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The discrete logarithm problem for exponents of bounded height

Simon R. Blackburn and Sam Scott

Abstract

Let G be a cyclic group written multiplicatively (and represented in some concrete way). Let
n be a positive integer (much smaller than the order of G). Let g, h ∈ G. The bounded height
discrete logarithm problem is the task of finding positive integers a and b (if they exist) such
that a 6 n, b 6 n and ga = hb. (Provided that b is coprime to the order of g, we have h = ga/b

where a/b is a rational number of height at most n. This motivates the terminology.)
The paper provides a reduction to the two-dimensional discrete logarithm problem, so

the bounded height discrete logarithm problem can be solved using a low-memory heuristic
algorithm for the two-dimensional discrete logarithm problem due to Gaudry and Schost. The
paper also provides a low-memory heuristic algorithm to solve the bounded height discrete
logarithm problem in a generic group directly, without using a reduction to the two-dimensional
discrete logarithm problem. This new algorithm is inspired by (but differs from) the Gaudry–
Schost algorithm. Both algorithms use O(n) group operations, but the new algorithm is faster
and simpler than the Gaudry–Schost algorithm when used to solve the bounded height discrete
logarithm problem. Like the Gaudry–Schost algorithm, the new algorithm can easily be carried
out in a distributed fashion.

The bounded height discrete logarithm problem is relevant to a class of attacks on the
privacy of a key establishment protocol recently published by EMVCo for comment. This
protocol is intended to protect the communications between a chip-based payment card and
a terminal using elliptic curve cryptography. The paper comments on the implications of these
attacks for the design of any final version of the EMV protocol.

1. Introduction

Let G be a cyclic group (written multiplicatively). We suppose that G is represented in such
a way that every element has a unique normal form, and the operations of multiplication,
inversion and the computation of the normal form of an element can all be carried out
efficiently. (For example, G might be a subgroup of the multiplicative group of the integers
modulo p, or a suitable subgroup of points on an elliptic curve.) For simplicity, we assume that
G has prime order (which will be true in the applications we have in mind).

We define the bounded height discrete logarithm problem on G to be the task of, given group
elements g, h ∈ G (in normal form) and an integer n, computing positive integers a and b such
that a 6 n, b 6 n and

ga = hb

if such integers exist. We will assume that n 6 (1/5)
√
|G|, so n is significantly smaller than

the order of G. Note that if a and b have a common factor d, then we may divide a and b
by d to produce another solution to the bounded height discrete logarithm problem (as d is
coprime to the order of G). So we will assume that a and b are coprime.

Recall that the height h(a/b) of a rational number a/b (where a and b are coprime integers)
is defined by h(a/b) = max{|a|, |b|}. Thus (as b and the order of g are coprime) the bounded
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height discrete logarithm problem asks for a positive rational number q with h(q) 6 n such
that h = gq.

The bounded height discrete logarithm problem is a natural generalization of the problem
where the discrete logarithm is an integer known to lie in an interval of length n. (There is
an easy reduction of the latter problem to the case when the interval the logarithm lies in is
[1, n]. So we are asked to solve the bounded height discrete logarithm problem where we are
given the extra information that b = 1.) This special case, when the discrete logarithm lies in a
short interval, can be solved using O(

√
n) group operations and O(1) memory using Pollard’s

kangaroo method [7, 8].
A naive algorithm to solve the bounded height discrete logarithm problem exhaustively

searches the n2 possibilities for the pair (a, b) until a solution is found. But there is clearly
a much faster algorithm based on ‘baby-step giant-step’ techniques. In this algorithm, we
compute all powers ga where 1 6 a 6 n and store these values in an easily searched list. For
each b such that 1 6 b 6 n, we compute hb and check whether it is equal to some ga in our
list. This algorithm requires O(n) group operations; this is of the order of the square root of
the solution space, just as for Pollard’s kangaroo method. But, in contrast to the kangaroo
method, the algorithm has a very large memory requirement (which is a significant problem in
practice). We aim to show that the bounded height discrete logarithm problem may be solved
in O(n) group operations using a heuristic Las Vegas algorithm with low memory requirements.
The algorithm we describe can be easily implemented in a distributed environment.

Our algorithm to solve the bounded height discrete logarithm problem is inspired by the
heuristic Las Vegas algorithm due to Gaudry and Schost [5] that solves the two-dimensional
discrete logarithm problem; see Galbraith [4, Chapter 14] for an exposition of this algorithm.
In fact, we will provide a reduction from the bounded height discrete logarithm problem to the
two-dimensional discrete logarithm problem, and so the Gaudry–Schost algorithm can itself
be used to solve the bounded height discrete logarithm problem (though less efficiently than
by using the algorithm we provide in this paper).

We were motivated to study the bounded height discrete logarithm problem after examining
the recent draft specification for a key establishment protocol which has been published for
comment by EMVCo [2]. This protocol is based on elliptic curve Diffie–Hellman key agreement,
and is intended to be used to establish secure communications between an EMV card (a chip-
based payment card, for example) and a banking terminal. Communication is by direct contact
between devices, or over the air. The final version of the protocol will be very widely used when
implemented: there are currently over 1.6 billion EMV cards and over 23 million terminals in
use [3]; these figures will rise significantly when chip-and-PIN cards are fully rolled out in
the USA. One aim of the protocol is to provide privacy by protecting against card tracking:
an eavesdropper should not be able to determine whether two intercepted communication
sessions involve the same card. Brzuska, Smart, Warinschi and Watson [1] have shown that
card tracking is possible for the proposed protocol parameters if an adversary can impersonate
a terminal and interact with the card at some stage. We observe that there is a card-tracking
attack that can be mounted by a passive adversary (without needing to impersonate a terminal
at any stage), with the penalty of a higher, though still realistic, computational cost. In fact the
protocol design is such that if the bounded height discrete logarithm problem can be solved,
the privacy of this protocol can be compromised by a passive adversary. So the algorithm in
this paper has implications for parameter choices for this protocol. Indeed, the parameters
proposed in the draft protocol specification are not sufficiently large to prevent card tracking
by a passive adversary. We provide more details below.

The structure of the remainder of this paper is as follows. In § 2 we provide a reduction
from the bounded height discrete logarithm problem to the two-dimensional discrete logarithm
problem, thus enabling the Gaudry–Schost algorithm to be used to solve the former problem. In
§ 3 we provide our heuristic algorithm to solve the bounded height discrete logarithm problem
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directly. Finally, in § 4, we provide some details of the EMV protocol and discuss the impact
of our results on the parameter choices that are to be made.

2. A reduction to the two-dimensional discrete logarithm problem

The two-dimensional discrete logarithm problem takes as input a positive integer ν and
elements g1, g2, g3 of a (not necessarily cyclic) group G. It outputs integers x1 and x2 such that
0 6 x1 < ν, 0 6 x2 < ν and g3 = gx1

1 gx2
2 (if these integers exist). The low-memory heuristic

algorithm due to Gaudry and Schost [5] solves this problem using O(ν) group operations.
This section describes a reduction of the bounded height discrete logarithm problem to

the two-dimensional discrete logarithm problem. We use the notation for the bounded height
discrete logarithm problem established in the introduction above. For the purposes of our
reduction, we assume that we have an oracle for the two-dimensional discrete logarithm
problem. We will show that there exists a positive real number p so that a single call to
the oracle will allow us to solve an instance of the bounded height discrete logarithm problem
with probability at least p. (So to increase the probability of success to any given desired
threshold, a bounded number of oracle calls are needed.)

2.1. A first (unsuccessful) attempt

A first attempt at a reduction sets ν = n, g1 = g, g2 = h−1 and g3 = 1. If (a, b) is a solution
to the bounded height discrete logarithm problem, then

ga1g
b
2 = gah−b = 1 = g3,

and so we might hope that an oracle for the two-dimensional discrete logarithm problem will
return the solution x1 = a, x2 = b that we require. Unfortunately, we cannot guarantee that
the oracle does not return the trivial solution x1 = x2 = 0.

2.2. A second (unsuccessful) attempt

For a second attempt at a reduction, we choose ν = n, g1 = g, g2 = h−1 as before. But then
we choose two random integers r1 and r2 with 0 6 r1 < ν and 0 6 r2 < ν and set g3 = gr11 g

r2
2 .

An oracle for the two-dimensional discrete logarithm problem returns some solution x1 and
x2. Note that |xi − ri| 6 ν and

gx1−r1
1 gx2−r2

2 = gx1
1 gx2

2 (gr11 g
r2
2 )−1 = g3g

−1
3 = 1.

Recall that we are assuming that n 6 (1/5)
√
|G|. Lemma 2.1 below (with β = 1 and, say,

α = 1/4) shows that g1 and g2 have no small non-trivial relations, so (x1−r1, x2−r2) = (da, db)
for some integer d. As long as d 6= 0 (in other words, as long as the two-dimensional discrete
logarithm problem returns a non-trivial solution), we may calculate d = gcd(x1 − r1, x2 − r2)
and then return the required solution a = (x1 − r1)/d, b = (x2 − r2)/d to the bounded height
discrete logarithm problem. However, it might be the case that no non-trivial solutions exist.
Indeed, if a or b is very large then this will be the case with high probability. (To see this note
that if (for example) a is large then it is likely that a > r1 > ν − a. But then if d > 0 we find
x1 = da+ r1 > a+ ν − a = ν, and if d < 0 then x1 = da+ r1 < −a+ a = 0. Since 0 6 x1 < ν
we have a contradiction in both cases, and so we must have d = 0.)

Lemma 2.1. Let α, β ∈ R be positive real numbers such that 2α2β < 1. Let G be a cyclic
group of prime order and let g, h ∈ G \ {1}. Let n be a positive integer where n 6 α

√
|G|.

Suppose g and h satisfy a small relation: gah−b = 1 for coprime integers a and b such that
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1 6 a 6 n and 1 6 b 6 n. Then there are no other non-trivial relations between g and h. More
precisely, suppose y1 and y2 are integers such that gy1hy2 = 1 and such that |y1| 6 βn and
|y2| 6 βn. Then there exists an integer d such that y1 = da and y2 = −db.

Proof. Note that
gy2a+y1b = (gah−b)y2(gy1hy2)b = 1.

Since g is a non-identity element in a group of prime order, we see that |G| divides y2a+ y1b.
But

|y2a+ y1b| 6 2βn2 6 2α2β|G| < |G|,
and so y2a+ y1b = 0. Thus the matrix A defined by

A =

(
a −b
y1 y2

)
has determinant zero. The first row of A is non-zero, so the second row of A must be a (rational)
multiple of the first. Indeed, since a and b are coprime, the second row must be an integer
multiple d of the first. So the conclusion of the lemma follows.

2.3. A final (successful) attempt

Our final attempt at a reduction adjusts the parameters of the problem to make sure that our
oracle outputs non-trivial solutions with high probability. We fix a real number β where β > 1
(we might use β = 2 in practice). We set g1 = g and g2 = h−1 as before, but we set ν = βn
(so our oracle expects to receive inputs within a larger range). We then proceed as before: we
choose two random integers r1 and r2 with 0 6 r1 < ν and 0 6 r2 < ν, and g3 = gr11 g

r2
2 . An

oracle for the two-dimensional discrete logarithm problem returns some solution x1 and x2.
The argument above, using Lemma 2.1 with α < 1/

√
2β, shows that (x1−r1, x2−r2) = (da, db)

for some integer d. As before, when d 6= 0 we may calculate d = gcd(x1 − r1, x2 − r2) and
return the required solution a = (x1 − r1)/d, b = (x2 − r2)/d to the bounded height discrete
logarithm problem. To show we have our reduction, it therefore remains to show that d is
non-zero with positive probability.

For a pair (r1, r2) ∈ Z× Z with 0 6 ri < βn, define

µ(r1, r2) = |{(x1, x2) ∈ Z× Z : 0 6 xi < βn and gx1
1 gx2

2 = gr11 g
r2
2 }|.

Define pi to be the probability that µ(r1, r2) = i, when r1 and r2 are chosen randomly and
independently. The probability that our oracle returns a non-trivial solution is

∞∑
i=2

pi((i− 1)/i) >
1

2

∞∑
i=2

pi =
1

2
(1− p1).

When r1 > n and r2 < βn−n we have µ(r1, r2) > 2, since both (r1, r2) and (r1−a, r2+b) lie
in the set of pairs counted by µ(r1, r2). So p1 6 1− (β−1)2/β2 < 1. Thus the probability that
the oracle returns a non-trivial solution is bounded away from 0 (by a function of β). Since β
is a constant (we suggested β = 2 above) we have an efficient reduction of the bounded height
discrete logarithm problem to the two-dimensional discrete logarithm problem.

3. An algorithm for the bounded height discrete logarithm problem

3.1. The algorithm

We now describe our algorithm for the bounded height discrete logarithm problem. We
take a similar approach to describing the Gaudry–Schost algorithm as Galbraith [4]. The
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Gaudry–Schost algorithm generates sets of ‘tame’ and ‘wild’ pseudorandom walks, and looks
for a collision between a tame and a wild walk. In contrast, the algorithm below generates
pseudorandom walks of a single type and looks for a collision between any pair of walks,
making it more efficient for the problem we consider.

Let G, g, h and n be the input to the algorithm. We must choose four parameters: a
real number p ∈ [0, 1], a real number β > 1, and positive integers k and m. The choice
of these parameters will affect the complexity of the algorithm; typical choices might be
p ≈ (10 log n)/n, β = 2, k ≈ 2 log n and m ≈ n/(1000 log n).

Let D ⊆ G be a set of size approximately p|G|. We say that a group element in D is a
distinguished point. We choose D so that it is easy to check whether a group element lies in D.
(In practice we define D by specifying a hash function δ from the set of normal forms for G to
some set X of size approximately p−1, choosing an element x ∈ X and setting D = δ−1(x).)

Let S = {(i, j) ∈ Z2 : i, j ∈ [1, βn]}. Let γ : S → G be defined by γ((i, j)) = gihj .
We choose pairs (r1, s1), (r2, s2), . . . , (rk, sk) ∈ Z×Z, where the integers ri and si are picked

uniformly and independently from the interval [−m,m]. We choose an (efficiently computable)
selection function σ : G → {1, 2, . . . , k}, and we define next-state function ω (which we will
use to define pseudorandom walks on S) by

ω((i, j)) = ((i+ r`, j + s`)),

where ` = σ(γ((i, j))). Note that the next state function has the crucial property that if
(i, j), (i′, j′) ∈ S are such that (i, j) 6= (i′, j′) but γ((i, j)) = γ((i′, j′)) then the same is
true after ω is applied to (i, j) and (i′, j′): we have ω((i, j)) 6= ω((i′, j′)) but γ(ω((i, j))) =
γ(ω((i′, j′)).

We generate a sequence of pseudorandom walks on S as follows. We choose integers a′, b′ ∈
[1, βn] uniformly and independently at random, and start a walk at the point (a′, b′). We iterate
the walk using the function ω until we reach a point (i, j) where g′ := γ((i, j)) is distinguished.
We then terminate the walk, storing the value (g′, (i, j)) in a list. (If we ever walk outside
the set S, we terminate the walk without storing any value.) We continue generating random
walks until we obtain a non-trivial collision, by which we mean we have elements (g′, (i, j))
and (g′, (i′, j′)) in our list with γ((i, j)) = g′ = γ((i′, j′)) (a collision) and (i, j) 6= (i′, j′) (the
non-triviality condition). Without loss of generality i > i′. By the definition of γ,

gihj = g′ = gi
′
hj

′
and so gi−i

′
= hj

′−j .

We compute d = gcd(i − i′, j′ − j) and set a = (i − i′)/d and b = (j′ − j)/d. We output the
pair (a, b).

3.2. A heuristic complexity analysis

If our algorithm terminates, the argument in § 2 (see Lemma 2.1) shows that it will output a
correct pair (a, b) (in particular, a and b lie in the correct range). So it remains to estimate the
expected number of group operations that are carried out before the algorithm terminates.

We analyse the complexity of our algorithm under several simplifying assumptions and
heuristics, which are essentially identical to the assumptions made in the analysis of the
Gaudry–Schost algorithm. We assume that the parameters p, β, k and m are chosen as
recommended above: p ≈ (10 log n)/n, β = 2, k ≈ 2 log n, and m ≈ n/(1000 log n).

We assume that the probability that a pseudorandom walk strays from the set S is
insignificantly small. (This assumption is valid if the algorithm’s parameters are chosen
appropriately, for example when the parameters are chosen as suggested above and n is
sufficiently large.) We assume that, with high probability, no pseudorandom walk enters a cycle
before termination. (Again this assumption is very reasonable for the suggested parameters;
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fewer than 0.25% of walks ended in cycles in our experiments.) Less realistically, we assume
that our pseudorandom walks may be modelled by walks which are uniformly distributed
throughout S, and are randomly chosen until a collision takes place.

Note that, though our random walks consist of pairs (i, j) ∈ S, collisions are defined in terms
of the images γ(i, j) of these pairs in G, so we cannot use a direct application of the birthday
paradox in S in our analysis of our algorithm’s complexity. Let c be the total number of steps,
summing over all our random walks, before and including any collisions (trivial or non-trivial).
The expected number of distinct pairs (i, j), (i′, j′) ∈ S with γ((i, j)) = γ((i′, j′)) that we reach
in our pseudorandom walk is

(
c
2

)
|γ(S)|−1. Clearly |γ(S)| 6 β2n2. In fact, |γ(S)| 6 (2β−1)n2 =

3n2. To see this, note that if i > n and j < βn − n and ga = hb then gihj = gi−ahj+b.
make Thus

γ(S) = γ({(i, j) ∈ S : i 6 n}) ∪ {(i, j) ∈ S : j > βn− n})

and so |γ(S)| 6 βn2 + (β− 1)n2 = 3n2. Hence we expect to have a total of at least
(
c
2

)
(3n2)−1

(trivial or non-trivial) collisions.
For (i, j) ∈ S, define `(i, j) to be the number of pairs (i′, j′) ∈ S that collide with (i, j). In

other words `(i, j) is the number of (i′, j′) ∈ S such that γ((i′, j′)) = γ((i, j)). The argument
above shows that when i > n and j < βn− n we have that `(i, j) > 2. For the same reasons,
when j > n and i 6 βn− n we have `(i, j) > 2. So when β = 2 we find that `(i, j) > 2 for at
least half of the pairs (i, j) ∈ S. Thus if we have a collision, we would expect it to be non-trivial
with probability at least 1

4 . (This is an underestimate, as we would expect elements (i, j) ∈ S
with `(i, j) > 2 to appear more often as in a collision than those with `(i, j) = 1.) Thus the
expected number of non-trivial collisions is at least

(
c
2

)
(12n2)−1.

So we expect our algorithm to terminate when c ≈
√

24n. Note that we expect a constant
number of collisions before the algorithm terminates (the analysis above suggests an expected
number of 4 or less). We expect each collision to use approximately 2p−1 extra group operations
in addition to those counted by c. Since p ≈ (10 log n)/n, this is an insignificant number of
operations, which can safely be ignored.

To summarise, our heuristic assumptions predict that the expected number of group
operations used by our algorithm is at most (

√
24 + o(1))n = O(n).

3.3. Experimental results

In order to implement our algorithm, we used the SAGE computer algebra system [9]. The key
purpose of our experimentation was to compare the performance of our algorithm against the
Gaudry–Schost algorithm. As a result, the emphasis was on comparing the relative runtime
of the two algorithms, as opposed to optimizing the code in order to achieve the theoretical
predictions. Neither our analysis nor the analysis performed by Gaudry and Schost gives any
information about the impact of our choice of ‘next-step’ pairs (ri, si) on the efficiency of
the algorithm, though this seems to have a large effect in practice. Therefore, we did not
make any significant effort to fine-tune the parameters for either algorithm, but used the same
parameters and next-step pairs in each run of both algorithms so as to better compare their
run-time.

To compare our algorithm to Gaudry–Schost, 1000 tests were performed when n = 216.
On average, our algorithm required 111 664 steps, compared to 141 303 in the Gaudry–Schost
algorithm. This represents an increase of speed of approximately 1.265 times. Additionally, the
average number of stored distinguished points was 220 for our algorithm compared with 278 for
the Gaudry–Schost algorithm. A test constituted generating an instance of the bounded height
discrete logarithm problem, and running both algorithms on the instance. We now discuss our
experiments in more detail.
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The group used for running all experiments was a fixed cyclic group G. The order of G was
a 256-bit prime.

The same pseudorandom map was used for both algorithms, and was defined as follows. The
number of choices for the next state, k, was set to k = 2 log n, for example k = 32 when n = 216.
Increasing k did not appear to have any noticeable effect. The next state was chosen by hashing
the representation of the point, and taking the log k most significant bits of the result. The 32-
bit CRC provided by the Python library zlib was used as the hash function. The random walk
offsets (ri, si) were chosen randomly from the interval [−m,m], where m = n/10 log n. (We
found the value m ≈ n/1000 log n that has been previously suggested [4] for this parameter to
be too small for the lower end of the parameter range we were considering. For example, when
n = 216 we would have had m = 4 and this value would have caused some random walk pairs
to be equal, or even zero, with significant probability.) The probability a point is distinguished
is given by p = (10 log n)/n in our heuristic analysis. In our experiments, a distinguished point
was determined by hashing the representation of the point and checking if the last dlog pe least
significant bits were zero.

To determine a good choice of β in our algorithm, experiments were run with n = 216. We
performed 150 tests at each value β at increments of 0.01 for 1 < β < 1.2 and increments of
0.1 for 1.2 6 β < 5. There appeared to be a minima at approximately 1.2, with the number of
steps in an average run increasing linearly (and gradually) for greater values. However, when
β was close to 1, the number of steps in a run varied to a much greater extent when compared
to runs when a larger value of β was used. Therefore, we chose β = 2 as a value which has
comparable performance, but more consistent results.

To test the performance of the algorithms as n varies, we performed experiments for values
of n with 212 6 n 6 224. Both our algorithm and the Gaudry–Schost algorithm required
approximately n1.15 steps before terminating, rather than approximately n steps as predicted
by the heuristic analysis; this might be expected, as we did not attempt to optimize our choice
of offsets (ri, si) in any way. The low-memory nature of our algorithm was confirmed by these
experiments: the number of group elements which needs to be stored grows linearly in log n,
and on average less than 1000 elements were stored.

We have been able to perform a limited number of experiments for the larger value n = 232.
The algorithm does terminate successfully, but we do not have enough data to perform a
sensible analysis for this value of n.

4. The EMV protocol

This section describes the relevance of the bounded height discrete logarithm problem to a
‘blinded Diffie–Hellmann’ key establishment protocol, which has been published in ‘Request
for Comment’ form by EMVCo [2].

The blinded Diffie–Hellman protocol is designed to secure communications between an EMV
card (such as a bank card) and another device such as a point-of-sale terminal using elliptic
curve cryptography. The goals of the protocol are to authenticate the card to the terminal, to
detect modifications to any communications, and to protect against eavesdropping and card
tracking.

The relevant part of the blinded Diffie–Hellman protocol is described as follows. Let G be a
cyclic group of points on an elliptic curve. The suggested choice is a point on the curve P-256 as
defined in the relevant NIST standard [6], so G is cyclic of prime order and 2255 < |G| < 2256.

Let x be a generator of G. The card possesses a 256-bit integer dc (its private key) and
the group element y = xdc (its ‘public’ key, though this key is not revealed in any obviously
public way), and certificates to prove the public key have been authorized. Let k = 32. (The
EMV proposal chooses k = 32 for efficiency reasons, to reduce the computational cost of
Step 1 below.)
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(1) The card generates a random k-bit integer r, and sends g = yr to the terminal.
(2) The terminal generates a 256-bit integer dt, and sends xdt to the card.
(3) Both the card and the terminal can compute the group element xrdcdt , since

xrdcdt = (xdt)rdc = gdt.

The card and terminal derive a common key K from this group element.
(4) Using an authenticated encryption scheme and their common key K, the card sends its

certified public key xdc , certificates and r to the terminal.
(5) The terminal checks whether (xdc)r = g, and authenticates the card’s public key using

the certificates.

A recent paper of Brzuska, Smart, Warinschi and Watson [1] provides a realistic security
model for the protocol, and shows that so long as the protocol design is modified so that
k = 256 the protocol is secure in this model.

However, there are problems with the goal of preventing card tracking when k = 32. To
prevent card tracking, it must be hard for a third party to distinguish between runs of the
protocol involving the same card, and runs involving different cards. Brzuska et al. point out
that it is possible to obtain the public key y of a card by an active attack in which the adversary
impersonates a terminal (note that the terminal is not authenticated). Once the public key y
of a card is known, other runs of the protocol that are observed may (with high probability)
be linked to the card by taking the value of g that is transmitted in Step 1 of the protocol
and solving g = yr for r a k-bit integer. (Note that if the protocol involves another card, then
with high probability the equation g = yr with r a k-bit integer will not have a solution.) The
equation g = yr can be solved using O(2k/2) group operations (and negligible memory) using
Pollard’s kangaroo method [7, 8], and so we have a feasible attack when k = 32.

We point out a feasible attack that allows card tracking even under a passive adversary
model. Suppose we observe the group elements transmitted in Step 1 of two runs of the
protocol. Let these elements be g and h, respectively. If the two runs involve the same card,
we know that g = yb and h = ya where a and b are k-bit integers and where y is the public
key of the card. But then ga = hb, and so the bounded height discrete logarithm problem has
a solution. If the two runs are initiated by different cards, it is very unlikely that the bounded
height discrete logarithm problem has a k-bit solution. So the algorithms in this paper provide a
low-memory passive method for distinguishing whether two runs involve the same card, using
O(2k) operations. Note that if the solution (a, b) to the bounded height discrete logarithm
problem is unique (which is quite likely), we have actually recovered the card’s public key, as
y = g1/b. The analysis in Lemma 2.1 shows that in fact all solutions to the bounded height
discrete logarithm problem are multiples of each other (at least when k is smaller than about
128). So with very high probability we have reduced the number of possibilities for the public
key to a small set (that could be exhaustively searched). One consequence of finding the public
key of the card is that Pollard’s kangaroo method can be used to tell whether any other runs
of the protocol are associated with the card.

The analysis above shows that the value of k = 32 should not be used if card tracking needs
to be prevented. Indeed, Brzuska et al. point out that small values of k cause problems with
entity authentication too, as a corrupt terminal can manipulate a card into establishing two
sessions with the same common key K. We recommend that k should be larger than its current
value; the larger the better. Mandating that k = 256 would prevent the card tracking attacks
discussed here. The security proofs of Brzuska et al. [1] provide guarantees that card tracking
is hard, and that (one-sided) entity authentication, message authentication and privacy are
achieved, under a well-defined and realistic security model which requires k = 256. So using
k = 256 would add significant additional assurance to the protocol’s security. Of course,
choosing k = 256 significantly increases the computational cost of the protocol.
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