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Abstract

The first and last papers of Harald Bohr deal with ordinary Dirichlet series Y^° aan~s and their
order (or Lindelof) function n(a) (= inf{a;/(tr + it) = o(\t\a)}). The Lindelof hypothesis is
ft(a) = inf(0, j - 0 when an = (-1)". Are there ordinary Dirichlet series with - 1 < n'(a) < 0
for some a? A negative answer would imply Lindeldf s hypothesis. This is the last problem of
Harald Bohr. This paper gives (1) a review on Bohr's results on ordinary Dirichlet series; (2) a
review on results of the author and of Queffelec on "almost sure" and "quasi sure" properties of
series Y^° ±n~s with the solution of a previous problem of Bohr; (3) the following answer to the
last problem: n'{a) can approach - j , and necessarily n{o+n(p) + j ) = 0. The characterization
of the order functions of ordinary Dirichlet series remains an open question.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 30 B 50.

The centenary of Harald Bohr (1887-1951) provides an opportunity to revisit
his works. My purpose is to consider his first and last papers [1], [2], [3], [4]
which deal with Dirichlet series of the form

oo

(1)

("ordinary Dirichlet series" in the terminology of Hardy and Riesz [5]). I
shall describe his main results and mention two questions of his, one already
solved 14 years ago, the other—the last problem of Harald Bohr—being the
main topic of this report. Then I shall indicate how his main results can
be derived and the easy question solved by using almost sure and quasi-sure
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134 Jean-Pierre Kahane [2]

properties of series of the form

(2)

already introduced in [8] and studied by H. Queffelec [11]. Finally, I shall
give partial answers to the "last problem." This work was done during my
visit to the Centre for Mathematical Analysis at the A.N.U. in Canberra.

1. Bohr's results and problems

In his thesis [1], written in 1909, H. Bohr starts from the following known
results.

(a) If (1) converges for s = so = oo + HQ, it converges absolutely when
a > Co + 1 and the sum is bounded whenever a > OQ + 1 + e(e > 0);

(b) (Jensen) it converges in the half plane a > OQ (uniformly in each angle
| arg(j — 50)| < 7r/2 - e(e > 0)) and its sum f(s) satisfies

(3) f{a + it) = O(\t\) (|*| - oo)

whenever a > OQ (uniformly if a > OQ = e, e > 0 given);
(c) (Schnee) whenever f(s) can be continued analytically into a half-plane

a > o\ - h {h > 0) and satisfies

(4) / ( a , + it) = O(\t\c) (|*| - oo)

for each e > 0, (1) converges for a > a\ (this is not an easy result; the best
proof is due to H. Helson [7]).

In what respect are the convergence and summability of the series (1) re-
flected in the properties of f(s) as an analytic function? This is the main
theme of the thesis. In particular, what is the relation between the conver-
gence or summability properties of (1) and the "order function" (now called
the Lindelof function) /i(a) defined as

(5) n{a) = inf{/? > 0|/(<x + it) = O(\t\f>)} (\t\ - oo)

whenever the function / can be defined in a vertical half-plane containing a
by analytic continuation? It is know (Lindelof) that fi(o) is a convex function.
Writing Xo for the abscissa of convergence

(6) Ao = inf{(r|(l) converges}

we know that

(7)
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[3] The last problem of Harald Bohr 135

because f(s) is bounded when a > XQ + 1 + e (e > 0) and

(8) n{h) < 1

because of (3). Moreover (Schnee)

(9) Xo < inf{a\n(a) = 0}.

The first set of results of Bohr is of a rather negative character: (7), (8),
(9) cannot be improved, which indicates a rather loose connection between
convergence of (1) and order properties of f(s).

THEOREM HB1. There exists a series (1) such that H(XQ) = 0 and /i(a) < oo
for some a < XQ {therefore, fi(a) < e does not imply convergence at a) and
a series (1) such that fi(Xo) = 1 (therefore, convergence at a does not give
anything better than Jensen's result).

This theorem (Theorems 16 and 17 of part I) concludes what Bohr calls
"theory of convergence for Dirichlet series". No real progress was made on
this theory—that is, the link between XQ and the properties of /—until H.
Helson gave (1962) a simple interpretation of XQ (when Xo > 0) in terms of
the Fourier properties of the functions

(.o,
as functions of the variable t[6]. Therefore, in the view of Bohr, there was
no close structural link between convergence of (1) and properties of f(s).

However, in part II of the thesis, entitled "the theory of summability for
Dirichlet series", Bohr discovers an essential link between order and summa-
bility. He introduces the Cesaro method of summability of order k, C(k),
and the absissas

{ Xk = inf{a|(l) is summable C(k)}
* • , ' (k=l,2,-..)

Aoo = mf Xk

together with

(12) fioo = inf{a\fi(a) < oo}

with the convention that fi(a) = oo if / has a singular point s = a + it.
THEOREM HB2. Aoo = j«oo-

In other words "a Dirichlet series ^ann~s is summable just so far as
the function f(s) represented by the series is regular and of finite order of
magnitude with respect to the ordinate /" (this is the fundamental result of
part II, cf. Section II.8).

It is possible to say more about the Xk. Bohr proves the following.
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136 Jean-Pierre Kahane [4]

THEOREM HB3. (1) The Xk defined by (6) and (11) satisfy

(b) given any sequence Xk (k = 0,1,2,...) which satisfies (13), there exists
a series (1) for which these are the abscissas of C(k)-summability {see (6) and

(11))-

This is stated and proved in Section II. 5.
It seems difficult to go much further. However Bohr was not completely

satisfied. He know (as well as and independently of Marcel Riesz; see the
footnote after Theorem 1 in Section II.8) that there is a close connection
between the order function n(a) and the summability sequence Xk. What is
it exactly? He went back to the subject at the very end of his life. In the
last paper published when he was alive [3] he introduces the "summability
function" of / , y(o), defined in the natural way

{ y/(a) = 0 when a > XQ,

y/(a) = k when Aoo < o = Xk < XQ,

where now Xk is defined as in (11), without the condition that k is an integer
(this generalization is due to M. Riesz). This function y/{a) enjoys the fol-
lowing properties: it is convex with slope < - 1 on ]Aoo»Ao] (in other words
it is convex on ]Aoo,Ao] and

(15) y ' ( A 0 - 0 ) < - l )

and for all a > A ,̂

The Hauptsatz of [3] says that (16) cannot be improved.

THEOREM HB4. There exists a series (1) such that Aoo = Moo = -oo and

0 fora < 0,
(17) //(<7) =

There exists a series (1) such that Aoo = Moo = -oo,

. . . . , . (0 fora>\, (0 fora>0,
18 H(o) = \ , , . . and y/(a) = \

\ \ - a for a <\ \ -a for a < 0.

Actually the Hauptsatz of [3] is the second statement. The first was already
proved (in a much easier way) in a previous paper [2]. At the end of [2] Bohr
asks the following question.

https://doi.org/10.1017/S1446788700031281 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031281


[5] The last problem of Harald Bohr 137

PROBLEM HB5. Does there exist a series (1) with ac (abscissa of conver-
gence, also named Ao) = 0, a A (abscissa of absolute convergence) = 1 and

(19)

Bohr remarks that

(20)

provides an example if Lindelof s hypothesis (that is, n(\) = 0 for (20)) is
true.

It happens that this problem is solved in an affirmative way in [8] (I was
not aware of the problem in 1973), in a very simple manner as we shall see.

HB4 improves HB1. HB2 needs no improvement. Is it possible to improve
HB3 by showing that the convexity of y and ft, together with (15) and (16),
are characteristic properties of the couple constituted by the summability
function and the order function? This was really the last problem which Bohr
attacked. The main theorem of the posthumous paper [4] is the following (I
quote it literally).

THEOREM HB6. Let y/(o) be a continuous convex function defined in an
interval a > SI (> -oo) and equal to 0 to the right of a certain finite abscissa
(o¥>& and (if(o¥ > £2) such that y/'((Oy — 0) < - 1 . Further, let n(o) be a
continuous convex function defined in the same interval a > Q and equal to
0 to the right of a certain finite abscissa (o,,>£l and (if<oM > Cl) such that
H'(a>p - 0) < - 1 . Finally let (̂<r) < ft(a) < yt(o) + 1 for all a > Q. Then
there exists a Dirichlet series f(s) = Ylann~s which has the given Junctions
y/(a) and n(a) as summability function and order function respectively.

At a first look it seems the end of the question: Bohr assumes nothing but
the necessary conditions (15) and (16), together with the convexity of iff and
H and a small additional condition, namely

(21) | < ' ( ^ - 0 ) < - l .

But is (21) as well as (15) a necessary condition? Here again I quote Bohr.
Here comes the last problem.

"We remark that as a consequence of the assumptions of the theorem we
have (Ay < co^ < wv + 1. The condition etty < wv + 1, which according to
the above results is necessary whether JU'(GJA - 0) < - 1 or not, therefore has
not been included in the theorem". And Bohr goes on:
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138 Jean-Pierre Kahane [6]

PROBLEM HB7. "We do not know whether there exist ordinary Dirichlet
series f(s) = Yl Onn~s for which the order Junction n{a) is not identically zero
and does not satisfy the condition /i'(a^ - 0) < - 1 . For the zeta-series with
alternating signs

7 1 = 1

it is known that fi{a) = 0 for a > 1 and n(a) = \ - a for a < 0. The question
as to whether n'ita^ - 1) < - 1 therefore amounts to whether n(\) = 0 (and
hence n(a) = Ofor a > j and fi{a) = \ - a for a < \), that is, to the Lindelof
hypothesis C{{ + it) = O(\t\£) for every e > 0."

This seemed a very challenging question to me. Since (21) can be written
as

(22) fi{q + a) < sup(0, fi{a) - a)

for all a and a > 0,1 tried to get sharp upper estimates for ft(a + a) given
fi(a) and a. The best I can prove is

(23) fi{o + n(o) + \) = 0

and what can be derived from (23) by convexity arguments. Then I found
an example with /*'(°fy - 0) > - 1 , and I can go as far as

(24) fi'(a)fl-0)> - j - e ( e > 0 given).

This will be the content of section III.
Though this can be considered as a solution for HB7, we are now in a

difficult situation and the problem remains as open as ever. On one hand,
there is no way to derive Lindelof s hypothesis from a general result (namely,
that (21) holds for all series (1) such that fi{o) is not identically 0). On the
other hand, we are far from necessary and sufficient conditions on two con-
vex functions to be the summability function and the order function respec-
tively of some ordinary Dirichlet series. It seems already quite difficult—and
challenging—to get a characterization of the order functions fi(a) of ordi-
nary Dirichlet series; translated in this way, the last problem of Bohr remains
open.

2. A way to answer HB5 and to perform Bohr's constructions

(after [8] and [11])

Let us look at series (2) in the form

(25)
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[7] The last problem of Harald Bohr 139

where e = (61,62,...) € {-1, l}-^+ = il. We can consider Q, as a probability
space (provided with the natural probability: P(en = 1) = P{en = -1) = j
and the en are independent); therefore we can speak of almost sure properties
of (25). We can also consider Q as a topological space, metric and compact;
we shall say that (25) has a quasisure property £° if & occurs when e belongs
to some dense G^-set (a set of the second category in the sense of Baire). Here
is an easy result about the abscissa of convergence Xo, the order function fi(a)
and the analytical continuation of the function fe(s) represented by (25).

THEOREM 2.1. Almost surely for series (25) we have

f26)
(a) = Q fora>\

and the line a = j is a natural boundary. Quasi-surely we have

(2? ) I H(<T) = 0 fora>\

and the line a = 1 is a natural boundary.

To go further we consider series (2) of the form

(28)
1

where e e il as before. Then we obtain

THEOREM 2.2. Almost surely for series (28) we have

I n(a) = sup(£ - a, 0) for a > -\

and the line a = -\ is a natural boundary. Quasi-surely we have

\ n{a) = sup(l - a, 0) for a > 0

and the line a = 0 is a natural boundary.

Theorem 2.2 is not difficult (see [8] or [11]). The first part answers HB5.
The second part provides the second statement in HBl (the difficult part in
Bohr's approach). The first statement of HBl needs series of the form

(31)
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where Sn = 0 or 1 and (31) is very lacunary (for example,

(32) f;<Uoglogi<oo).

Then (assuming also J2^n = °o)

(33) (
I fi(a) sup(a0) forc7>-l

and the line a = - 1 is a natural boundary. This is Bohr's construction.
We can go further and consider series

(34) f ; en{{An - 3)~s - {An - 2)~° - {An - l)~s + {An)~s)
I

instead of (28) and

(35) f > ( ( 4 « - 3)~* - {An - 2)~° - {An - l)~s + {An)-*)
I

instead of (31). The results are easy to guess (and also to prove): we have
Ao = 0 as before and the same expression for fi{a), but now the range is
extended, that is, a > —\ (and the line a = -\ is a natural boundary) a.s.
for (34), a > - 1 (and the line a = - 1 is a natural boundary) q.s. for (34),
a > -2 (and the line a = -2 is a natural boundary) for (35).

If we want to get entire functions we need differences of higher and higher
order. This is what Bohr does in [2] for lacunary series, and what Queffelec
performs in [11] for series (2) with a.s. or q.s. properties. Let me use
Queffelec's notations. For each <f> e C°°[l,oo) let us write

Ao<f>{n) = cf>{n) ( « = 1 , 2 , . . . )

Al(f>{n) = <t>{n + 1) - <f>{n) = f <f>'{n + x,)dxx
Jo

A2<f>{n) = AKJ>{n + 2) - Ax<f>{n) = f f cf>"{n + JC, + x2)dxx dx
J •/[0,l]x[0,2]

(36) :

Apcf>{n) = Ap_,0(« + 2*"1) - Ap-X<t>{n)

--- dxp-IL
Formula (36) allows sharp estimates for Ap<f>{n) when we choose <j>{x) — x~s

{s complex). From now on we choose

(37) (
l « t/2)! 0 = 0,1,...)
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[9] The last problem of Harald Bohr 141

(many other choices of lacunary sequences are possible) and we define posi-
tive integers M; / I (« ; < n < rij+i,j — 0,1, . . .) in such a way that the series

has the form (2) (that is, each m~s can be found once and once only among
the Aj<f>(uJn)). Here again e = (eJn) e il.

THEOREM 2.3. Almost surely for series (38) the function fE(s) is an entire
function and we have

Quasi-surely the function fe(s) is an entire function and we have

( 4 0 ) I n{a) = sup( 1 - a, 0) ( u g ^?)

For the proof see [11]. (39) is the expected behaviour of the series (20),
X)(-1)"+1«~J, by Lindelof s hypothesis. Therefore the first part of the The-
orem 2.3 provides a nice answer to the problem HB5: there exist entire
functions represented by series (2) whose order and summability functions
are those expected for £(•?)( 1 - 2'~5).

The second part of Theorem 2.3 provides the Hauptsatz of [3], that is, the
second half of HB4. For the first part of HB4 a lacunary series of the form

(41) £

is convenient, and this is essentially what Bohr uses in [2].
Let me indicate how the method of Theorem 2.3 can be used in order

to obtain Theorem HB6. For simplicity I shall restrict myself to the case
Q = -oo (entire functions) and cj>' and fi' have only integral values. Then we
can write

) (A: = 1 , 2 , . . . )

l / z ( a ) sup^((T) (A: = 1 , 2 , . . . )

where both <t>k(o) and Hk{o) vanish when a is large and are linear with slope
-k as soon as they are not 0, that is

f <t>ki<*) = sup(-k(a - tok), 0)
( \rto)
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and moreover

(44) <t>k{o) < nk(a) < <f>k(o) + 1

or, equivalently

(45) tok <oi'k <cok + l/k.

If we are given <f>k and fik with these properties, Theorem 2.3 provides very
easily a Dirichlet series (1) for which they are the summability function and
the order function respectively. We remark that cok has to be the abscissa
of convergence, and we can suppose cok = 0 without restriction. Let us
consider the case k = 1 first. There are two extreme cases: (a) oJk = o)k;
(b) co'k = o)k + 1. (41) provides the desired series in case (a) (note that
the summability function has a slope < — 1 when a < cok and satisfies (16),
therefore it coincides with the order function) and quasi-surely (38) gives the
desired series in case (b). We do not use the almost sure properties of (38).
When we are in between the extreme cases, we simply solve the problem for
(a)k, cok), (co'k-1, o)'k), and add the solutions. This solves the case k = \. Now
we observe that, given an ordinary Dirichlet series (Bl), if we change s into
ks, we get another Dirichlet series, whose summability and order functions
are fi(ka) and <j>{ka) respectively. This solves the general case.

Suppose now that we are given y/(o) and n(o) as in (42), where the yfk(a)
and nk{a) satisfy (43) and (44). The idea is just to add the Dirichlet series
corresponding to (yk,nk). However, it is necessary either to get uniform
estimates, or to proceed by induction, removing from the kth Dirichlet series
a number of terms sufficiently large, not to perturb the effect of the previous
Dirichlet series on y/(a) and ft(a). I shall not give the details; let me just
observe that we used lacunary series (41) and the quasi-sure properties of
(38) only. Moreover, we converted (38) into lacunary series by changing s
into ks.

When y{o) and fi(a) do not enjoy the property above, that y/' and n' have
only integral values, we still write (42), but now for real k > 1. In this case
we have to construct lacunary series without using the trick of changing s into
ks. There is not difficulty for series (41). For series (38) we have to give up
the condition that it gives series (2), and again there is no essential difficulty.

The idea of reducing the question on (y/,fi) to the question of {y/k,nk),
and then to (y/k, nk) in the extreme cases (that is, one or the other equality in
(45)) is exactly Bohr's idea. He says that the solutions given {yk,nk) in the
extreme cases are the "building blocks" of the general solution. He considers
that one of the extreme cases {cok = cn'k) is relatively easy, and he spends the
largest part of his paper [4] in building the other blocks (<w'fc — cok + l/k). The
use of Baire arguments is just a simplification in order to get these building
blocks.
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[11] The last problem of Harald Bohr 143

3. The Lindeldf function for ordinary Dirichlet series

Here we consider the last problem of Harald Bohr (HB7). What can we
say about /*(ff)? I have already stated the main results at the end of Section
1. In the first part of this section I shall prove (23), and in the second part
exhibit an example which satisfies (24).

First we shall try to prove

(46) n((T + a)< sup(0, fi(a) - a + e)

for all series (1), u e f , a > 0 and some e = e(fi(a),a). It is enough to
consider finite sums

(47) / (

and to prove that the condition

(48) V r e ^

implies that for all 6 > 1

(49) \f(a + a + i6)\ < CO*

with y = y(a, ft) > 0 and C = C(a, fi, y). Then (46) holds with fi - a + e = y.
Moreover we can assume er = 0 without any restriction.

The implication (48) implies (49) is equivalent to the existence of a com-
plex measure dfie(t) on 31 such that

Let us introduce the Fourier transform

(51) h(x) = Je-itxdfi(t)

and the space B(P) which consists of Fourier transforms fi of measures dpi
such that \d/i\ integrates sup(l, \t\fi), with the norm

(52)

It is known and very easy to check that B(fi) is a Banach algebra with point-
wise multiplication. Given F, any closed subset of 31, we write B(0,F) for
the quotient algebra of /?(/?) by the ideal of functions which vanish on F,
with the norm

(53) WPWBWJ?) = nrf{||£ll*(«l/* = P on F}.

Let us write

(54) A = {logn} ( « = 1 , 2 , . . . ) .
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Then the existence of dfie with (50) is equivalent to

(55) \\e-{a+W)x\\B{fiA) < cey.

Let us consider the case /? < 1 first. It is easier because in this case e~°W
belongs to B(fi). Given a > 0, let us write

P{X) = e~(a+i6)x

\ q(x) =

Then we have (note that the norm of e~i6x is

forx>a

' \\\q\\<Cdl>e-aa {C = C{a,P))
Writing

{ 0 on (a,oo)

{e-°*-e°

we want to estimate ||r||B()5>A).
Let us suppose now that

(a = log(N+l)
K ' \ N = N(9,0) = 2' -1

N{9,fl) will be defined later. We are given

(60) rn = r(lo&n)

so that \rn\ < n~a for n = l,2,...N and rn = 0 for n > N. Given an integer
v < N/2 we consider

(61) r{x,v)= J^ rnA(v{x-]ogn))
v<n<2v

where A is a C°° function carried by the interval [-5,5] such that A(0) = 1.
Since

(62) log(«+1)-logn > l / ( « + l )

when v < n < 2v, the restriction of /•(•, v) to A coincides with the given r\A

on the interval [log v, log(2î  — 1)] and vanishes on the rest of A. A good
candidate for an extrapolation of r\A on 31 is therefore

(63) r(x) =
j=o

Let us estimate the norm of r{-,v) in B(fi). A very crude estimate is

(64) v<n<2v
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Then, adding, we obtain

(65)

whenever fi — a + 1 > 0. Hence, using

(66) IHfl(/?,A) < lkllu(/») +

we obtain

(67)

and choosing

(68)

(this is how we define N(6,fi) in (59)) we get (55) with

(69) y = fi-afi/{fi + l).

Any improvement of (65) gives an improvement of (69). Here is now the
best I can do. Writing A for the Fourier transform of A we have

lk(-,")ll*(/» = /
v<n<2v

(70) idem

< Cv? sup - I
k v ikv

E rn< it log n

v<n<2v

dt.

Now

(71)
(k+l)u

and a well known inequality of Ingham either in its original form or in the
refined version of Montgomery and Vaughan [10] says that the second mem-
ber in (71) is O((J2r%)l/2), that is in our case, O(u~a+l/2). Then, instead of
(65), we have

(72) \\r\\B{fi) =

whenever /? - a + 1/2 > 0. Therefore we get (55) with

(73) y = p-2aPI{2p + \)

instead of (69).
In the limit case a = /? + 1/2 we have to write

(74) \\r\\Bm = O{\o%N)
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instead of (72). We may choose N ~ 6 and we obtain

(75) \\Phuiji) = O(\og9).

Let us state the results (the case /? > 1 needs only minor changes).

THEOREM 3.1. If f{s) is either the sum of an ordinary Dirichlet series or
its analytic continuation in a vertical halfplane containing OQ and if

(76) /(<T0 + it) = 0{\t\P) {\t\ - oo)

then

(77) /(ff0 + P + { + iO) = 0((|logO\) (|log0|) - oo).

COROLLARY. The inequality

(78) ^ ^ ( a ) + i) > 0

holds for all Lindelof functions of ordinary Dirichlet series. Equivalently, the
inequality

(79) M f f ) ^ i

holds, if we define

(80) oin = mf{o\n{o) = 0}.

This is the best information which the method provides. The estimate for
fi{a + a) which derives from (78) by convexity is exactly what (73) gives.

Let me add two remarks. First, (62) is the only property of the sequence A
which we have used. Therefore, Theorem 3.1 is valid for "general" Dirichlet
series

(81) 52ane-x"s

whenever

(82) A n + 1 - A n > l / n + l (n = l,2,.-.)

holds. For this generalized version of Theorem 3.1 it is easy to see that \ in
(78) or (79) cannot be replaced by any smaller constant.

Here is the second remark. Since the crucial point in the proof of Theorem
3.1 is the uniform estimate

(83)
Ikv v<n<lv
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which derives easily from

(84)
V Jku

e-i8\ogneit\o%n

v<n<2u

it is tempting to consider the apparently simpler question: is it true that

(85)
n=\

dt = {\<n<v)

for some e > 0? The answer is no. For, assuming (85), consider

(86) *„(*) = I>(i / (x-Iog2n))

where A has the same meaning as in (61). Then

(87) \\Rv\\Bm = O{u^l2-').

Note that Rv (log m) = 1 whenm is even between 2 and 2v, and Rv(log m) — 0
for all other values of m. Let B*{$) be the dual of B(fi). Since /*(()) = i for
the function (20) we have

(88)

for each a > 0. Now

(89) {Ta,Ry) =
n=l

and choosing P = \ and <r < e (89) contradicts (87).
Let us look now in the opposite direction. Our purpose is to construct a

series (1) such that the corresponding Lindelof function fi(a) has somewhere
a slope strictly between - 1 and 0, or, equivalently,

(90) /i'((ofl-0)>-l.

In a first step we shall construct a series (1) such that

(91) M0) = 1 ,

This is sufficient to solve the question HB7 stricto sensu.
In a second step, given 0 < fi < 1, we construct a series (1) such that

(92) 0(0) = ft, »(fi) > 0

and (24) holds (when we are given fi — fi(e) small enough).
We shall use the following tool ([9], Lemma 3). It exhibits a trigonometric

polynomial whose L°°-norm is near the L2-norm, and much smaller than
the /'-norm of the coefficients. Many variations are possible. However the
special arguments of the coefficients will prove useful.
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LEMMA. Let a be an even positive integer, 0 < d < j , </>o a function with
bounded variation V carried by the interval [-(1 - 3<af)/2, (1 - 3d)/2], Xd the
indicator function of[-d/2,d/2], <j> = rf~Vo *Xd*Xd* Xd<

7m = -7=exp(-7tim2/a)0(m/a),ja

Then, for \x\<{,

y(x) = exp f - ^H exp(niax2)^(x) + r{x), \r{x)\

Actually we shall choose <po = If-/,/], consider that d and / are fixed, and
use only \y{x)\ < 2. Let us observe that ym = 0 when \m\ > (/ + ^)fl.

Let us introduce

(93) g{x) = y{x){\-e*

Then we have c2m = -c2m+\ = ym and

(94) \g(x)\<\r$(2Ti\x\A).

The building block of the construction is the Dirichlet polynomial

(95) f(s) = f(s,N,a)

where N is an integer (large with respect to a) to be denned later. It proves
convenient to write

(96)

where

(97) \r(t)\<m

First step. We choose

(98) N = a5'2 + O(a)

so that
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From (94), (96), (97), (99) we get

(100)

(here O{X) stands for bounded by some constant multiple of X).
Let us consider now / ( I + id). We write

(101) NiBf(\ + id) = £ m
 e-'0(m/N-m UN +e'Jm\ /N )(|fi/j < ^

We assume, as we can, that

(102) N = 2ax odd integer

and choose

(103) 0 = nN2/2a

so that
e-i8(m/N-m2/2N2) _ /_i\meJiim2/4a

Since
enim*/4a ir

_ g—ni(m—\)2/4a (y

we have

Cm j
\Cm\ {

Cn> c-id(mlN-m2l2N2) _ \cm\ _ \cm\ (i , r\ (f_
N + m N + m N \ \N

when m is even, and

Re e > ( + O ( )
+ m ) \2 \aJJ N

when m is odd and moreover we assume

(104) l + %<\.

Therefore

Now

( iB) - E JfcRe-'«'"«-W\< I £ |cm|i£f (l + O (^
Since

we obtain

Re(iV'V(l
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because, due to the choice of <j> in the lemma, we have

(C depending only on d, I, and the line where it is written). Since a ~ Ni/5

and 6 ~ N^5 we finally get

(105) Re(Ni8f{l + iO)) > ^

Here Nf(s) = Nf(s,N,a) is only a building block, which satisfies (100)
and (105). Clearly by adding such blocks j~2Njf(s,Nj,aj) for a lacunary
sequence Nj we obtain a Dirichlet series for which fi(0) < 1 (actually, fi(0) =
1) and fi(l) > j . Let us state the result of this first step.

THEOREM 3.2. There exists a Dirichlet series for which the Lindelof function
has a derivative which satisfies 0 > n'{a) > -1 at some points a (in particular,

Our construction gives actually n'{a) > - j at some a e]0,1[, therefore

(106) / I ' ( G > A - 0 ) > - ^ .

It is very easy to improve (106) by considering / ( a + id) instead of / (1 + id),
with f(s) = f(s, N, a) as before. We have now

Re(Nief(a + id)) > CN~aa1'2

therefore
Re(Nief(a + id)) > ^0<6-5a>/8.

In our example (sum of j~2Njf(s,Nj, aj) we obtain

Ma) > (6 - 5a)/8

therefore

(107) a),, > f, /*'(av - 0) > - § .

SECOND STEP. We consider now 0 < /? < 1 and we intend to construct a
series (1) for which /*(0) < fi and Ma) is minorized by a convenient function
of a and p. Now we choose

(108) N = d4fi+l)/2fi + 0(fl)

instead of (98) and we try to take advantage of the full force of (94) and
(97), using inf(|jc|, 1) < xfi. We obtain

g
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and our choice of N gives equal weight to the second members. Then.

(109) f{it) = O{N~^

Again

Re(Nief(a + id)) >

and now

a ~ N2fi/i4fi+l), 6 ~ —
a

so that
Re(Nief(a + id)) >

Adding j~2Nff(s, Nj, a,) we get a series (1) for which /z(0) < fi (actually,
fi(0) = fi) and

The particular form of the second member is not very exciting. What is
important is that n(a) > 0 whenever a < fi + 0/(4fi + 1) that is

(HI) coM>fi + fi/(4fi+l).

When fi is small, the second member is 2 fi (I+o(l)), therefore

(112) »'(cofl-0)>-(l+o(l))/2.

Let us state the result.

THEOREM 3.3. There are Dirichlet series {1) for which the Lindeloffunction
H(a) has slopes \n'{a)\ as near j as we want.

One can get a slight improvement in (110) by using the lemma in a different
manner, taking / = d = d(N) (small when iV is large). However there is no
reason to believe that it provides the best estimate.

A new idea would be necessary for the third step, namely, the analogue of
the second step with fi > 1.
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