in λB, G is a gradual type, and C is a set of dummy type flows. Most rules
mirror the control flow constraint generation in standard flow analysis.

Note that � � e : G | C is a deterministic relation. The following proposition is trivial.

Proposition 3.2. Suppose that e is an expression in λB, � is a gradual type environment,
and G is a gradual type, the following two statements are equivalent.

1. There exists a set C of dummy type flows such that � � e : G | C.
2. � � e : G.

Moreover, if there exist C1 and C2 such that � � e : G | C1 and � � e : G | C2 hold together,
then C1 = C2.

The whole type flow generation process is formally defined as a function ϕ.

Definition 3.3 (ϕ(�, e)). For an expression e and a type environment �, suppose that there
exists G, C such that � � e : G | C, we define the collection of generated type flows of e
under � as
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Fig. 5. Dummy type flow generation for λB.

ϕ(�, e) = {〈T , p1〉 
b 〈S, p2〉 | (〈S ⇐b T〉t p1 ) p2 ∈S(e)} ∪ C

It is trivial from the Proposition 3.2 that ϕ(�, e) is defined exactly if e is well-typed
under �.

3.2 Type flow analysis

Type flow analysis is a constraint-solving process. This process is described by an induc-
tive relation C � T̂ 
b Ŝ� in Figure 6 where C is a set of type flow and T̂ 
b Ŝ is a type
flow derived in type flow analysis. The main work of type flow analysis is to decompose
type flows by type structure and to recover the data flows mediated via dynamic types.
In principle, these rules model value passing and cast generation/elimination happen at
runtime.

Rule J_BASE is the initial situation. Rules J_FUN and J_REC decompose type flows
according to type structures. For a type flow Ŝ1 → T̂2 
b T̂1 → Ŝ2, J_FUN generates type
flows for function parameter and return value with respect to their variance. And for a

type flow {li : Ĝi} 
b {lj : Ĝj}, J_REC generates type flows for each field l that exists in both
{li : Gi} and {lj : Gj}.

Rules J_TRANSDYN and J_TRANS resemble cast elimination at runtime. The notation
C � T̂ 
b1 Ĝ 
b2 Ŝ� is an abbreviation for two hypotheses C � T̂ 
b1 Ĝ� and C � Ĝ 
b2

Ŝ�. By intuition, if T̂� is an inflow of a dynamic type 〈�, p〉 while Ŝ is an outflow of 〈�, p〉,
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Fig. 6. Type flow analysis.

then there is a possible data flow from T̂ to Ŝ. Rule J_TRANSDYN preserves blame label b1

rather than b2 in its conclusion to mirror the evaluation rules in Figure 3. This behavioral
mirroring is the key to the correspondence between type flow and type cast proved in
Proposition 3.13. If other blame strategies are used (Siek et al., 2009), the analysis rules
should also be modified to maintain behavioral mirroring.

Rule J_DUMMY, on the other hand, expresses ordinary value passing and has nothing to
do with the blame mechanism.

The careful reader may wonder why the relation C � τ� has no type checks. Actually,
there is no need. We say a type flow T̂ 
ς Ŝ is well-formed if T <′ S. Then we can prove
the following proposition.

Proposition 3.4. For an expression e and a type environment �, suppose that e is well-
typed under � so that ϕ(�, e) is well-defined, then every type flow τ ∈ ϕ(�, e) is well-
formed. Moreover, if every type flow in C is well-formed, then C � τ� implies that τ is
well-formed.

Proof From the fact that e is well-typed under � and � � e : G | C′ only generates type
flows between the same type, the first statement is direct. The second statement is a trivial
induction on C � τ�. �

Now we state an algorithm to calculate C � τ�.

Definition 3.5 (closure computation). Given C, enumerates every τ such that C � τ�.
This computation proceeds in the following steps:

1. Initially, apply rule J_BASE until saturation.
2. Next, apply rules J_DUMMY, J_TRANSDYN and J_TRANS until saturation.
3. Next, apply rules J_FUN and J_REC until saturation.
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4. Finally, jump back to step (2), if there is no new type flow derived, the algorithm
terminates.

As a standard least fixed point algorithm, the correctness of this algorithm is trivial if it
terminates. And we give a termination proof.

Theorem 3.6 (Termination). The closure computation terminates if the input C is finite.

Proof The result is quite clear from the fact that labeled types are finite, and each labeled
type has only finitely many sub-trees. More specifically, we can define Sub(T̂) as sub-trees
of T̂ inductively as

1. Sub(〈ι, p〉) = {〈ι, p〉}
2. Sub(〈�, p〉) = {〈�, p〉}
3. Sub(〈T → S, p〉) = {〈T → S, p〉} ∪ Sub(〈T , p?〉) ∪ Sub(〈S, p!〉)
4. Sub(〈{li = Gi}, p〉) = {〈{li = Gi}, p〉} ∪ (

⋃
i Sub(〈Gi, pl〉))

Let S be the set of all sub-trees of all labeled type occurs in C, every derived type flow
must of the form T̂ 
ς Ŝ, where T̂ , Ŝ ∈ S, and ς is either a blame label b occurring in C or
just the dummy flag. Since S and the set of blame labels occurring in C are both finite, the
algorithm cannot proceed forever. �

3.3 Type flow and type cast

In this section, we show that the type flow analysis on a λB program e is an overapproxi-
mation. More specifically, we will prove that if e is well-typed, then type cast occurring in
its evaluation can be derived by type flow analysis.

First, we need some auxiliary definitions.

Definition 3.7 (trivial type flow). A dummy type flow τ = T̂ 
d Ŝ is trivial if T̂ = Ŝ.

A trivial type flow is a dummy type flow with the same source and target.

Definition 3.8 (non-trivial type flow closure; C). Suppose that C is a set of type flows,
then the non-trivial type flow closure of C, denoted by C, is defined as C = {τ | C � τ�∧
τ is not trivial}.

We say that �; e � τ� if ϕ(�, e) � τ�.

Definition 3.9 (C dominates e under �). Suppose that e is well-typed under � so that
ϕ(�, e) is defined, we say that a set of type flows C dominates e under �, if for every
non-trivial type flow such that �; e � τ�, we have C � τ�. That is, ϕ(�, e) ⊆ C.

As a special case, ϕ(�, e) itself dominates e under �.
All induction proof about dominance relation requires the following lemma.
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Lemma 3.10 (Inversion lemma on Domination). Suppose that C dominates e under �:

1. if e = (〈S ⇐b T〉t p′
) p, then C also dominates t p′

under �, moreover τ ∈ C where
τ = 〈T , p′〉 
b 〈S, p〉;

2. if e = (λx : G.t p′
) p, then C also dominates t p′

under �, x : G, moreover

{Ĝ 
d Ĝi, T̂ ′ 
d T̂} ⊆ C, where Ĝ, Ĝi, T̂ ′, T̂ have the same meaning as the premises
of F_LAM ;

3. if e = (t p1
1 t p2

2 ) p3 , then C also dominates both t p1
1 and t p2

2 under �, moreover {T̂2 
d

T̂1, Ĝ 
d Ĝ′} ⊆ C, where T̂1, T̂2, Ĝ, Ĝ′ have the same meaning as the premises of
F_APP ;

4. if e = {li = t pi
i }p where i ranges for 1, ..., n, then C also dominates t pi

i under � for

every i ∈ {1, ..., n}, moreover {Ĝi 
d Ĝli} ⊆ C, where Ĝi, Ĝli have the same meaning
as the premises of F_RCD ;

5. if e = (t p1 .l) p, then C also dominates t p1 under �, moreover {Ĝ 
d Ĝ′} ⊆ C, where
Ĝ, Ĝ′ have the same meaning as the premises of F_PROJ;

6. if e = (if e1 then e2 else e3) p3 , then C also dominates ei under � for i ∈ {1, 2, 3},
moreover {Ĝ1 
d Ĝ, Ĝ2 
d Ĝ} ⊆ C, where Ĝ1, Ĝ2, Ĝ have the same meaning as the
premises of F_IF.

Proof It is immediate from the definition of ϕ function and domination. �

Now all we need to prove is that the dominance relation is preserved during evaluation.

Lemma 3.11 (Change of context label). Suppose that � � tp : G , then for every set of
type flows C dominating tp under � such that 〈G, p〉 
d 〈G, p′〉 ∈ C, C also dominates t p′

under �.

Proof Induction on � � tp : G. Note that 〈G, p〉 
d 〈G, p′〉 ∈ C implies that p �= p′. The case
where t = c, x is trivial.

Suppose that t = λx : G.(t′) p1 , � � tp : G → T , ϕ(�, t p) ⊆ C and 〈G → T , p〉 
d 〈G →
T , p′〉 ∈ C, we will show that ϕ(�, t p′ ) ⊆ C. Let {x pi} = FVO(e, x), Ĝi = 〈G, pi〉,
and Ĝ = 〈G, p?〉, Ĝ′ = 〈G, p′?〉, T̂ = 〈T , p!〉, T̂ ′ = 〈T , p′!〉, T̂1 = 〈T , p1〉, we know that

ϕ(�, t p′
) \ ϕ(�, t p) = {Ĝ′ 
d Ĝi, T̂1 
d T̂ ′}, and {Ĝ 
d Ĝi, T̂1 
d T̂} ⊆ ϕ(�, t p) ⊆ C. Since

〈G → T , p〉 
d 〈G → T , p′〉 ∈ C, we have that Ĝ′ 
d Ĝ, T̂ 
d T̂ ′ ∈ C by J_FUN. Then by

J_DUMMY, {Ĝ′ 
d Ĝi, T̂1 
d T̂ ′} ∈ C. So that ϕ(�, t p′
) ⊆ C, and then ϕ(�, t p′ ) ⊆ C.

The case where t = {li = ti}, (t p1
1 t p2

2 ), (t p1 .l) p2 or t = (if e1 then t p1
2 else t p2

3 ) is similar
to lambda case.

Finally, suppose that t = 〈S ⇐b T〉(t′) p1 , then ϕ(�, t p′
) \ ϕ(�, t p) = {〈T , p1〉 
b 〈S, p′〉}.

From the hypothesis we know that 〈S, p〉 
d 〈S, p′〉, 〈T , p1〉 
b 〈S, p〉 ∈ C, then by
J_DUMMY we know that 〈T , p1〉 
b 〈S, p′〉 ∈ C, and the conclusion follows. �

Now we can show the dominance relation is preserved under substitution.

Lemma 3.12 (Substitution). Suppose that C is a set of type flows, �, (x : G) � t p : T, � �
vp′

: G and x is not free in v, if
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1. C dominates t p under �, (x : G),
2. C dominates vp′

under �,
3. for every x pi ∈ FVO(t p, x), C � 〈G, p′〉 
d 〈G, pi〉�,

then C dominates (t[x := v]) p under �.

Proof Using a simple but somewhat tedious induction, one can show that

ϕ(�, (t[x := v]) p) \ ϕ((�, (x : G)), tp) =
⋃

x pi ∈FVO(tp,x)

ϕ(�, vpi ) (1)

Therefore we only need to show that for every x pi ∈ FVO(tp, x), ϕ(�, vpi ) ⊆ C. That is,
C dominates vpi under �. Since C dominates x pi under �, (x : G) trivially, it follows from
lemma 3.11 that C dominates vpi under �, (x : G). Since x is not free in v, ϕ(�, vpi ) =
ϕ((�, (x : G)), vpi ). Therefore, C also dominates vpi under �. �

With the substitution lemma, we can show the dominance relation is preserved under
single-step reduction.

Proposition 3.13 (Dominance Preservation of Reduction). Suppose that � � e : G, e −→
s, so that � � s : G. If C dominates e under �, then C also dominates s under �.

Proof Case analysis on the definition of e −→ s.

1. (c p1vp2 ) p −→ (�c�v) p: The result is immediate.
2. ((λx : G.t p1 ) p2vp3 ) p −→ (t[x := v]) p: Since C dominates e, then whether p3 = p2?

or not, there must be a dummy type flow from p to every variable x in t.
More precisely, let � � (λx : G.t p1 ) p2 : G → T , (xi) pi ∈ FVO(t p1 ), Ĝ = 〈G, p2?〉,
Ĝ′ = 〈G, p3〉 and Ĝi = 〈Gi, pi〉. Then from dummy type flow collection, we must

have Ĝ′ 
d Ĝi ∈ C. Then from substitution Lemma 3.12, C dominates (t[x := v]) p1 .
From F_LAM and F_APP, 〈T , p1〉 
d 〈T , p2!〉, 〈T , p1〉 
d 〈T , p2!〉 ∈ C(if they are not
trivial, of course, otherwise the conclusion will be trivial, too). Then by the Lemma
3.11, the conclusion follows.

3. ({li = v
pi

i , l = vp′ } p′′
.l) p −→ vp. Suppose that � � v : T , without loss of general-

ity, we can assume that p, p′, p′′ are distinct, then it is sufficient to show that
C � 〈T , p′〉 
d 〈T , p〉. But it is direct from F_REC, F_Proj and J_Dummy.

4. (if true p1 then t p2
1 else t p3

2 ) p −→ tp
1 or (if false p1 then t p2

1 else t p3
2 ) p −→ tp

2:
Suppose that � � e : G, without loss of generality we can assume that p1 �= p �= p2. It
is sufficient to show that 〈G1, p1〉 
b 〈G, p〉, 〈G1, p1〉 
b 〈G, p〉 ∈ C. And this is direct
from F_IF.

5. (〈ι ⇐b ι〉 c p1 ) p −→ cp: trivial
6. (〈� ⇐b1 � ⇐b2 G�〉 vp′

) p −→ (〈� ⇐b2 G�〉vp′
) p: the conclusion follows from

J_TRANSDYN.
7. (〈S� ⇐b1 � ⇐b2 T�〉vp′

) p −→ (〈S� ⇐b1 T�〉vp′
) p: the conclusion follows from

J_TRANS.
8. ((〈T1 → S2 ⇐b S1 → T2〉vp1 ) p2 w p3 )p −→ (〈S2 ⇐b T2〉(vp1 (〈S1 ⇐b

T1〉w p3 ) p1?) p1!)p: This is one of the two most complicated cases, suppose
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that C dominates the left-hand under �, from the inversion lemma we know that C
dominates vp1 and w p3 under �. However, except for type flows in ϕ(�, vp1 ) and
ϕ(�, w p3 ), there are only two non-trivial type flows in ϕ(�, e′): 〈T1, p3〉 
b 〈S1, p1?〉
and 〈T2, p1!〉 
b 〈S2, p〉, where e′ is the right hand. Both of these can be generated
from J_FUN and J_DUMMY.

9. ((〈{li : Gi, l : G} ⇐q {lj : Gj, l : T}〉vp1 ) p2 .l)p −→ (〈G ⇐q T〉(vp1 .l) p1l)p. This case is
similar to the last case.

�

Our main result is a direct extension.

Theorem 3.14 (Dominance Preservation of Evaluation). Suppose that � � e : G, e �−→∗ s,
so that � � s : G. If C dominates e under �, then C also dominates s under �.

Proof It is sufficient to show that, if � � E[e] : G, e −→ s and C dominates E[e], then C
also dominates E[s]. Induction on the structure of E. The case that E = [] is exactly the
Proposition 3.13.

Suppose that E = (E1t) p, E[e] = (E1[e]t) p, and e −→ s. From the inversion lemma, we
know that C dominates E1[e] and t, and from the induction hypothesis we know that C
dominates E1[s]. From F_APP, the type preservation lemma and the Lemma 2.10 , C also
dominates E[s] = (E1[s]t) p. The case that E = vE1 is similar.

Suppose that E = {li = v
pi

i , li = E1, lj = t
pj
j }, E[e] = E1[e]t, and e −→ s. From the inver-

sion lemma, we know that C dominates E1[e], v pi
i , t

pj
j , and from induction hypothesis we

know that C dominates E1[s]. From F_REC, the type preservation lemma and the Lemma
2.10, C also dominates E[s].

The case that E = (E1.l) p, or (if E1 then e1 else e2) p can be analyzed by the same
routine.

Suppose that E = (〈S ⇐b T〉E1) p, � � E[e] : G, e −→ s. This case is quite direct, since
ϕ(�, E1[s]) \ ϕ(�, E[s]) = {〈T , p〉 
d 〈S, p′〉} where p′ is the out-most context label of E1[s].
However, this type flow is contained in C from the hypothesis and the Lemma 2.10, so C
also dominates E[s]. �

Now the following statement is trivial.

Corollary 3.15. Suppose that e is a well-typed expression in λB under type environment
� and e �−→∗ s, then for all sub-expression (〈S ⇐b T〉t p1 ) p2 occurring in s, there exists a
non-dummy type flow τ = 〈T , p1〉 
b 〈S, p2〉 such that �; e � τ� holds.

4 Error classification

The application of the Static Blame framework is to reason about the runtime behavior of
gradual typing programs by type flow analysis. Ideally, this consists of two steps: use type
flows to get information about type casts and characterize the runtime behavior by type
casts.
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To demonstrate the effect of Static Blame, we use type flow to formalize the potential
error classification discussed in Section 1.4 and prove some properties of each category
formally. Recall that, we say that a potential error is detected in a program e if type flow
analysis derive �; e � T̂ 
b2 �̂ 
b1 Ŝ� where T �<′ S. For the convenience of discussion, we
say that Ŝ is an inconsistent context of a value expression vp, if vp has type T but T �<′ S.

As we mentioned, we define three different categories of potential errors.

Definition 4.1 (potential error). For e a program in λ�, if ∅ � e� s : G, the potential errors
are defined as follows:

1. a type flow 〈�, p〉 
b Ŝ is a normal potential error, if for some T such that �; e �
T̂ 
b′ 〈�, p〉 
b Ŝ, we have T �<′ S,

2. a type flow 〈�, p〉 
b Ŝ is a strict potential error, if it is a normal potential error, and
for every T̂� such that �; e � T̂� 
b′ 〈�, p〉 
b Ŝ, we have T� �<′ S,

3. a dynamic labeled type 〈�, p〉 is wrong, if it has at least one non-dynamic inflow,
and for every T̂�, Ŝ� such that �; e � T̂� 
b′ 〈�, p〉 
b Ŝ�, we have T� �<′ S�.

Please note that a strict potential error is explicitly required to also be a normal poten-
tial error. This restriction prevents a situation where a type flow 〈�, p〉 
b Ŝ is vacuously
considered as a strict potential error when 〈�, p〉 has no inflow.

We now discuss each category in turn.

4.1 Normal potential error: Complete

A normal potential error 〈�, p〉 
b Ŝ indicates that a value may flow into an inconsistent
context at runtime. Every type flow is monitored by a type cast with the same label, and
type safety ensures that every dynamic type error should be caught by a runtime cast. Then
a direct corollary of the correspondence is that every dynamic type error should be caught
by a normal potential error statically.

We can state this main property of potential type errors formally by blame label:

Theorem 4.2 (Completeness of normal potential error). For a program e′ in λ�, if � �
e′� e, and e �−→∗ blame b for some blame label b, then there is a normal potential error
〈�, p〉 
b Ŝ detected.

Proof As e �−→∗ blame b, we have that e �−→∗ E[s] for some E and s = (〈S� ⇐b1 � ⇐b2

T�〉vp′
) p with T� �<′ S�. Apply the Corollary 3.15 and the result follows. �

This theorem, as its name suggests, ensures that every possible blame error can be caught
as a normal potential error. On the other hand, a program without any normal potential error
will never trigger a blame error. Then the completeness of normal potential error ensures
soundness of Static Blame as a software analysis technique.

However, completeness is not enough, we cannot claim that a program with detected
normal type flow will necessarily trigger a runtime cast error. That is, detection for normal
potential error is not sound. Even if we can assert that no normal potential error can be
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detected in a completely static program, it would still be a long way from soundness. That
is the motivation for strict potential error.

4.2 Strict potential error: Sound up to erroneous casts

A type cast corresponding to a strict potential error is “definitely wrong”. For a strict poten-
tial error 〈�, p〉 
b 〈S, pS〉, its definition requires every inflow of 〈�, p〉 to be inconsistent
with S. Recall that in Section 2.1, we assume that ty(c) does not contain � for any con-
stant c. Technically, this assumption serves as the proof for base case of the induction
proof for Proposition 3.13. Essentially, it guarantees that constants of type � do not exist
in our system. Therefore, if an expression tp of type � is evaluated to a value vp, v must
be an upcast 〈� ⇐b′

G�〉(u) p′
. Then by Corollary 3.15, a type flow 〈G�, p〉 
b′ 〈�, p〉 can

be deduced through type flow analysis. Since 〈�, p〉 
b Ŝ is a strict potential error, we can
conclude that G� �<′ S and the downcast expression (〈S ⇐b �〉tp) pS must fail, as it will be
evaluated to (〈S ⇐b � ⇐b′

G�〉(u) p′
) pS .

For real-world gradually typed language with constants of type dynamic (i.e., eval4),
further information is required to generate several extra inflow for each possible type of
these constants (i.e., a type flow ˆInt 
b �̂ for eval("1")). Note that if we simply intro-
duce inflows T̂ 
b 〈�, p〉 for each type T , it will prevent 〈�, p〉 
b 〈S, pS〉 from being a strict
potential error since there will always exist a consistent inflow.

Strict potential errors describe a common mistake programmers make: an item of
dynamic type is used incorrectly. It is hard to formally assert a cast is wrong, as we men-
tioned earlier in Section 1.4. Therefore, we formally define casts that never succeed as
erroneous casts and claim that strict potential errors are sound with respect to erroneous
casts. Formally, we define erroneous casts as follows:

Definition 4.3 (existence in the evaluation of e). Suppose that e is an expression in λB

and � � e : G, we say a cast combination (〈T1 ⇐b1 T2 ⇐b2 T3...Tn ⇐bn Tn+1〉e′) p exists in
the evaluation of e if there exists s such that e �−→∗ s and (〈T1 ⇐b1 T2 ⇐b2 T3...Tn ⇐bn

Tn+1〉e′) p (where the omitted context labels are kept the same) occurs in s.

Definition 4.4 (erroneous sub-expression). For a program e in λB, suppose � � e : G. We
say a cast sub-expression (〈S ⇐b �〉t p1 ) p2 of e is erroneous in e, if for every cast combina-
tion (〈S ⇐b � ⇐b′

T�〉s) p2 (the context label of inner cast expression is irrelevant) existing
in the evaluation of e we have T� �<′ S.

The definition is straightforward with respect to the semantics of λB. If a dynamic down-
cast 〈S ⇐b �〉v happens, but the only possible value v is an up-cast 〈� ⇐b′

T�〉v′ from an
inconsistent type, then the down-cast must fail after cast elimination.

Formally, erroneous casts are unsafe.

Definition 4.5 (unsafe cast expression). Suppose that e is an expression in λB and � � e :
G, we say a cast expression (〈S ⇐b T〉e′) p is unsafe in e if, for every evaluation context E

4 Recall that in our formal system, the result of applying a constant is still a constant.
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and expression s1 of form (〈S ⇐b T〉s′) p, e �−→� E[s1] implies either E[s1] �−→∗ blame b′

for some b′ or e diverges.

Note that e′ may differ from s′, since e′ may change before cast elimination. To see
this, consider the expression (λx : �.(〈Int ⇐b �〉x) p)(〈� ⇐b′ Bool〉False) where most irrel-
evant context labels omitted. Because the whole expression will reduce to (〈Int ⇐b � ⇐b′

Bool〉False) p and then abort with a blame message, the sub-expression (〈Int ⇐b �〉x) p is
unsafe but different from (〈Int ⇐b � ⇐b′ Bool〉False) p.

Theorem 4.6. Every erroneous cast in e is unsafe in e.

Proof Suppose that � � e : G and T = �, and the erroneous cast is (〈S ⇐b �〉e′) p. Suppose
that e �−→∗ E[s1] where s1 is of the form (〈S ⇐b �〉s′) p. Apply unique decomposition the-
orem on s′, either it is a value of dynamic type (〈� ⇐b′

T ′〉v′ p′′
) p′

where T ′ �<′ S and the
conclusion follows, or it can continue to evaluate. The result of its evaluation is either a
dynamically typed value, which is the same as in the first case, or it diverges, or it aborts
with a blame message. All situations are trivial. �

Then we can formally state that every strict potential error detects an erroneous cast.
That is, strict potential error detection is sound with respect to erroneous casts.

Theorem 4.7. Suppose that e is a well-typed expression in λB, and (〈G ⇐b �〉t p1 ) p2

occurs in e. If 〈�, p1〉 
b 〈G, p2〉 is a strict potential error in e, then (〈G ⇐b �〉t p1 ) p2 is
erroneous.

Proof Suppose that the cast combination (〈G ⇐b � ⇐b′
T�〉s) p2 exists in the evaluation

of e (where the omitted context label is p1), apply Corollary 3.15 twice, we know that
�; e � 〈T�, p〉 
b′ 〈�, p1〉� and �; e � 〈�, p1〉 
b 〈G, p2〉� for some p, since 〈�, p1〉 
b 〈G, p2〉
is a strict potential error, we have T� �<′ G. �

4.3 Wrong dynamic types: Values that cannot be used

At last, a wrong dynamic type is a labeled type where every non-dynamic inflow is incon-
sistent with every non-dynamic outflow. By definition, it is equivalent to saying that every
non-dynamic outflow 〈�, p〉 
b G� is a strict potential error. While a strict potential error
means a value may be used in a wrong way, the value held in the wrong dynamic type
〈�, p〉 can never be used safely as any non-dynamic type. That is why a wrong dynamic
type is more severe than a strict potential error.

For example, consider a program:

(λx : �.(λy : �.y + 1)x)true

where attached context labels are omitted. If we denote the contexts of parameter x
and y by labels p1 and p2 in the compiled program, then type flow analysis will derive
Bool 
b1 〈�, p1〉 
b2 〈�, p2〉 
b3 Int. Thus 〈�, p2〉 is a wrong dynamic type, while 〈�, p1〉 is
not. It may be somewhat counter-intuitive at first glance, as both 〈�, p1〉 and 〈�, p2〉 hide the
inconsistency between Int and Bool. The design principle of Static Blame is to statically
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assert properties about a gradually typed language with a given blame mechanism. The
result of this program will be blame b3, that is, projection from 〈�, p2〉 to Int should be
responsible for the dynamic consistency. Both 〈〈�, p1〉 ⇐b1 Bool〉 and 〈〈�, p2〉 ⇐b2 〈�, p1〉〉
are trivially legal, so b1 and b2 will not be blamed. Since the use of dynamic type value is
denoted by a projection at run-time, we assume 〈�, p2〉 is wrong in keeping with the design
principles of the blame mechanism. Formally, we can state the following property.

Theorem 4.8. Suppose that e is an expression in λB and � � e : G, if e �−→∗ E[(〈G� ⇐b

�〉vp) p′
] where 〈�, p〉 is a wrong dynamic type, then e �−→∗ blame b.

Proof From the definition of value of dynamic type, we know that vp must be a cast
expression. Since 〈�, p〉 is a wrong dynamic type, vp must be an erroneous cast. As a result
of Theorem 4.6, the expression will abort with a blame message. �

5 Evaluation

To evaluate the feasibility of Static Blame, we have implemented Static Blame as a bug
detector on Grift5, called SLOG (Static Blame fOr Grift).

The experiments were conducted on a machine with an 8-core6 Intel(R) Core(TM) i7-
10700F CPU @ 2.90GHz processor with 16384 KB of cache and 16 GB of RAM running
Arch Linux. The Grift compiler is version 0.17, and Racket is version v8.8 [cs].

5.1 Implementation

5.1.1 Static Blame for grift

Grift is a superset of λ� discussed in this paper. It extends λ� with several features. In our
evaluation of the feasibility of Static Blame, we have selectively supported a significant
portion of the commonly used features, including base types (Int, Float, Bool, Unit),
operators on base types (e.g., fl+ for float addition.), binding structures (define, let,
letrec), iterations (repeat), sequencing (begin), tuples (tuple), and reference types
(box, vector) with guarded semantics. While most of these features can be implemented
straightforwardly, reference types deserve additional discussion.

Guarded semantics is originally proposed by Herman et al. (2010). With guarded seman-
tics, each reference cell access (read and write) will be guarded by a cast between the
expected type and the actual type of the reference cell. For example, let r be a reference
value of type Ref �, and i be a value of type Int. Then the cast term 〈Ref Int ⇐b Ref �〉r
has type Ref Int. With standard notation of reference types, dereference of this term will

5 https://github.com/Gradual-Typing/Grift/tree/pldi19
6 The implementation is single-threaded, and there is no other computationally intensive task on the machine

during the experiment.
7 Our work is based on the latest development branch of Grift, with 0.1 being its official package version as

listed in info.rkt.
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generate a downcast:

!(〈Ref Int ⇐b Ref �〉r) −→ 〈Int ⇐b �〉(!r)

while assignments will generate an upcast:

(〈Ref Int ⇐b Ref �〉r) := i −→ r := 〈� ⇐b Int〉i
Our implementation supports guarded reference semantics in a direct way. The content

of a reference cell is denoted by a new context refinement �. And flow analysis is extended
by two new rules:

C � 〈Ref T , p1〉 
ς 〈Ref S, p2〉�
C � 〈T , p1�〉 
ς 〈S, p2�〉� J_REFREAD

C � 〈Ref T , p1〉 
ς 〈Ref S, p2〉�
C � 〈S, p2�〉 
ς 〈T , p1�〉� J_REFWRITE

Mutable vector type is supported in a similar manner, where every element of a vector
is assumed to have the same labeled type.

5.1.2 Static blame implementation: SLOG

To evaluate the effectiveness of Static Blame, SLOG is implemented as a bug detector
based on Static Blame. In this paper, we informally define a bug as a piece of code that
does not work properly as the programmer intended. SLOG takes a Grift program as input,
identifies three kinds of potential errors, and then generates bug reports.

First, SLOG maps each potential error to a bug. For each bug, SLOG generates a bug
report that includes the bug itself and a collection of reasons for that specific bug. A reason
for a bug represents a potential error that is mapped to that particular bug. It is important
to note that a bug report may contain multiple reasons, as there can be multiple potential
errors mapped to the same bug.

In our experiment, a bug is just a specific node of a syntax tree. In other words, a bug
report produced by SLOG consists of (1) a node in the syntax tree of the input program
and (2) a collection of potential errors. The mapping from a potential error to a specific
node deserves some discussion.

Recall that, a normal (strict) potential error T̂ 
b Ŝ corresponds to a runtime type cast that
may (must) fail with the blame label b. And if a type cast fails, the program will abort with
a blame label indicating the syntax node where casts are located. Therefore, SLOG maps
normal and strict potential errors into the syntax nodes indicated by their blame labels.
Similarly, a wrong dynamic type is a labeled type 〈�, p〉, where p is a context label which
also indicates a syntax node. SLOG maps wrong dynamic types into the syntax nodes
indicated by their context labels.

Moreover, to compare the effectiveness of different categories of potential errors, SLOG
can be restricted on a certain category of potential error. For example, when restricted to
normal potential errors, SLOG will only map normal potential errors into bug reports.
In other words, strict potential errors and wrong dynamic types are discarded. Note that
restriction hardly affects the performance of SLOG, since the type flow analysis still needs
to compute the entire closure.
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5.2 Research questions

We evaluate the effectiveness and performance of SLOG. Specifically, we aim to answer
the following two questions:

• RQ1 (Effectiveness): What is the effectiveness of SLOG? We plan to investigate
whether SLOG can detect bugs from Grift programs, as well as the causes of false-
positive reports and undetectable bugs.

• RQ2 (Performance): What is the performance of the Static Blame implementa-
tion? Specifically, we plan to investigate its correlation with program size and the
proportion of typed code.

Replacing some annotations in a gradually typed program with dynamic types will get
another gradually typed program, which is called a configuration of the original program.
Therefore, a fully annotated gradually typed program with n type nodes has 2n configu-
rations. Note that, a single type annotation can have multiple type nodes. For example, a
type annotation Ref Int can be “dynamized” into both Ref � and �. Consequently, even a
small program can have a huge space of configurations.

Configurations are versions of the same program with different proportions of typed
code. All configurations of a gradually typed program comprise the migratory lattice of
this program. As Takikawa et al. (2016) observes, the execution of a program may have
an overhead of over 100× in the worst-case over the entire migratory lattice, much slower
than both the fully static version and the fully dynamic version. This observation indi-
cates that the proportion of typed code is a crucial metric for gradually typed programs.
Consequently, conducting evaluations of SLOG with varying proportions of typed code is
valuable. The evaluation of SLOG involves sampling across the lattice.

5.3 Experimental setup

5.3.1 RQ1: Effectiveness

Ideally, SLOG should be evaluated on a representative collection of programs with run-
time cast errors for RQ1. However, there is no such benchmark. Therefore, we take a
similar approach to previous work about evaluating blame mechanism (Lazarek et al.,
2021), namely generating a corpus of errors by mutation analysis.

We say that a generated program is a legal scenario or simply scenario if it can be
accepted by the Grift compiler. SLOG is evaluated on a collection of legal scenarios. Our
approach proceeds as follows, and each step will be described in detail later.

1. Select a representative collection of static programs that: (1) make full use of the
various features of the Grift language and (2) vary in size, complexity, and purpose.

2. Inject bugs into these programs with carefully designed mutators. The result pro-
grams are called mutants. A mutant is a legal scenario if it can be accepted by the
compiler.

3. For each mutant, uniformly sample several programs from its migratory lattice,
each sampling result that can be accepted by the compiler is also a legal scenario.
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Table 1. Summary of mutators

Name Description Example

Arithmetic swaps an arithmetic operator (+ a b) → (fl+ (a :: Dyn)(b :: Dyn)) :: Dyn
with another of different type

Constant swaps a constant with another 5 → (5.0 :: Dyn)

Position swaps two sub-expressions (f a b c) → (f a (c :: Dyn)(b :: Dyn))

The starting program collection in our experiment is the original benchmark of Grift pre-
sented in Kuhlenschmidt et al. (2019). This benchmark consists of eight programs ported
from other well-known benchmarks or textbook algorithms for Grift. We chose seven of
them as the starting point of mutation analysis. The excluded program sieve uses recur-
sive types not supported by our implementation. The sizes of these chosen programs range
from 18 to 221 in terms of LOC, while the numbers of type nodes range from 8 to 280.
Details are listed in Table 2.

The mutators we use are inherited from Lazarek et al. (2021) with slight changes. The
mutators that can successfully generate legal scenarios are described in Table 1. Note that
the arithmetic mutator is not a special case of the constant mutator, since operators in Grift
are special forms, not constant values. We use only three mutators in the evaluation while
Lazarek et al. (2021) describe 16 mutators. The main reason is that Lazarek et al. (2021)
evaluate on the full-fledged language Racket (Flatt & PLT, 2010), while Grift has fewer
features. As a result, mutators for some advanced language features are not portable to
Grift. For example, Grift does not support classes, and mutators like swapping method
identifiers are not portable.

Moreover, the mutators in Table 1 inject additional type ascriptions into programs, while
their original version in Lazarek et al. (2021) does not. This is because Lazarek et al.
(2021) processes coarse-grained gradual typing, which means they can hide injected bugs
by making the module containing mutations untyped, while we process fine-grained grad-
ual typing, and the injected bug can only be hidden by an explicit annotation. Note that
the additional type ascription won’t change the number of configurations in its migratory
lattice.

Migratory lattice represents type migration of gradually typed programs, which is the
process of making a program more (resp. less) precise by changing the type annotation.
Migration of gradually typed programs may change the runtime behavior of a gradu-
ally typed program. We also uniformly sample configurations from migratory lattices of
mutants. The fully dynamic configuration and the fully static configuration are always cho-
sen as special cases. We use the same sampling algorithm as Kuhlenschmidt et al. (2019)8.
It takes a fully typed program, the number of samples, and the number of bins to be uni-
formly sampled as inputs. These bins partition the migratory lattice by dynamic annotation
percentage of configurations in the lattice. And the algorithm will uniformly sample from
each bin.

8 We reuse their open source tool from https://github.com/Gradual-Typing/Dynamizer, making slight code
modifications.
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Table 2. Generated legal scenarios and metrics about source programs

Black- scholes FFT Mat- mult n_body Quick- sort Ray Tak Overall

Arithmetic 480 456 156 984 96 768 36 2976

Constant 1272 720 276 3468 288 1848 72 7944

Position 888 864 324 1560 240 1560 108 5544

Overall 2640 2040 756 6012 624 4176 216 16464

LOC 139 99 39 221 48 199 18 NA

NTN 128 67 33 136 44 280 8 NA

Note: This table shows (1) the numbers of legal scenarios generated by each mutator and each source

program after sampling from migratory lattices and (2) two metrics of each source program. The first

four rows display legal scenarios, where each row represents a mutator and every column represents

a source program. The number N in a cell (M , P) means that there are N legal scenarios in the set of

(1) mutants generated by applying M to P along with (2) sampled programs from migratory lattices

of these mutants. The last two rows provide two metrics. LOC refers to the Lines Of Code of each

program, while NTN represents the Number of Type Nodes of each program.

The generated legal scenarios after sampling are shown in Table 2. In summary, we
sample 12 scenarios from the migratory lattice of each mutation, and we collect 16,464
legal scenarios by mutation analysis and sampling from migratory lattices.

Recall that a bug in a program is a specific node in the syntax tree of this program.
We explicitly give an informal assumption to relate the concepts of bug, bug report, and
mutation analysis. Under this assumption, each legal scenario has exactly one bug. We call
it actual bug to distinguish it from the SLOG bug reports.

Assumption 1. We assume that every mutant has one bug where the mutation happens.
We also assume that an actual bug can be located by a bug report if the report refers to a
sub-tree of the actual bug.

Please note that the concept of sub-tree specifically relates to the structure of the Abstract
Syntax Tree (AST) in the implementation of the Grift language. This concept is slightly
different from sub-expressions formally defined in Definition 2.3. For example, in the case
of the let binding let x = e1 in e2, the sub-tree x = e1 represents a binding AST node.
However, since it is not a valid expression, it is not a sub-expression. In Section 5.5, we
provide a discussion on the assumption concerning potential threats to validity.

5.3.2 RQ2: Performance

For RQ2, we start by creating a collection of large programs called SIZE by repeating code
in the ray program, which has the most type annotations. We make necessary renaming to
avoid identifier conflict. The size of the programs in SIZE increases linearly, ranging from
approximately 250 to 2500 lines of code (LOC). Next, we divide the migratory lattice of
the ray program into ten bins based on the proportion of dynamic type annotations. Each
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Table 3. Effectiveness evaluation of SLOG

Category #Rep TP Precision #TSce Recall ERecall

NPE 19942 12025 60.30% 5921 35.96% 91.66%
SPE 12428 11379 91.56% 5723 34.76% 91.32%
WDT 11498 10843 94.30% 5618 34.12% 87.64%

NPE: Normal Potential Errors. SPE: Strict Potential Errors. WDT: Wrong Dynamic Types.

Note: This table shows the evaluation result in terms of the categories of our classification of errors.

The column #Rep gives the number of bug reports among all legal scenarios. The column TP gives

the number of true positives among these reports. The column #TSce gives the number of scenarios

with any true positive reports. That is the number of detectable actual bugs. The precision is calcu-

lated by TP/#Rep, while the recall is the ratio of #TSce among all 16464 scenarios. Erecall is the

recall of the dataset after removing non-type scenarios.

bin covers a range from 10i% to 10(i + 1)%, where i ranges from 0 to 9. From each bin,
we randomly select 100 configurations, resulting in another collection of 1000 programs
called LATTICE.

5.4 Evaluation results and discussion

5.4.1 RQ1: Effectiveness

For RQ1, we run SLOG on every legal scenario and compare the reported bug location(s)
with the actual bug location. More specifically, by Assumption 1, we say a bug report (i.e.,
one output of SLOG for a specific legal scenario) is a true positive if it refers to a sub-tree
of the actual bug. For each legal scenario, we run SLOG three times, each time restricting
SLOG to a different category of potential error. Therefore, there will be three categories
of bug reports for each scenario.

The result of our evaluation is shown in Table 3. The precision is the rate of true
positives in all bug reports. The recall is the rate of scenarios with any true positives
among all scenarios. Intuitively, precision reflects how many reports are correct, while
recall reflects how many actual bugs can be found by the SLOG. Overall, the relative rela-
tionship of precision rates is as we expected from the theory. Normal potential errors are
the least precise, strict potential errors are more precise, and wrong dynamic types are the
most precise. Accordingly, their recall rates also decrease in this order.

We delve into two issues: why SLOG detects false bugs and why certain bugs remain
undetected. Therefore, we manually classify 1) the false-positive reports and 2) scenarios
without any true-positive report. The theoretical nature of normal potential error, its simi-
larity to strict potential error, and its low precision make it less interesting. Therefore, we
only analyze strict potential error and wrong dynamic type.

Specifically, we manually classified all false-positive reports consisting of 1049 strict
potential error reports and 655 wrong dynamic type reports. For scenarios without any true
positive report, the classification procedure is conducted on two distinct samples.

The first sample comprises 371 scenarios without strict potential error reports, while
the second sample comprises 372 scenarios without wrong dynamic type reports. Both
samples exhibit a confidence level of 95% and a margin of error that does not exceed 5%.
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Table 4. Cause of false positives and false negatives

FP-cause SPE WDT

ESC 97.24% 72.06%
REF 1.81% 18.17%
IMP 0.95% 9.77%

NoTP-cause SPE WDT

NTY 94.88% 92.74%
TRAN 3.50% 4.84%
SMASH 1.62% 1.35%
IMP 0.00% 1.08%

Note: This table shows our results of manual classification. Table Fp-cause shows the classification

of false positive reports, while table NoTp-cause shows the classification of scenarios without true

positive reports. That is the classification of reasons for undetectable bugs. Column SPE represents

strict potential errors and WDT for wrong dynamic types.

The sample size is calculated using calculator.net. The result of classification is listed in
Table 4. We now explain each category in detail.

The causes of false positives include Escape (ESC), Refinement (REF), and
Implementation (IMP).

Escape (ESC) happens when a dynamically typed variable is assigned a value of a cer-
tain type but incorrectly used as another inconsistent type. For example, the following
code assigns an integer to a variable x, and each use of x as an integer is an escape of strict
potential errors.

let x : � = 1.0 in ...//the x is used as integer (1)

If we view the syntax node x : � = 1.0 as a bug (since replacing 1.0 by 1 will fix it),
then every cast inserted in the let-body that converts x from dynamic type to integer will
result in a false positive of strict potential errors. Because the blame labels of these casts
will refer to the use rather than the initial assignment x : � = 1.0.

This example does not result in false positives of wrong dynamic types since each use
of x will have the same labeled type. However, when the value of x is assigned to another
dynamically typed variable, the escape of wrong dynamic types also occurs.

let x : � = 1.0 in

let y : � = x in ...//the y is used as integer (2)

In the Example 2, the dynamic type of y rather than x will be the wrong dynamic type
reported since each use of y is an outflow of y rather than x. Similarly, if we still view the
syntax node x : � = 1.0 as a bug, a false positive occurs.

The Escape phenomenon exposes a fundamental limitation of Static Blame. In the
absence of prior knowledge, distinguishing whether an assignment or use is a bug becomes
challenging. For instance, in Example 2, it is unclear whether a floating-point variable is
being improperly used as an integer variable or if a floating-point value is mistakenly
passed into an integer variable. While escape problems can be solved simply by adding
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type annotations, they can also be addressed by tracking both the use and assignment
without necessitating additional type annotations. Unfortunately, the current label track-
ing mechanism of Static Blame lacks this capability. As part of our future work, we aim to
address this limitation.

Refinement (Ref) happens when a potential error is associated with a portion of a value
of a composite type. The situation is slightly different between strict potential errors and
wrong dynamic types. The following code assigns a pair of two floating-point values to
a dynamically typed variable, which is used inconsistently as a pair of an integer and a
floating-point.

let pif : � = 〈(2.0 :: �), 1.0〉 in...

//pif is used inconsistently
(3)

While the “real” location is the sub-expression (2.0 :: �), SLOG will report the outer
pair expression 〈(2.0 :: �), 1.0〉. For strict potential errors, the relevant cast 〈Int ⇐b �〉
is decomposed from a larger cast 〈Int × Float ⇐b �〉 which will refer to the outer pair
expression. For wrong dynamic types, recall that we only use the program label in map-
ping, while all context refinements are abandoned. Therefore, it can only refer to the outer
pair expression.

In our experiment, the location (a syntax tree node) of the false-positive report caused
by REF is always the direct parent of the actual bug. Although not in accordance with our
Assumption 1, during the classification process we can always find the actual bug directly
from the false positive report caused by REF.

Implementation (IMP) is due to a bug9 in the Grift compiler itself, the source location
information attached to syntax tree nodes is shifted on the first sub-tree of all binding
constructs. A false-positive report is classified as IMP if it can be eliminated by fixing this
issue.

Among all 1049 false-positive reports of wrong dynamic types, 1020 are due to ESC,
19 are due to REF, and 10 are due to IMP. Among all 655 false-positive reports of strict
potential error, 472 are due to ESC, 119 are due to REF, and 64 are due to IMP.

The causes of bugs that cannot be found include non-type (NTY), smashing abstrac-
tion(SMASH), and transition (TRAN). The implementation issue mentioned above (IMP)
can also make a bug undetectable. Similarly, a scenario is classified as IMP if it can be
eliminated by fixing this issue.

Non-type (NTY) means that a scenario does not involve a type-related bug. This cat-
egory accounts for the vast majority of causes of undetectable bugs. We also estimated
the recall of SLOG after removing NTY from all scenarios, noted in Table 3 as column
ERecall. We list the two found NTY patterns here.

1. Modifying arithmetic results without affecting the type. An example of this is
exchanging the definitions of two variables of the same type.

2. Not altering the program’s semantics. An example of this is exchanging two
arguments of the operator “+” while maintaining the same meaning.

9 https://github.com/Gradual-Typing/Grift/issues/116
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Transition (TRAN) is analogous to the escape problem in principle, although it leads to
different results. Consider a simple lambda expression that adds 1 to its dynamically typed
parameter x and returns the result. If all actual arguments are inconsistent with integer,
then the parameter type � is a wrong dynamic type, and the use of x in the lambda body
will be caught as a strict potential error.

let f : � → Int = λx : �.(x + 1) in

f 1.0
(4)

However, if some actual arguments are inconsistent with integer but others are consistent,
then both wrong dynamic errors and strict potential errors will disappear.

let f : � → Int = λx : �.(x + 1) in

〈f 1.0, f 1〉 (5)

This is because, in our definition, an outflow is treated as a strict potential error only
if it is inconsistent with all inflows. And wrong dynamic type is defined via strict poten-
tial errors. Therefore, a dynamically typed variable cannot be reported as a bug by strict
potential errors or wrong dynamic types as long as some of its uses are correct. Thus,
TRAN is a trade-off for the increased precision of strict potential error and wrong dynamic
type.

Smashing abstraction (SMASH) stems from our smashing abstraction of vectors and
tuples. In this model, all elements of a vector or tuple are treated as a single element
(Blanchet et al., 2002). For example, consider a vector of type Vec Int, one component
(1.0 :: �) has an inconsistent type, but the other components are normally assigned val-
ues of type Int. SLOG treats the vector as having only one component, and thus cannot
detect potential errors. Therefore, the smashing abstraction stands as one of the inherent
shortcomings of Static Blame.

Among all 371 scenarios without strict potential error reports, 352 are due to NTY, 13
are due to TRAN, and 6 are due to SMASH. Among all 372 scenarios without any wrong
dynamic type report, 345 are due to NTY, 18 are due to TRAN, 5 are due to SMASH, and
4 are due to IMP.

Overall, we answer RQ1 by concluding that SLOG is able to detect bugs from Grift
programs.

5.4.2 RQ2:Performance

For RQ2, Figure 7 shows the results of SLOG on SIZE, and Figure 8 shows the results of
SLOG on LATTICE. Recall that SIZE is a collection where programs increase linearly in
size, while LATTICE is a collection of 1000 configurations of the same program.

Across the nine measured programs in SIZE, the run time exhibits quadratic growth with
respect to program size. To make it clear, we also record the increment between adjacent
points in Figure 7, whose growth is almost linear. In Figure 7, each point in the blue line
represents one program in the collection SIZE, which is created by repeating code in the
ray program. The horizontal coordinate of a point is the LOC of this program, while the
vertical coordinate is the run time of SLOG. The cyan line records the increment between
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Fig. 7. SLOG performance with respect to program size.

Fig. 8. SLOG performance with respect to the proportion of typed code.

the adjacent points of the blue line. It has been observed that the performance of SLOG is
impacted by the size of the program. The quadratic growth rate is acceptable for relatively
small and medium programs. However, its efficiency diminishes when dealing with larger
programs.

Figure 8 depicts the variation in SLOG performance in relation to the percentage of
typed code. Each point represents one program in the collection LATTICE. The horizontal
coordinate of a point is the proportion of typed code in this program, while the vertical
coordinate is the run time of this program. Figure 8 shows that there is no significant rela-
tionship between performance and the proportion of typed code in most cases. However,
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Fig. 9. Number of type flows with respect to the proportion of type annotation.

as the program approaches fully typed, there is a significant increase in the run time of
SLOG. In other words, the more precise the type annotations in the program, the slower
SLOG runs. This fact may be surprising at first sight because a more precise program
should be easier to “check”.

To explain this significant increase more clearly, we also record the number of type
flows generated by SLOG in Figure 9. The type flow analysis of Static Blame detects
potential errors by continuously traversing the set of type flows and generating new type
flows. Therefore, the monotonically increasing set of type flows is the main and necessary
cause of the runtime efficiency of SLOG.

In Figure 9, each data point represents a single program in the LATTICE collection. The
first sub-figure displays the total number of type flows generated by each program. The
horizontal coordinate of a point is the type annotation proportion of the program, while
the vertical coordinate is the number of type flows. The first sub-figure of Figure 9 shows
the total number of generated type flows increases rapidly as the program approaches fully
typed and exhibits the same phenomenon as run time. This indicates that the growth of
runtime can be explained by the increase in type flows, as anticipated. To elucidate this
phenomenon, we present the second sub-figure, which delves into the underlying reasons
for this growth of type flows.

Each point in the second sub-figure is still a program in the LATTICE collection. The
color represents the proportion of type annotation for each program. The horizontal coor-
dinate of each point is the proportion of dummy type flows among all type flows, while the
vertical coordinate of each point still shows the total number of type flows.

The second sub-figure shows the fact that most of the type flows generated are dummy
type flows when the program approaches fully static. Therefore, the increase in the number
of dummy type flows is the main reason for the rise in run time.

This phenomenon illustrates two points. First, it is very expensive to compute the value
passing relations according to Static Blame. Second, the dynamic types in the program
“block” further analysis, which greatly reduces the cost of computation of Static Blame.
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Overall, we answer RQ2 by concluding that the performance of SLOG is acceptable
for programs of small and medium sizes within two or three thousand lines of code.
In particular, the run time is quadratic in the size of the program, and the generation
of type flows during value passing analysis is the main performance burden.

5.5 Threats to validity

One concern with these experiments is the representativeness of generated bugs. This threat
has two aspects: (1) Grift is a simple academic language without many language features
and thus a limited set of possible kinds of bugs and (2) the mutation analysis is a coarse
approximation of the bugs in real-world programming. Therefore, the experiment may not
uncover certain shortcomings of Static Blame.

For instance, our algorithm is unable to handle primitive operators with dynamic
types, which is common in gradually typed languages other than Grift (e.g. range in
RETICULATED PYTHON) and is more challenging to detect statically. However, it is worth
noting that these operators are not involved in the benchmark either. Furthermore, the
marginal decrease in recall presented in Table 3 also suggests that the bugs injected through
mutation may be overly simplistic to detect.

Another concern is the experimental design. Considering that different bugs may influ-
ence each other, there is merely one bug per scenario, and therefore do not fully reflect
real-world programming, where there may be multiple bugs in a program. Moreover, when
the bug code becomes more complex, it becomes more difficult to locate the entire bug
from one of its fragments.

The Assumption 1 might not always remain valid. A significant issue arises when the
reported bug represents a considerably deep sub-tree of the actual bug. In such cases,
the process of locating the actual bug may still require a substantial amount of time.
However, in our experiment, almost all bug reports classified as true positives are either the
exact bug itself or direct children or grandchildren of the bug, indicating a shallow depth.
Consequently, the impact of Assumption 1 on the experiment’s conclusion is minimal, at
least within the scope of our experiment.

6 Related work

6.1 Static analysis for gradual typing

Static analysis for gradually typed languages is a relatively unexplored field. Many of the
related work focuses on how to optimize the performance of gradually typed language.

6.1.1 Type inference for gradual typing

Although the goal of Static Blame is to statically find potential errors rather than to opti-
mize, the system of Static Blame is highly inspired by Rastogi et al. (2012), which focuses
on optimization by inferring more precise type annotation.

Specifically, Rastogi et al. (2012) infer gradual types in an ActionScript program by
performing a flow-based constraint analysis for each type variable, eventually computing
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an upper bound for them. Type flows are exactly the expression form of these constraints.
However, the main difference is that they do not reject any programs as their goal is opti-
mization. They also do not discuss how to use type flow to characterize possible errors in
programs.

Type migration is the process of making a gradually typed program more precise by
replacing dynamic annotations (�) with more static inferred types. While Rastogi et al.
(2012) focus on performing type migration, Campora et al. (2017) are recognized for
explicitly proposing the type migration problem. The problem of migrating gradual types
is closely related to this article. A key similarity between our work and research on type
migration lies in the need to analyze the data flow within a program in the presence of
dynamic types.

However, in the case of type migration, it is common to employ a type inference algo-
rithm rather than conducting direct flow analysis, which distinguishes it from our approach.
And as Rastogi et al. (2012), another main difference is that type migration does not
reject programs statically and does not analyze potential errors in the program. Campora
et al. (2017) try to solve the problem of large search spaces in gradual type migration by
variational typing. They use a unification-based algorithm and try to find the most static
migration for programs. Phipps-Costin et al. (2021) use an external third-party off-shelf
constraint solver to perform type migration and can generate different alternative solutions
to suit different requirements by means of soft variables. Migeed and Palsberg (2020) study
several properties of type migration in terms of the theory of computation. In particular,
whether the maximal migration problem is decidable or not is still an open problem.

Much of the academic research on gradual typing inference is based on one principle:
only inferring static types for type variables. This principle is implicitly captured in the
breakthrough paper Siek and Vachharajani (2008), where they propose a unification-based
algorithm but without generating dynamic types to resolve static inconsistencies. Garcia
and Cimini (2015) then formally introduce this principle and proved the equivalence of
their algorithm to Siek and Vachharajani (2008). This principle simplifies the complex-
ity of migrating the type inference algorithms of existing static type systems to gradual
counterparts.

Soft typing (Wright & Cartwright, 1997) also discusses code that will fail caused by
erroneous data flows, much like our strict potential error. The main difference is that
Static Blame targets gradually typed language, while Wright and Cartwright (1997) tar-
get Scheme. Gradually typed languages perform more checks and guarantee that an error
will occur when dynamic inconsistency is detected. Scheme, as a dynamically typed lan-
guage, does not have this guarantee. Thus, Static Blame focuses on how to characterize
the behavior when an error occurs, while Wright and Cartwright (1997) must control the
behavior of the program by explicitly injecting error.

6.1.2 Detection of inconsistency

Another work related to inconsistency is how to detect incorrect annotations and fix them.
Campora and Chen (2020) have proposed a method to fix “wrong type annotations” in a
gradually typed program by exploratory typing, where they use a type inference algorithm
to get alternatives for type annotations in a program. By exploring different choices of
these alternatives, they find wrong type annotations and try to compute fixes for them.
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Fixing wrong annotations is similar to our work in the detection of impedance mis-
matches between type annotations and program behavior. The difference is that we start
from the assumption that the annotations are correct, while the concrete implementation
may be wrong. Again, our main work is to establish the relationship between the checked
potential errors and the actual errors at runtime.

However, the literature has many challenges to the assumption that annotations are
correct. The problem of wrong annotations is observed in real-world optionally typed lan-
guages (Feldthaus & Møller, 2014) and is ubiquitous when migrating from dynamic to
static, where numerous interfaces are needed to be annotated manually. Williams et al.
(2017) detected a significant number of mismatches between annotations and implemen-
tations in TypeScript projects. This problem is difficult to tackle by gradual typing theory
because of the dynamic nature of JavaScript.

6.2 Blame mechanism

The blame mechanism in gradually typed languages comes from the study of high-order
contracts (Findler & Felleisen, 2002), where type annotations can be considered a kind of
contract. Academically, the blame mechanism is a tool for characterizing program behavior
in the absence of type safety. Wadler and Findler (2009) use a number of subtyping rela-
tions to formalize and prove a slogan that well-typed components cannot be blamed, i.e., if
a cast fails at runtime it must blame the more imprecise side of the cast. It can be viewed as
a complete method for finding error casts statically. Our search for normal potential errors
is also a complete method, but slightly more precise because we analyze the program glob-
ally rather than just comparing type precision for every cast. Blame mechanism is also an
important characterization tool of the well-known criteria for gradual typing proposed by
Siek et al. (2015), which also became the subsequent design guidelines for gradually typed
languages (Garcia et al., 2016; Igarashi et al., 2017).

Practically, the blame mechanism is designed to help programmers debug runtime type
errors. However, there are few industrial languages implementing blame mechanism. The
most popular languages that combine dynamic and static typing do not perform any checks
at runtime, like TypeScript et al. This is partly because of the large runtime overhead asso-
ciated with dynamic checks and partly because the effectiveness of blame is questionable.
Lazarek et al. (2021) evaluate the usefulness of the blame mechanism for debugging by
mutation analysis and conclude that blame information can only help in a slight margin.
Greenman et al. (2019) theoretically prove the effectiveness of a more accurate blame
mechanism by adapting complete monitoring to gradual typing.

6.3 Different semantics and extension of gradual typing

Our work relies heavily on cast semantics, while gradual typing has many different seman-
tics. The transient semantics (Vitousek et al., 2014) is proposed to get better performance
at the cost of sacrificing precision since the general cast semantics has performance prob-
lems (Takikawa et al., 2016). Concrete Semantics (Wrigstad et al., 2010; Muehlboeck &
Tate, 2017; Richards et al., 2015; Lu et al., 2022), on the other hand, maintains additional
type information for each value, optimizing the performance of gradual typing at the cost
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of expressiveness. In addition, gradual typing has many different strategies for handling
memory, such as the guarded reference (Herman et al., 2010) which is the semantics sup-
ported by our implementation on Grift; the monotonic reference (Siek et al., 2015) and the
AGT-induced semantics (Toro & Tanter, 2020). Therefore, exploring how to establish a
correlation between type flow and these semantics is important for future work.

The concept of context labels shares some similarities with the concept of tags in
Vitousek et al. (2017), which also defines a concept “labeled type”. However, the usage
and definition of these concepts differ significantly. In Vitousek et al. (2017), a labeled type
is simply a compiled type cast. Let 〈T ⇐b S〉 be a type cast, the labeled type �〈T ⇐b S〉� it
compiles to encodes two kinds of information:

1. The blame label b is associated with the type cast.
2. For each element in the type structure, whether or not the type cast is responsible

for introducing that specific portion of type.

For example, �〈� → int ⇐b int → int〉� = intb →ε intε . This cast is responsible for
introducing the argument type �, and any check failure caused by non-int arguments
should blame this cast. Therefore, there is a blame label b in the argument position of the
labeled type. Tags (ARG, RES,...) are used to locate specific portion in labeled types. In
conclusion, labeled types and tags serve to store and query blame information in Vitousek
et al. (2017).

However, while Vitousek et al. (2017) focuses on designing gradual typing semantics,
this paper concentrates on static analysis. Context labels in our work are utilized to identify
and track the evaluation of expressions in the source codes. Technically, context labels in
our work do not affect program execution and are mainly used to generate unique names
in analysis.

The potential error that Static Blame focuses on is caused by imprecision in gradual
types. Some related work attempts to increase the precision of gradual types while pre-
serving flexibility. Toro and Tanter (2017) devise gradual union types, combining tagged
and untagged concatenation types using the AGT approach. Castagna et al. (2019) com-
bine set-theoretic types with gradual types. They map gradual types to sets of types, thus
providing a semantic interpretation of gradual types. These extensions improve the expres-
siveness of the type system, and programmers can thus allow the type system to statically
rule out potential errors by avoiding the use of dynamic types. However, this type of work
is orthogonal to Static Blame. Dynamic types are still allowed to exist in these systems,
and explicitly annotated dynamic types will still hide problematic data flows.

7 Conclusion and future work

The Static Blame framework reveals data flows mediated by dynamic types and establishes
the correspondence between data flows found and runtime behavior for gradual typing
programs. To do so, the data flows are modeled by the notion of type flow, while the
runtime behavior is characterized by type casts, and we demonstrate a straightforward
correspondence between them.

The main effect of the Static Blame framework is to provide an additional static check
for gradual typing programs and compensate for the weak static checking ability of
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the gradual type system. It formally demonstrates how the checked problem affects the
execution of programs. Our evaluation shows that Static Blame can catch potential errors
that are ignored by the gradual type system, while its performance is acceptable.

Future work will focus on extending the framework to more complex type systems and
different runtime semantics. In addition, we also plan to combine Static Blame with tradi-
tional flow analysis techniques. In particular, we plan to optimize the performance of type
flow analysis, reduce the overhead of dummy type flows, and add flow-sensitive analysis
to Static Blame.
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Castagna, G., Laurent, M., Nguyễn, K. & Lutze, M. (2022) On type-cases, union elimination, and
occurrence typing. Proc. ACM Program. Lang. 6(POPL).

Chaudhuri, A., Vekris, P., Goldman, S., Roch, M. & Levi, G. (2017) Fast and precise type checking
for JavaScript. Proc. ACM Program. Lang. 1(OOPSLA), 1–30.

Chung, B., Li, P., Nardelli, F. Z. & Vitek, J. (2018) KafKa: Gradual typing for objects. In 32nd
European Conference on Object-Oriented Programming (ECOOP 2018). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. pp. 12:1–12:24.

Feldthaus, A. & Møller, A. (2014) Checking correctness of TypeScript interfaces for JavaScript
libraries. In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages Applications, Portland, Oregon, USA. New York, NY, USA:
Association for Computing Machinery, pp. 1–16.

Findler, R. B. & Felleisen, M. (2002) Contracts for higher-order functions. In Proceedings of
the Seventh ACM SIGPLAN International Conference on Functional Programming - ICFP ’02.
Pittsburgh, PA, USA. ACM Press, pp. 48–59.

Flatt, M. & PLT. (2010) Reference: Racket. Technical Report PLT-TR-2010-1. PLT Design Inc.
Available at: https://racket-lang.org/tr1/.

Garcia, R. & Cimini, M. (2015) Principal type schemes for gradual programs. In Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
Mumbai India. ACM, pp. 303–315.

Garcia, R., Clark, A. M. & Tanter, É. (2016) Abstracting gradual typing. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. St.
Petersburg FL USA: ACM. pp. 429–442.

Greenman, B. & Felleisen, M. (2018) A spectrum of type soundness and performance. Proc. ACM
Program. Lang. 2(ICFP), 1–32.

Greenman, B., Felleisen, M. & Dimoulas, C. (2019) Complete monitors for gradual types. Proc.
ACM Program. Lang. 3(OOPSLA), 1–29.

Herman, D., Tomb, A. & Flanagan, C. (2010) Space-efficient gradual typing. Higher-Order Symb.
Comput. 23(2), 167–189.

Igarashi, Y., Sekiyama, T. & Igarashi, A. (2017) On polymorphic gradual typing. Proc. ACM
Program. Lang. 1(ICFP), 1–29.

Kuhlenschmidt, A., Almahallawi, D. & Siek, J. G. (2019) Toward efficient gradual typing for struc-
tural types via coercions. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Phoenix, AZ, USA. New York, NY, USA: Association for
Computing Machinery, pp. 517–532.

Lazarek, L., Greenman, B., Felleisen, M. & Dimoulas, C. (2021) How to evaluate blame for gradual
types. Proc. ACM Program. Lang. 5(ICFP), 1–29.

Lehtosalo, J., van Rossum, G., Levkivskyi, I. & Sullivan, M. J. (2014) mypy - Optional Static Typing
for Python.

Lu, K.-C., Greenman, B., Meyer, C., Viehland, D., Panse, A. & Krishnamurthi, S. (2022) Gradual
Soundness: Lessons from static Python. Art, Sci. Eng. Program. 7(1), 2.

Matthews, J. & Findler, R. B. (2007) Operational semantics for multi-language programs.
In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. New York, NY, USA: Association for Computing Machinery, pp. 3–10.

Migeed, Z. & Palsberg, J. (2020) What is decidable about gradual types? Proc. ACM Program. Lang.
4(POPL), 1–29.

Muehlboeck, F. & Tate, R. (2017) Sound gradual typing is nominally alive and well. Proc. ACM
Program. Lang. 1(OOPSLA), 1–30.

https://doi.org/10.1017/S0956796824000029 Published online by Cambridge University Press

https://racket-lang.org/tr1/
https://doi.org/10.1017/S0956796824000029


Static blame for gradual typing 43

Nielson, F., Nielson, H. R. & Hankin, C. (1999) Principles of Program Analysis. Springer Berlin
Heidelberg: Berlin, Heidelberg.

Phipps-Costin, L., Anderson, C. J., Greenberg, M. & Guha, A. (2021) Solver-based gradual type
migration. Proc. ACM Program. Lang. 5(OOPSLA), 1–27.

Rastogi, A., Chaudhuri, A. & Hosmer, B. (2012) The Ins and Outs of gradual type infer-
ence. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Philadelphia, PA, USA. New York, NY, USA: Association for
Computing Machinery, pp. 481–494.

Richards, G., Nardelli, F. Z. & Vitek, J. (2015) Concrete types for TypeScript. In 29th European
Conference on Object-Oriented Programming (ECOOP 2015). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 76–100. ISSN: 1868-8969.

Siek, J., Garcia, R. & Taha, W. (2009) Exploring the design space of higher-order casts. In
Programming Languages and Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 17–31.

Siek, J. & Taha, W. (2007) Gradual typing for objects. In ECOOP 2007 – Object-Oriented
Programming. vol. 4609. Lecture Notes in Computer Science. Springer Berlin Heidelberg.
Berlin, Heidelberg, pp. 2–27. Available at: http://link.springer.com/10.1007/
978-3-540-73589-2_2.

Siek, J., Thiemann, P. & Wadler, P. (2015) Blame and coercion: Together again for the first time.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation. New York, NY, USA: Association for Computing Machinery, pp. 425–435.

Siek, J. G. & Taha, W. (2006) Gradual typing for functional languages. In Scheme and Functional
Programming Workshop, pp. 81–92.

Siek, J. G. & Vachharajani, M. (2008) Gradual typing with unification-based inference. In
Proceedings of the 2008 Symposium on Dynamic Languages. New York, NY, USA: Association
for Computing Machinery.

Siek, J. G., Vitousek, M. M., Cimini, M. & Boyland, J. T. (2015) Refined criteria for gradual typ-
ing. In 1st Summit on Advances in Programming Languages (SNAPL 2015). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 274–293. ISSN: 1868-8969.

Siek, J. G., Vitousek, M. M., Cimini, M., Tobin-Hochstadt, S. & Garcia, R. (2015) Monotonic
references for efficient gradual typing. In Programming Languages and Systems. vol. 9032.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 432–456.
Available at: http://link.springer.com/10.1007/978-3-662-46669-8_18.

Siek, J. G. & Wadler, P. (2010) Threesomes, with and without blame. In Proceedings of the 37th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Madrid,
Spain. New York, NY, USA: Association for Computing Machinery, pp. 365–376.

Takikawa, A., Feltey, D., Greenman, B., New, M. S., Vitek, J. & Felleisen, M. (2016) Is sound
gradual typing dead? In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. St. Petersburg FL USA: ACM, pp. 456–468.

Tobin-Hochstadt, S. & Felleisen, M. (2006) Interlanguage migration: From scripts to programs. In
Companion to the 21st ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications - OOPSLA ’06. Portland, Oregon, USA: ACM Press, pp. 964.

Tobin-Hochstadt, S. & Felleisen, M. (2008) The design and implementation of typed scheme.
In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. New York, NY, USA: Association for Computing Machinery, pp.
395–406.

Tobin-Hochstadt, S., Felleisen, M., Findler, R., Flatt, M., Greenman, B., Kent, A. M., St-Amour,
V., Strickland, T. S. & Takikawa, A. (2017) Migratory typing: Ten years later. In 2nd Summit
on Advances in Programming Languages (SNAPL 2017). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, pp. 17:1–17:17. ISSN: 1868-8969.

Toro, M. & Tanter, É. (2017) A Gradual Interpretation of Union Types. Static Analysis. Cham:
Springer International Publishing, pp. 382–404.

Toro, M. & Tanter, É. (2020) Abstracting gradual references. Sci. Comput. Program. 197, 102496.

https://doi.org/10.1017/S0956796824000029 Published online by Cambridge University Press

http://link.springer.com/10.1007/978-3-540-73589-2_2
http://link.springer.com/10.1007/978-3-540-73589-2_2
http://link.springer.com/10.1007/978-3-662-46669-8_18
https://doi.org/10.1017/S0956796824000029


44 C. Su et al.

Vitousek, M. M., Kent, A. M., Siek, J. G. & Baker, J. (2014) Design and evaluation of gradual typing
for python. In Proceedings of the 10th ACM Symposium on Dynamic Languages. New York, NY,
USA: Association for Computing Machinery, pp. 45–56.

Vitousek, M. M., Swords, C. & Siek, J. G. (2017) Big types in little runtime: Open-world soundness
and collaborative blame for gradual type systems. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages. New York, NY, USA: Association for
Computing Machinery, pp. 762–774.

Wadler, P. (2021) GATE: Gradual effect types. In Leveraging Applications of Formal Methods,
Verification and Validation. vol. 13036. Lecture Notes in Computer Science. Cham: Springer
International Publishing, pp. 335–345. Available at: https://link.springer.com/10.1007/
978-3-030-89159-6_21.

Wadler, P. & Findler, R. B. (2009) Well-typed programs can’t be blamed. In Programming
Languages and Systems. vol. 5502. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 1–16. Available at: http://link.springer.com/10.1007/
978-3-642-00590-9_1.

Williams, J., Morris, J. G., Wadler, P. & Zalewski, J. (2017) Mixed messages: Measuring confor-
mance and non-interference in TypeScript. In 31st European Conference on Object-Oriented
Programming (ECOOP 2017). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, pp. 28:1–28:29.

Wright, A. K. & Cartwright, R. (1997) A practical soft type system for scheme. ACM Trans.
Program. Lang. Syst. 19(1), 87–152.

Wrigstad, T., Nardelli, F. Z., Lebresne, S., Östlund, J. & Vitek, J. (2010) Integrating typed and
untyped code in a scripting language. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Madrid, Spain. New York, NY, USA:
Association for Computing Machinery, pp. 377–388.

Xie, N., Bi, X., d. S. Oliveira, B. C. & Schrijvers, T. (2020) Consistent subtyping for all. ACM Trans.
Program. Lang. Syst. 42(1), 2:1–2:79.

https://doi.org/10.1017/S0956796824000029 Published online by Cambridge University Press

https://link.springer.com/10.1007/978-3-030-89159-6_21
https://link.springer.com/10.1007/978-3-030-89159-6_21
http://link.springer.com/10.1007/978-3-642-00590-9_1
http://link.springer.com/10.1007/978-3-642-00590-9_1
https://doi.org/10.1017/S0956796824000029

	Static Blame for gradual typing
	Introduction
	Gradual typing
	A gradual type system hides erroneous data flows
	Our work: Static Blame
	Potential error and error classification

	Background: Program syntax and semantics
	Syntax
	Semantics of Lg

	The Static Blame framework
	Labeled type and type flow
	Type flow analysis
	Type flow and type cast

	Error classification
	Normal potential error: Complete
	Strict potential error: Sound up to erroneous casts
	Wrong dynamic types: Values that cannot be used

	Evaluation
	Implementation
	Static Blame for grift
	Static blame implementation: SLOG

	Research questions
	Experimental setup
	RQ1: Effectiveness
	RQ2: Performance

	Evaluation results and discussion
	RQ1: Effectiveness
	RQ2:Performance

	Threats to validity

	Related work
	Static analysis for gradual typing
	Type inference for gradual typing
	Detection of inconsistency

	Blame mechanism
	Different semantics and extension of gradual typing

	Conclusion and future work


