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Abstract

It is shown that the sample paths of Poisson shot noise with heavy-tailed semiexponential
distributions satisfy a large deviation principle with a rate function that is insensitive to
the shot shape. This demonstrates that, on the scale of large deviations, paths to rare
events do not depend on the shot shape.
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1. Introduction

Shot noise processes have an extensive range of applications from physics [10], through
electrical engineering [9] and queueing theory [4], [8]. They have also been used, for example,
in risk theory to model the delay in claim settlement [5], [7]. It has recently been shown
that Poisson shot noise (PSN) with independent and identically distributed (i.i.d.) heavy-tailed
semiexponential shot values satisfies a scalar large deviation principle (LDP) with a rate function
that is insensitive to the shot shape [11]. In this note we extend this result, proving that a sample
path LDP holds for this process and, again, the resulting rate function is insensitive to the shot
shape. The insensitivity manifests itself through the LDP having the same rate function as for
a compound Poisson process with similarly distributed increments. Thus, on the scale of large
deviations, the paths to rare events do not depend on the shot shape. The main result of this
note can be viewed as the heavy-tailed counterpart of the sample path LDP for PSN under light
tail conditions [4].

Our proof is inspired by Gantert’s work on the centered partial sums of i.i.d. heavy-tailed
semiexponential distributions [6]. The main novel difficulties stem from a lack of independent
increments in PSN. These are overcome using the regenerative properties of the Poisson process
in conjunction with delicate estimates to create a process with independent increments that is
exponentially equivalent to that under study.

PSN is the following process:

S(t) =
N(t)∑
n=1

H(t − Tn, Zn), t > 0.
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Sample path large deviations of Poisson shot noise 689

Here {N(t)}t>0 is a homogeneous Poisson process on (0,∞) with intensity λ > 0, {Tn}n≥1
are the points of the Poisson process, and {Zn}n≥1 form a sequence of i.i.d. random variables
taking values in a measurable space (E, E). The shot shape H : R × E → [0,∞) is assumed
measurable and is such thatH(t, z) = 0 for t ≤ 0, and, for any z ∈ E,H(t, z) is nondecreasing
with respect to t . Throughout this paper, we assume that the sequences {Tn}n≥1 and {Zn}n≥1
are independent, and denote by H(∞, z) the shot value, i.e. the limit of H(t, z) as t → ∞.

2. Sample path large deviations

We will prove that the sample paths of PSN satisfy the LDP in D[0, 1], the space of càdlàg
functions defined on [0, 1], equipped with the L1 topology induced by the norm ‖f ‖ =∫ 1

0 |f (t)| dt . The idea is first to prove an LDP for the finite-dimensional distributions of the
process and then lift this LDP to a principle for the process in D[0, 1] equipped with the
topology of pointwise convergence using the Dawson–Gärtner theorem (see Theorem 4.6.1
of [3]). Finally, we strengthen the L1 topology by demonstrating exponential tightness and
establishing the upper and lower LDP bounds.

We begin by introducing basic definitions and recalling the scalar LDP for PSN with heavy-
tailed semiexponential distributions as proved in [11]. We say that a family of random variables
{Vα}α>0 taking values in a topological space (M, τ) obeys an LDP with rate function I and
speed v : [0,∞) �→ [0,∞) if I : M �→ [0,∞] is a lower semicontinuous function, v is a
measurable function such that v(α) → ∞ as α → ∞, and the following inequalities hold:

lim sup
α→∞

1

v(α)
log P(Vα ∈ C) ≤ − inf

x∈C I (x) for all closed C

and

lim inf
α→∞

1

v(α)
log P(Vα ∈ O) ≥ − inf

x∈O I (x) for all open O.

Lower semicontinuity of I means that its level sets, {x ∈ M : I (x) ≤ c} for c ≥ 0, are
closed. If the level sets are compact, the rate function I is said to be good. The reader is
referred to [3] for an introduction to large deviations theory.

We write f (x) ∼ g(x) if f and g are two nonnegative functions such that f (x)/g(x) → 1
as x → ∞ and, for a nonnegative random variable X, we define F̄ (x) = P(X > x),

x ≥ 0. Let r ∈ (0, 1) be a constant. We say that F̄ or X is heavy-tailed semiexponential
if F̄ (x) ∼ a(x) exp{−xrL(x)}, where a and L are nonnegative slowly varying functions,
i.e. limx→∞ L(tx)/L(x) = 1 for all t > 0 and the same holds for a. As is well known a
semiexponential random variable X has finite moments of all orders, but E[eθX] = ∞ for all
θ > 0. See, for example, [2] for an introduction to semiexponential distributions.

Theorem 2.1. ([11, Proposition 2.1].) Let a and L be positive slowly varying functions, let
r ∈ (0, 1) be a positive constant, and define β = λE[H(∞, Z)]. If

lim inf
t→∞

1

t rL(t)
log P(H(t, Z) ≥ bt) ≥ −br for all b > 0

and
P(H(∞, Z) ≥ t) ≤ a(t) exp{−t rL(t)} for all sufficiently large t,

then {S(t)/t}t>0 obeys an LDP in R with speed t rL(t) and good, nonconvex rate function

I (β)(x) =
{
(x − β)r if x ≥ β,

∞ if x < β.
(2.1)
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Using this scalar LDP, we first prove that the LDP holds for finite-dimensional distributions.
In doing so, we encounter the primary difficulty when compared to partial sums processes:
the increments of PSN are not independent. This is overcome by the construction of an
exponentially equivalent process with independent increments.

Theorem 2.2. Under the assumptions of Theorem 2.1, for any integer k ≥ 1 and real numbers
0 = t0 < t1 < t2 < · · · < tk ≤ 1, the family of random vectors {S(αt1)/α, . . . , S(αtk)/α}α>0
satisfies an LDP in R

k with speed αrL(α) and good rate function

I
(β)
t1,...,tk

(x1, . . . , xk) =
k∑
i=1

(ti − ti−1)
rI (β)

(
xi − xi−1

ti − ti−1

)
,

where x0 = 0 and the function I (β) is defined in (2.1).

Proof. We divide the proof into five steps.
Step 1: an approximation with independent increments. Let 0 = t0 < t1< t2 < · · · < tk ≤ 1

be fixed. For i = 1, . . . , k, let {N(i)(t)}t>0 be i.i.d. copies of the Poisson process {N(t)}t>0,
and let {Z(i)n }n≥1 be i.i.d. copies of the process {Zn}n≥1 that are independent of the Poisson
processes {N(i)(t)}. For 0 < s ≤ t ≤ 1 and i = 1, . . . , k, we define

S(i)(s, t) =
N(i)(s)∑
n=1

H(t − T (i)n , Z(i)n ).

By the regenerative property of the Poisson process and the i.i.d. property of the sequence
{Zn}n≥1, the following equality in distribution holds:

(S(t1), S(t2), . . . , S(tk))

d= (S(1)(t1, t1), S
(1)(t1, t2)+ S(2)(t2 − t1, t2 − t1), . . . , S

(1)(t1, tk)

+ S(2)(t2 − t1, tk − t1)+ · · · + S(k)(tk − tk−1, tk − tk−1)).

For α > 0, set

�(1)(α, t1, . . . , tk) = α−1(S(αt1), S(αt2)− S(αt1), . . . , S(αtk)− S(αtk−1)),

�(2)(α, t1, . . . , tk) = α−1
(
S(1)(αt1, αt1), S

(2)(α(t2 − t1), α(t2 − t1))

+ [S(1)(αt1, αt2)− S(1)(αt1, αt1)], . . . ,
S(k)(α(tk − tk−1), α(tk − tk−1))

+
k−1∑
i=1

[S(i)(α(ti − ti−1), α(tk − ti−1))

− S(i)(α(ti − ti−1), α(tk−1 − ti−1))]
)
,

and

�(3)(α, t1, . . . , tk) = α−1(S(1)(αt1, αt1), S
(2)(α(t2 − t1), α(t2 − t1)), . . . ,

S(k)(α(tk − tk−1), α(tk − tk−1))).
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Step 2: exponential equivalence. Next we will show that the families of random vectors
{�(2)(α, t1, . . . , tk)}α>0 and {�(3)(α, t1, . . . , tk)}α>0 are exponentially equivalent at the speed
αrL(α). This claim follows if we can prove that, for fixed s < t , the following holds:

lim
α→∞

1

αrL(α)
log P

(N(αs)∑
n=1

[H(αt −Tn, Zn)−H(αs−Tn, Zn)] > αδ

)
= −∞ for all δ > 0.

By the Chernoff bound we have, for any θ > 0,

P

(N(αs)∑
n=1

[H(αt − Tn, Zn)−H(αs − Tn, Zn)] > αδ

)

≤ e−θαδ E

[
exp

{
θ

N(αs)∑
n=1

[H(αt − Tn, Zn)−H(αs − Tn, Zn)]
}]

= e−θαδ exp

{
λ

∫ αs

0
E[exp{θ(H(αt − u,Z1)−H(αs − u,Z1))} − 1] du

}
.

Therefore,

1

αrL(α)
log P

(N(αs)∑
n=1

[H(αt − Tn, Zn)−H(αs − Tn, Zn)] > αδ

)

≤ − θδ

(L(α)/α1−r )
+ λ

αrL(α)

∫ αs

0
E[exp{θ(H(αt − u,Z1)−H(αs − u,Z1))} − 1] du.

Let y > β be arbitrarily fixed. In step 5 we will show that if we take θ = dαr−1L(α), with
0 < d < (y − β)r−1, then

lim
α→∞

λ

αrL(α)

∫ αs

0
E[exp{θ(H(αt − u,Z1)−H(αs − u,Z1))} − 1] du = 0, (2.2)

so that

lim sup
α→∞

1

αrL(α)
log P

(N(αs)∑
n=1

[H(αt − Tn, Zn)−H(αs − Tn, Zn)] > αδ

)
≤ −dδ

and the claim follows by letting first d tend to (y − β)r−1 and then y tend to β.
Step 3: large deviations for the family {�(3)(α, t1, . . . , tk)}α>0. By Theorem 2.1 and the

definition of the slowly varying function, we find that, for any fixed t > 0, the stochastic
process {S(αt)/(αt)}α>0 obeys an LDP on R with speed αrL(α) and good rate function
t r I (β)(x). Using the contraction principle (see Theorem 4.2.1 of [3]), we find that {S(αt)/α}α>0
obeys an LDP on R with speed αrL(α) and good rate function t r I (β)(x/t). Owing to the
independence of the processes {S(i)(t, t)}t>0 (i = 1, . . . , k), it follows from Exercise 4.2.7
of [3] that {�(3)(α, t1, . . . , tk)}α>0 obeys an LDP on R

k with speed αrL(α) and good rate
function

Ĩ
(β)
t1,...,tk

(x1, . . . , xk) =
k∑
i=1

(ti − ti−1)
rI (β)

(
xi

ti − ti−1

)
. (2.3)
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Step 4: conclusion of the proof. By construction, �(1)(α, t1, . . . , tk)
d= �(2)(α, t1, . . . , tk)

for all α > 0. Combining steps 2 and 3 with Theorem 4.2.13 of [3], we deduce that the
family {�(1)(α, t1, . . . , tk)}α>0 obeys an LDP on R

k with speed αrL(α) and good rate function
Ĩ
(β)
t1,...,tk

defined in (2.3). The claim follows by an application of the contraction principle with
the function (x1, . . . , xk) �→ (x1, x1 + x2, . . . , x1 + · · · + xk).

Step 5: proof of (2.2). All that remains is the establishment of the assertion in (2.2). Let
k ≥ 1 be an integer such that r < k/(k + 1), which exists as r ∈ (0, 1). By the inequality

ex − 1 ≤ x + x2

2! + x3

3! + · · · + xk+1

(k + 1)!ex for all x ≥ 0

we have, for all α > 0, t ≥ s ≥ 0, and 0 ≤ u ≤ αs,

1

αrL(α)
E[exp{dαr−1L(α)(H(αt − u,Z1)−H(αs − u,Z1))} − 1]

≤ d

α
E[H(αt − u,Z1)−H(αs − u,Z1)]

+ 1

2
d2αr−2L(α)E[H 2(αt, Z1)] + · · · + 1

k!d
kα(k−1)r−kLk−1(α)E[Hk(αt, Z1)]

+ 1

(k + 1)!d
k+1αkr−(k+1)Lk(α)E[Hk+1(αt, Z1)e

dαr−1L(α)H(αt,Z1)].

So

1

αrL(α)

∫ αs

0
E[exp{dαr−1L(α)(H(αt − u,Z1)−H(αs − u,Z1))} − 1] du

≤ d

α

∫ αs

0
E[H(αt − u,Z1)−H(αs − u,Z1)] du

+ s

2
d2αr−1L(α)E[H 2(αt, Z1)] + · · · + s

k!d
kα(k−1)(r−1)Lk−1(α)E[Hk(αt, Z1)]

+ s

(k + 1)!d
k+1αk(r−1)Lk(α)E[Hk+1(αt, Z1)e

dαr−1L(α)H(αt,Z1)].

By the assumption on the distribution of H(∞, Z1) we have E[Hn(∞, Z1)] < ∞ for any
n ≥ 1, so that all the terms in the third line of the above inequality go to 0 as α → ∞. By a
change of variable we deduce that

d

α

∫ αs

0
E[H(αt − u,Z1)−H(αs − u,Z1)] du

= ds

∫ 1

0
E[H(α(t − zs), Z1)−H(αs(1 − z), Z1)] dz,

and this latter term goes to 0 as α → ∞ by the dominated convergence theorem. Therefore,
we only need to prove that

lim
α→∞α

k(r−1)Lk(α)E[Hk+1(αt, Z1)e
dαr−1L(α)H(αt,Z1)] = 0.
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Note that, for an arbitrary fixed T > 0,

E[Hk+1(αt, Z1)e
dαr−1L(α)H(αt,Z1)]

= E[Hk+1(αt, Z1)e
dαr−1L(α)H(αt,Z1)1{H(αt, Z1) < T }]

+ E[Hk+1(αt, Z1)e
dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T }]

≤ T k+1edα
r−1L(α)T + E[Hk+1(αt, Z1)e

dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T }].
Since limα→∞ αr−1L(α) = 0, the claim follows if we prove that

lim
α→∞α

k(r−1)Lk(α)E[Hk+1(αt, Z1)e
dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T }] = 0. (2.4)

By the choice of k ≥ 1 we have k(r − 1) + r(1 + ε)−1 < 0 for all ε > 0. An application of
Hölder’s inequality with conjugate exponents (1 + ε)/ε and 1 + ε yields

E[Hk+1(αt, Z1)e
dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T }]

≤ (E[H(k+1)(1+ε)/ε(αt, Z1)1{H(αt, Z1) ≥ T }])ε/(1+ε)

× (E[e(1+ε)dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T }])1/(1+ε).

Note that
(E[H(k+1)(1+ε)/ε(αt, Z1)1{H(αt, Z1) ≥ T }])ε/(1+ε)

≤ (E[H(k+1)(1+ε)/ε(∞, Z1)])ε/(1+ε) ∈ (0,∞).

Thus, (2.4) follows if we show that

lim
α→∞α

k(r−1)Lk(α)(E[e(1+ε)dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T }])1/(1+ε) = 0.

This in turn follows if

lim sup
α→∞

1

αrL(α)
E[e(1+ε)dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T }] < ∞. (2.5)

Indeed (2.5) gives, for all large enough α and a positive constant K1 > 0,

(E[e(1+ε)dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T }])1/(1+ε) ≤ K1α
r/(1+ε)L(α)1/(1+ε).

Then

lim sup
α→∞

αk(r−1)Lk(α)(E[e(1+ε)dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T }])(1+ε)−1

≤ K1 lim
α→∞α

k(r−1)+r(1+ε)−1
Lk+(1+ε)−1

(α)

= 0,

where the latter equality follows because k(r − 1)+ r(1 + ε)−1 < 0 and L is slowly varying.
In the remainder of the proof we establish the veracity of (2.5). Note that, ifX is a nonnegative
random variable, z > 0, and 0 < U < ∞, we have

E[ezX1{X ≥ U}] ≤
∫ ∞

U

zezs P(X > s) ds + ezU P(X ≥ U).
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Then, for all large enough α,

E[e(1+ε)dαr−1L(α)H(αt,Z1)1{H(αt, Z1) ≥ T }]
αrL(α)

≤ (1 + ε)d

α

∫ ∞

T

e(1+ε)dαr−1L(α)s P(H(∞, Z1) > s) ds + e(1+ε)dαr−1L(α)T

αrL(α)
.

Therefore, for (2.5), it suffices to check that

lim sup
α→∞

∫ ∞

T

eK2α
r−1L(α)s

α
P(H(∞, Z1) > s) ds < ∞ for some T > 0, (2.6)

where we set K2 = (1 + ε)d . Note that the sequence

lim sup
α→∞

∫ M

T

eK2α
r−1L(α)s

α
P(H(∞, Z1) > s) ds, M ≥ 1,

is nondecreasing with supremum

lim sup
α→∞

∫ ∞

T

eK2α
r−1L(α)s

α
P(H(∞, Z1) > s) ds.

Now, let M ≥ 1 and y > β be arbitrarily fixed and note that, for all α > M/(y − β),

∫ M

T

eK2α
r−1L(α)s

α
P(H(∞, Z1) > s) ds ≤

∫ α(y−β)

T

eK2α
r−1L(α)s

α
P(H(∞, Z1) > s) ds

≤
∫ ∞

T

eK2α
r−1L(α)s

α
P(H(∞, Z1) > s) ds.

Taking first the limit as α → ∞ and then the limit as M → ∞, we deduce that

lim sup
α→∞

∫ ∞

T

eK2α
r−1L(α)s

α
P(H(∞, Z1) > s) ds

= lim sup
α→∞

∫ α(y−β)

T

eK2α
r−1L(α)s

α
P(H(∞, Z1) > s) ds.

We will show that, for large enough T ,

lim sup
α→∞

∫ α(y−β)

T

eK2α
r−1L(α)s

α
P(H(∞, Z1) > s) ds = 0, (2.7)

and (2.6) follows.
Proving (2.7) follows exactly as in Proposition 2.2 of [11] from Equation (18) to the end of

the proof of part (ii). To make the current exposition self-contained, we provide these details
here. For a fixed r0 ∈ (0, r), by Theorem 1.5.4 of [1] we have L(y)/y1−r ∼ ψ1(y) and
a(y)/yr0 ∼ ψ2(y), where ψ1 and ψ2 are nonincreasing functions. So, for any ε′ > 0, there
exists yε′ such that, for all y ≥ yε′ , we have

(1 − ε′)ψ1(y) <
L(y)

y1−r < (1 + ε′)ψ1(y) and
a(y)

yr0
< (1 + ε′)ψ2(y). (2.8)
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By assumption, the tail of H(∞, Z1) is bounded above by a(t) exp{−t rL(t)} for all large
enough t , say for all t ≥ t̄ . In the following we take T > max{yε′ , t̄}. By the upper bound on the
tail ofH(∞, Z1), T > t̄ , and the change of variable z = s/[α(y−β)], settingK3 = K2(y−β)
we have∫ α(y−β)

T

eK2α
r−1L(α)s

α
P(H(∞, Z1) > s) ds

≤ (y − β)

∫ 1

T/[α(y−β)]
a(zα(y − β))

× exp{K3α
rL(α)z− (zα)r (y − β)rL(zα(y − β))} dz. (2.9)

Since T > yε′ , by (2.8) and the monotonicity of ψ1, we have, for all z ∈ (T /[α(y − β)], 1),

L(zα(y − β))

[zα(y − β)]1−r >
1 − ε′

1 + ε′
L(α(y − β))

[α(y − β)]1−r ,

and so the right-hand side of (2.9) is less than or equal to

(y − β)

∫ 1

T/[α(y−β)]
a(zα(y − β))

× exp

{
−K3α

rL(α)

[
(y − β)r−1

K2

1 − ε′

1 + ε′
L(α(y − β))

L(α)
− 1

]
z

}
dz.

(2.10)

By the choice of d we can select ε > 0 sufficiently small that (y−β)r−1/K2 > 1. Consequently,
we can choose ε′ sufficiently small that

K4 =
(

1 − ε′

1 + ε′

)2
(y − β)r−1

K2
− 1 > 0.

Since L is slowly varying in correspondence of ε′, there exists t ′ = t ′(y, β, ε′) such that, for
all α ≥ t ′, L(α(y − β))/L(α) > (1 − ε′)/(1 + ε′). Thus, using (2.10), we have

∫ α(y−β)

T

eK2α
r−1L(α)s

t
P(H(∞, Z1) > s) ds

≤ (y − β)
(

sup
z∈[T/(α(y−β)),1]

a(zα(y − β))
) ∫ 1

T/[α(y−β)]
e−K5α

rL(α)z dz

= K6(e
−K7α

r−1L(α) − e−K5α
rL(α))

supz∈[T/(α(y−β)),1] a(zα(y − β))

αrL(α)

for all large enough α, whereK5 = K3K4,K6 = (y−β)/K5, andK7 = K5T/(y−β). Owing
to the slow variation of L, K6(e−K7α

r−1L(α) − e−K5α
rL(α)) converges to K6 as α → ∞. So

(2.7) follows if

lim
α→∞

supz∈[T/(α(y−β)),1] a(zα(y − β))

αrL(α)
= 0.

Since T > yε′ , by (2.8) and the monotonicity of ψ2, we have, for all z ∈ (T /[α(y − β)], 1),

a(zα(y − β)) < (1 + ε′)[zα(y − β)]r0ψ2(zα(y − β)) ≤ (1 + ε′)[α(y − β)]r0ψ2(T ).

https://doi.org/10.1239/jap/1316796907 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796907


696 K. R. DUFFY AND G. L. TORRISI

So
supz∈[T/(α(y−β)),1] a(zα(y − β))

αrL(α)
≤ (1 + ε′)(y − β)r0ψ2(T )

αr−r0L(α)
,

and this latter term goes to 0 as α → ∞ owing to the slow variation of L and the choice of r0.

Armed with the finite-dimensional LDP in Theorem 2.2 we now complete the programme of
proof by establishing that the sample path LDP holds in the topology of pointwise convergence
and then in theL1 topology. As a simple transformation of the rate function in question coincides
with that for the centered partial sums of i.i.d. heavy-tailed semiexponential random variables,
we can appeal to the results in [6] to assert its goodness.

Theorem 2.3. Under the assumptions of Theorem 2.1, the family {S(α·)/α}α>0 obeys an LDP
onD[0, 1] equipped with the topology of pointwise convergence with speed αrL(α) and good,
nonconvex rate function

J (β)(f ) =
{∑

(f (t+)− f (t−))r if f ∈ Dβ [0, 1],
∞ otherwise,

(2.11)

where the sum is taken over all the points of discontinuity of f and

D(β)[0, 1] = {f ∈ D[0, 1] : f is linearly increasing with slope β between jumps,

which are nonnegative}.
Proof. For k ≥ 1, define the set of indexes

Ik = {(t1, . . . , tk) : t0 = 0 < t1 < · · · < tk ≤ 1}.
By the Dawson–Gärtner theorem, it follows from Theorem 2.2 that {S(α·)/α}α>0 obeys an
LDP on D[0, 1] equipped with the topology of pointwise convergence with speed αrL(α) and
good rate function

J̃ (β)(f (t1), . . . , f (tk)) = sup
k≥1, (t1,...,tk)∈Ik

I
(β)
t1,...,tk

(f (t1), . . . , f (tk)). (2.12)

By the contraction principle with the map f (t) �→ f (t)− βt , {S(α·)/α − β·}α>0 satisfies an
LDP in D[0, 1] equipped with the topology of pointwise convergence and a rate function J̃ (0)

as defined in (2.12). This rate function coincides with the rate function IT defined in [6] for
the centered partial sums of i.i.d. heavy-tailed semiexponential distributions. In Lemma 4 of
[6] it was established that J̃ (0) coincides with J (0) (I on page 1358 of [6]) defined in (2.11).
Thus, the identification of J̃ (β) with the J (β) follows from another application of the contraction
principle with the map f (t) �→ f (t) + βt . As this rate function mimics that found in [6], its
goodness in the L1 topology is proved in Lemma 8 there. The lack of convexity can be seen
by noting that if J (β)(f ) < ∞ and J (β)(g) < ∞, then, for any γ ∈ (0, 1),

J (β)(γf + (1 − γ )g) = γ rJ (β)(f )+ (1 − γ )rJ (β)(g) > γ J (β)(f )+ (1 − γ )J (β)(g).

In order to strengthen this LDP from the topology of pointwise convergence to the L1
topology, we prove exponential tightness and use this property to directly prove that the upper
and lower large deviation bounds hold in this topology. Exponential tightness alone is not
sufficient to establish the LDP in the L1 topology as, when equipped with the topology of
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pointwise convergence,D[0, 1] is not Hausdorff. For exponential tightness, we must establish
the existence of compact sets {KL}L>0 in the L1 topology such that

lim sup
α→∞

1

αrL(α)
log P

(
S(α·)
α

∈ Kc
L

)
≤ −L, (2.13)

where Kc
L denotes the complement of KL. For L > 0, consider the sets

KL = {f ∈ D[0, 1] : var[0,1](f ) ≤ L1/r + β},
where var[0,1](f ) is the total variation of f on [0, 1]. Compactness ofKL is shown in Lemma 5
of [6]. Note that

P

(
S(α·)
α

∈ Kc
L

)
≤ P

(
S(α)

α
≥ L1/r + β

)
and, thus, (2.13) follows from an application of Theorem 2.1. Using the sets {KL}L>0 again,
note that, for any closed set C in the L1 topology, we have

P

(
S(α·)
α

∈ C
)

≤ P

(
S(α·)
α

∈ C ∩KL
)

+ P

(
S(α·)
α

∈ Kc
L

)
.

As C ∩ KL is closed in the topology of pointwise convergence, we can apply the LDP upper
bound in that topology in addition to the identification of J̃ (β) with J (β) and the exponential
tightness to obtain the LDP upper bound

lim sup
α→∞

1

αrL(α)
log P

(
S(α·)
α

∈ C
)

≤ − inf
f∈C J

(β)(f ).

To prove the LDP lower bound,

lim inf
α→∞

1

αrL(α)
log P

(
S(α·)
α

∈ O
)

≥ − inf
f∈O J

(β)(f )

for any open set O in the L1 topology, it is enough to show that

lim inf
α→∞

1

αrL(α)
log P

(
S(α·)
α

∈ Oδ(f )
)

≥ −J (β)(f )

for all f such that J (β)(f ) < ∞ and

Oδ(f ) =
{
g :

∫ 1

0
|f (t)− g(t)| dt < δ

}
.

For n > 0, consider the following set:

O(n)(f ) =
{
g nondecreasing :

∣∣∣∣g
(
k

n

)
− f

(
k

n

)∣∣∣∣ < 1

n
for all k ∈ {1, . . . , n}

}
.

For sufficiently large n, O(n)(f ) ⊂ Oδ(f ). To see this, define the intervals I1 = [0, 1/n] and
Ik = ((k − 1)/n, k/n] for k = 2, . . . , n. As g ∈ O(n)(f ) and f and g are nondecreasing, on
the interval Ik we have

|f (t)− g(t)| ≤ f

(
k

n

)
− f

(
k − 1

n

)
+ 2

n
,
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and so ∫
Ik

|f (t)− g(t)| dt ≤ 1

n

(
f

(
k

n

)
− f

(
k − 1

n

))
+ 2

n2 .

Thus, ∫ 1

0
|f (t)− g(t)| dt =

n∑
k=1

∫
Ik

|f (t)− g(t)| dt

≤ n
2

n2 +
n∑
k=1

1

n

(
f

(
k

n

)
− f

(
k − 1

n

))

= 2

n
+ 1

n
(f (1)− f (0)).

As the right-hand side is decreasing in n, we have O(n)(f ) ⊂ Oδ(f ) for sufficiently large n.
As S(t) is nondecreasing almost surely, for sufficiently large n

P

(
S(α·)
α

∈ Oδ(f )
)

≥ P

(
S(α·)
α

∈ O(n)(f )

)
.

To prove the LDP lower bound and complete the proof, we note that, by Theorem 2.2, it follows
that

lim inf
α→∞

1

αrL(α)
log P

(
S(α·)
α

∈ O(n)(f )

)

= lim inf
α→∞

1

αrL(α)
log P

(∣∣∣∣S(αk/n)α
− f

(
k

n

)∣∣∣∣ < 1

n
, k ∈ {1, . . . , n}

)

≥ − inf
(x1,...,xn)∈∏n

k=1(f (k/n)−1/n,f (k/n)+1/n)
I
(β)

(1/n,2/n,...,1)(x1, . . . , xn)

≥ −
n∑
i=1

(
1

n

)r
I (β)

(
n

(
f

(
i

n

)
− f

(
i − 1

n

)))

≥ −Jβ(f ).
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[6] Gantert, N. (1998). Functional Erdős-Renyi laws for semiexponential random variables. Ann. Prob. 26, 1356–

1369.
[7] Klüppelberg, C. and Mikosch, T. (1995). Delay in claim settlement and ruin probability approximations.

Scand. Actuarial J. 1995, 154–168.
[8] Konstantopoulos, T. and Lin, S.-J. (1998). Macroscopic models for long-range dependent network traffic.

Queueing Systems 28, 215–243.
[9] Lowen, S. B. and Teich, M. C. (1990). Power-law shot noise. IEEE Trans. Inf. Theory 36, 1302–1318.

[10] Rice, S. O. (1944). Mathematical analysis of random noise. Bell System Tech. J. 23, 282–332.
[11] Stabile, G. and Torrisi, G. L. (2010). Large deviations of Poisson shot noise processes under heavy tail

semi-exponential conditions. Statist. Prob. Lett. 2010, 1200–1209.

https://doi.org/10.1239/jap/1316796907 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796907

	1 Introduction
	2 Sample path large deviations
	References

