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FAMILIES OF ABELIAN SURFACES WITH REAL
MULTIPLICATION OVER HILBERT

MODULAR SURFACES

G. VAN DER GEER AND K. UENO

§ 0. Introduction

Around the beginning of this century G. Humbert ([9]) made a detailed
study of the properties of compact complex surfaces which can be para-
metrized by singular abelian functions. A surface parametrized by singular
abelian functions is the image under a holomorphic map of a singular
abelian surface (i.e. an abelian surface whose endomorphism ring is larger
than the ring of rational integers). Humbert showed that the periods of
a singular abelian surface satisfy a quadratic relation with integral co-
efficients and he constructed an invariant D of such a relation with
respect to the action of the integral symplectic group on the periods. A
few years later Hecke ([6]) made the connection with real quadratic fields
by showing that the quotient of tff X Jf_ (the product of the complex
upper and lower half plane) by the action of the symmetric Hubert
modular group of the field Q(V D) is the moduli space of singular abelian
surfaces whose periods satisfy a relation with invariant D. The Hubert
modular surfaces have attracted new attention since Hirzebruch succeeded
in resolving their singularities ([7]). This has resulted in a detailed knowl-
edge of the geometry of these surfaces.

On the other hand, Mumford c.s. developed a compactification theory
based on toroidal embeddings and this theory is an effective tool for the
study of the degeneration of abelian varieties. Namikawa applied it to
the quotient of the Siegel upper half space by the integral symplectic
group to obtain a new compactification of this quotient and constructed
degenerating abelian varieties over the compactified quotient. These
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18 G. VAN DER GEER AND K. UENO

recent developments have motivated us to study complex analytic families
of abelian surfaces over Hubert modular surfaces.

The composition of this paper is as follows. After having explained
the meaning of the Hubert modular surfaces as moduli spaces of abelian
surfaces in section 1, we recall in section 2 some notions from the theory
of torus embeddings and we describe Hirzebruch's resolution of the cusps
of Hubert modular surfaces in section 3. Section 4 is devoted to the con-
struction of two compactiίications, s/± and j£i9 of a (universal) family of
polarised abelian surfaces over a Hubert modular surface. Here we assume
that the reader has some acquaintance with the construction of degen-
erating abelian varieties by means of toroidal embeddings (cf. Mumford
[11] or Namikawa [13]). The first compactification sί± (the half period
compactification) is singular; it seems to be the right compactification for
the study of the degeneration of singular Kummer surfaces. For the con-
struction of a non-singular compactification J&± we are indebted to Y.
Namikawa, who suggested to us the division process as explained in 4,8.
In section 5 we prove that sf± and ja?̂  are simply connected. Holomorphic
differential forms on a toroidal compactification are described in section
6. In section 7 we express the arithmetic genus of such a compactifica-
tion in terms of the volume of the Hubert modular surface. In the last
section we give a proof for the fact that a certain family of abelian varieties
over a (compact) curve has only finitely many holomorphic sections and
we apply it to obtain the number of sections of tp/i and J/^.

The authors would like to express their gratitude to Y. Namikawa
for communicating to them the idea on which the non-singular compacti-
fication is based. They also want to thank D. Zagier for some useful
comments during the preparation of this paper.

Notation

Θ*: dual order of 0 with respect to the Trace, x -> x(ί) (i = 1, 2)
denotes the two real embeddings of an element x of a real quadratic field.
If V1 Θ V2 is an eigen decomposition of a vector space V such that x e 0
acts on Vi by multiplication with x(i), then Tr xυ = x(l)υ1 + xi2)v2 for υ —
(v» v2).

§1. Abelian surfaces with real multiplication

1.1. Let Θ be a maximal order in a real quadratic field K and let 2ΐ
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ABELIAN SURFACES 19

be an invertible 0-module of rank 1 contained in 0*, the Z-dual of Θ with

respect to the trace. We define a Z-valued form E^ on the projective 0-

module Jl = Θ © 2T by

for (α,, ft) e 0 0 21.

Let «#* be the complex upper half plane. To a point z = fo, z2) € «*f2

= / χ / w e associate the embedding jSf,: K® K-+ V == C2 given by

(α, ]3) • ( α ^ + /3(1), tf(2)22 + /3(2)) ,

where x -> x{ί) (i = 1, 2) denote the two real embeddings of K. This em-

bedding determines a lattice S£Z(JC) in V. Transferring Z?* to SPt(Jl) by

Jδfβ and extending it 2?-linearly we obtain an i?-valued i?-bilinear form

Eji,z' VX V-+R. We easily compute that

for ζ = (d, ζ2), 3y = (ηu η2) e V. In particular

Ea§,(ii;>iv) = Es,.(ζ,η) and ^ f , ( i 9 , 7) = Σ (Im^-)"11^|2

Since EΛiZ is integral on ££z(Jt) it defines a Riemann form on V with

respect to <£z{Jί). In this way the complex torus V\££Z(JC) becomes a

polarized abelian surface A(z, Jί). Moreover, there is an injective homo-

morphism m: Θ —> End (A(2r, ^ ) ) given by

m(a): (ζu ζ2) > (a«K» ^(2)C2) , α e 0.

1.2. Suppose that Γ is a complex torus of dimension 2 and let m: Θ

-> End (Γ) be a homomorphism sending 1 to Id. Set V = Lie (T), Se =

HX(V,Z). Then T = V/J2P and m gives a complex linear action of Θ on

V under which J£? is stable. We have an eigen space decomposition of

V as V(1) Θ V(2) (dim V(ί) = 1) such that a e Θ acts on V(i) by multiplica-

tion with a(ί) C R. Since 0 is a Dedekind ring, we can find an isomorphism

φ of the projective 0-module <£? of rank 2 with Θ ® SI for some invertible

0-module 21 of rank 1. Choosing φ determines an isomorphism of 7 =

yα> 0 y(2) w i t h c Θ C such that (0, θ) e 0 Θ 21 ̂  if c V(1) Θ V(2) maps to

(βQ\β<»). Then (α, 0) maps to ( A ^ A ^ e C β C with well-defined ele-

ments zteC\R.

Replacing 21 by Λ2I replaces (z1? ^2) by (λωz19 λi2)z2), so we may assume

Z}9 Z2 G Jv.

https://doi.org/10.1017/S0027763000020080 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020080


20 G. VAN DER GEER AND K. UENO

Thus (zί9 z2) e JP2 and we get coordinates on V with Se = S£Z(Φ Θ 2ϊ)

as in 1.1. Hence the construction of 1.1 shows that T carries the struc-

ture of a polarized abelian variety with real multiplication by Φ; however,

this structure is not unique, but depends on the isomorphism φ.

1.3. Conversely, we assert that any polarization on T arises in the

manner described above for some φ. The Riemann form E:<£ χ"J2?->Z

extends to an alternating form E: Kx K-+Q and satisfies E(xl19 l2) =

E(lί9 xl2) for x e K. The set of x e K for which the form (ll912) -> E(xlu l2)

is Z-valued on S£ X JSP equals 2ϊ* for some ideal 21 C 0*. Then i? is iso-

morphic as an 0-module to Jί = 0 φ 21 in such a way that £J corresponds

to E^. The different p's with this property differ by the action of the

group

SL2(Θ, 21) = {(* ^ e SL2(K) α , 5 e 0, β e 2T, r e 2I"1} ,

and they lead to points ze^f2 differing by the action of SL2(Θ, 21) on

given by

(z z )

Thus an abelian variety A with multiplication by Θ and a given polari-

zation determines uniquely an invertible ^-module 21 c Θ* of rank 1 and

a point z e Jf2jSL2(Θ9 21). Hence the coarse moduli space for polarized

abelian surfaces with multiplication by Θ is the disjoint union of infinitely

many components J^2ISL2(Θ, 21), 2ί c 0* an invertible 0-module of rank 1.

Observe that the surfaces Jf2/SL2(Θ9 21) and ^2\SL2{Θ9 Λ2I) (λ e K, λ > 0

(totally positive)) are isomorphic via (zl9 z2) —> (λa)zl9 λ(2)z2) but this changes

the polarization of the corresponding abelian varieties. The coarse moduli

space of abelian varieties with multiplication by Θ (without specified

polarization) has h+ components, where h+ is the order of the group of

narrow ideal classes of Φ.

1.4. Consider an abelian surface A with period matrix Tf = (TD)9

where T is a complex symmetric 2 X 2 matrix whose imaginary part is

positive definite and D is a diagonal matrix diag (dl9 d2) with dt eN, dt\d2.

Suppose that A admits complex multiplication. This means that

MT = T'S
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ABELIAN SURFACES 21

for some MeGL(2,C), M<έZΊ2 and some SeM 4(Z)). The existence of

complex multiplication implies conditions on T, namely

TS^D-'T + DS22D~lT - TSn - DS21 = 0

where we have written S = (S^X^,^ with S1Ί e M2(Z). If we write T =

(Tl Tz), we get relations of the form:

OTJ + 6τ2 + cτ3 + d(τ\ — τ^) + e = 0,

where the coefficients a,b, , e are integers. We call such a relation

between the τt a. singular relation.

Principally polarized abelian surfaces whose period matrix Tr = (T, I2)

satisfies a singular relation, were studied by Humbert ([9]). He defined

Δ — b2 — 4ac — 4de as the invariant of a singular relation and proved that

Spt(Z) acts transitively on the set of singular relations with invariant Δ.

The invariant Δ is a positive integer which is congruent to 0 or 1 (mod 4).

1.5. Let Δ be the discriminant of a real quadratic field K and Θ the

ring of integers of K. In his thesis ([6]) Hecke showed that one may

embed J? X J?_ {tf _: lower half plane of C) into the Siegel half space

©2 in such a way that every point T in the image satisfies a singular

relation with invariant Δ and that the stabilizer in Sp£Z) of the image

of #F X 2tf _ is the symmetric Hubert modular group (the extension of

SL2{Θ) by the involution (zu z2) -+(—z2, —zj). The embedding is given by

where μu μ2 is an oriented basis of the inverse different 0* (i.e. μiλ)μi2)

μPμP = +V~Δ) and Tr γz = γ^z, + γ(2)z2. The map

(zl9 z2) > {J~Δzu

defines an equivalence between the action of SL2{Φ) on 3ti? X 3tf>_ and that

of SL2(Θ, β*) on jf \

If Θ has a unit of negative norm ε, then

(zu z2) > (ezu εfz2)

(assume ε > 0) identifies the action of SL2(Θ) o n J f X Jf_ with that on tf \

1.6. We consider a generalization of Hecke's idea. Let D be an

elementary divisor matrix,
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22 G. VAN DER GEER AND K. UENO

We denote by SpA(Z, D) the paramodular group

{(c d) 6 S P 4 ( Q ) ' ° ' '"'' ̂  6 Mm' α' & A D"1C> D'ldD

By a modular embedding of a Hubert modular group 71 into Sp4(Z, J5) we

mean a homomorphism

p : Γ >Sp4(Z,D)

and a holomorphic embedding

such that

i) ^(Γ) is contained in the stabilizer of

ii) Siegel modular forms yield Hubert modular forms by restriction

to p(3f2).

The concept of modular embedding was studied by Hammond, Freitag

and Schneider ([4], [3]).

1.7. We consider a special kind of modular embedding. For z — (zί9 z2)

6 tf2 we set z* = (ί1 5 ) . Similarly, for a e K we set a* = (^ a®\.* = (ί1 5)
Let B e GL(2, R). We define

by

and

ψB:Γ >SPi(Z,D)

by

If 71 = SL2(Φ) and 0 is the maximal order in K, then (jθs, φB) defines a

modular embedding if and only if BιBD is unimodular and Bά^B'1 is

integral for all a e Θ.
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1.8. Call two modular embeddings (pB, φB) and (pB,, <pB,) as in (1.9)

equivalent if B' = UB with UeSL2(Z) and DUD~ι e GL(2, Z). Freitag and

Schneider ([3]) have proved that the equivalence classes of such modular

embeddings of SL2{Θ) are in 1-1 correspondence with the decompositions

of the inverse different Θ* as p 2ί 83, where p > 0, and 21, S3 are fractional

ideals with S3 c Si such that 21/33 ^ Z\dxZ X Z/<22Z as an abelian group.

Here the decompositions Θ* = /> 2I S3 and 0* = /?αr2 α2I α93 are regarded

as equivalent. In particular, a modular embedding of this type of SL2(Φ)

in Sp,(Z) (i.e. with d, = d2 = 1) is possible only if Φ* = ^ 2ί2, <o > 0, i.e.

if (5* is a square in the narrow ideal class group. On the other hand,

there is always a modular embedding of SL2(Θ, Φ*) in Sp4(Z), namely the

one given by B = (θ\j)), where θl9 θ2 is a basis of (9* (this in fact holds

for any order Φ, not just the maximal order).

1.9. Let z e ^ and let Jί — Θ φ Si be a projective 0-module of rank

2. On the abelian surface A(z, Jί) we have the Riemann form E (see 1.1).

Then the polarization is given by the elementary divisors of the abelian

group 0*/8t = Z\dxZ X Z\d2Z\ in particular, A(z, Jί) has principal polari-

zation only for 21 = Φ*.

The action of SL2(Φ) on / X / . is equivalent with that of SL2(Φ, Φ*)

on 2tf\ If it is equivalent to that of SL2(Φ) on Jf2, then SL2{Θ) admits a

modular embedding in Sp4(Z), hence Θ* = pW. Conversely, if Θ* — pW,

then there is an equivalence between the actions of SL2(Φ) on jf? X Jf

and JP X Jf _ given by conjugating SL2(Θ) into SL2(0, (P*) by an element

£ J ) 6 GL2(K) with (c, d) = 21 (cf. Hammond [5]).

1.10. Let Γ be a congruence subgroup of SL2(Θ, 2ί). We define an

action of Jί = (P Θ 2T on ^ X C2 by

(*i, ^2; Ci, C2) • (z» z2;ζx + a^zx + β*\ ζ2 + a*% + β™) ((a, β)eΦ®W).

The Hubert modular group SL2(Θ, 21) acts on jf2 X C2 by

for (£ §
These two actions define an action of the semi-direct product Γ !K
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24 G. VAN DER GEER AND K. UENO

on ^ 2 X C2. It is properly discontinuous. Moreover, it is free if the

action of Γ on Jf2 is free. Let us assume this.

By taking the quotient we obtain a complex analytic family of abelian

surfaces with (real) multiplication by Θ. We shall write

or simply

for this family.

1.11. Let (p, φ) be a modular embedding of Γ into Sp4(Z, D). Assume

that p(Γ) is contained in the principal congruence group of level N of

Sp4(Z, JD), N > 3. Then (p, φ) defines a family of polarized abelian surfaces

over ^f2jΓ. Indeed the translations

© 2 X C 2 • © 2 X C 2

(r,0 ' >(τ,ζ + mτ + ή)

for m,neZ2 and the action of the paramodular group

(r, 0 — • ((AT + B)(Cτ + D)'\ ζ(Cτ + ΰ)"1)

for Cά; ^\ e Sp,(Z9 D) define an action of Sp£Z9 D) X Z 2 on ©2 x C\

The quotient ©2 X C2jΓ(N) X Z 2 (Γ(JV) the principal congruence sub-

group of Spt(Z, D) of level N > 3) is a family of polarized abelian surfaces

over (5JΓ(N). Its pull-back by means of p is a family over Jίf2/Γ. It

coincides with a family constructed as in 1.10 if the modular embedding

is as in 1.9.

§2. Toroidal embeddings

2.0. In this section we recall the notions from the theory of toroidal

embeddings (over C) which we need in the sequel. We refer to [10] and

[1] for the general theory.

2.1. Consider SΓ = Spec (C[Tl9 Tf\ --,Tn, T'1]) = Gn

m(C), the rc-di-

mensional complex algebraic torus. We write

M — Horn (Gn9 Gm) for the algebraic character group
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and N = Horn (Gm, G£) for the group of algebraic 1-parameter subgroups
of 9~. To each r e l w e can associate canonically a section 3£r e Γ(T, 0^).
There exists a natural pairing

< , > : M χ i V >Z

such that Xr(λ(t)) = *<r'» for all t e f.
We may view M and iV as dual free abelian groups of rank n.

2.2. We shall write «f as a product of its maximal compact torus
and N®R,

Identify N canonically with the fundamental group πx{T) of ^\ This
gives a canonical isomorphism of 9* with N®C/N. Then N®R/N lies
in ^ as the maximal compact torus and we have an isomorphism

N® C/N • (N®R)jN x (N®R) .

We denote by "ord" the projection J~-+N®R defined by taking the
imaginary part.

2.3. A convex rational polyhedral cone σ in MR = M® R (or in NR

= N ® R) is a set

σ = {xeMR (resp. NR) \ lt(x) > 0 i = 1, ••-,&},

where the /t denote linear forms defined over Q.

A rational partial polyhedral decomposition of NR consists of a col-
lection Σ = {σa} of convex rational polyhedral cones such that

i) no σa contains a linear subspace,
ii) for σa e Σ all faces of σa belong to Σ,

iii) the intersection of two different σjs is a face of both σa and σβ.
We define the dual cone σ of a convex rational polyhedral cone σ

in NR as

σ = {m e MRI <m, n) > 0 for all neσ}.

Then σ is a convex rational polyhedral cone in MR.

2.4. An (affine) torus embedding of ίΓ is an (aίίine) variety contain-
ing F as an open subset together with an action of F which extends
the action of ZΓ on itself given by the translations. To a semi-group
S C M we associate the subspace C[S] of Γ(9'9 Φr) generated by 36r, reS.
If S generates M as a group then C[S] c JΓĈ *, ̂ ) induces an affine torus

https://doi.org/10.1017/S0027763000020080 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020080


26 G. VAN DER GEER AND K. UENO

embedding ^ -> Spec (C[S]). This procedure yields all affine torus em-

beddings of ZΓ. Let a be a convex rational polyhedral cone in NR which

contains no linear subspace. Then σ defines a normal affine torus em-

bedding

X, = Spec (C[σ Π M]) .

If Σ = {σa} is a rational partial polyhedral decomposition of JVΛ, the torus

embeddings XOa can be glued together to form a normal torus embedding

3£Σ, which is locally of finite type.

There exists a bijection between the set of ^-orbits of XΣ and the

set of convex rational polyhedral cones. All elements v e N in the relative

interior σ° of σ determine the same limit v(0) — lim^o v(t). It is the unique

closed orbit O(σ) of %,. We have

dim a + dim O(σ) = dim T ,

σa C σβ if and only if Oa? c (Oσa)

2.5. A convex rational polyhedral cone in N® R is said to be regular

if it is the cone over a simplex in N<8)R whose vertices are part of a

Z-basis of N. A rational partial polyhedral decomposition Σ is said to

be regular if all σaeΣ are regular. If Σ is regular, then θ£ Σ is non-

singular.

A rational partial polyhedral decomposition is said to be protective

if there exists a convex real-valued function / on the convex hull of

[JσeΣ σ C NR such that

i) the restriction of / to σ is linear for every a e Σ,

iϊ) f is integral on ({JσeΣ σ) Π N9

iii) each cone σ eΣ can be defined by

where the λitO are linear forms on NR defined over Q.

If Σ is projective, the Γ(&σ, ^σ)-modules

(Lf)σ= 0 C-3E'
#;>/ on a

μβM

can be patched together to an invertible sheaf Lf on &Σ, and Lf is ample

if Σ is a finite set.
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§ 3. Compactification of Hubert modular surfaces

3.1. We review Hirzebrueh's resolution of the cusps of a Hubert

modular surface (cf. [7]).

Let N be a protective 0-module of rank 1, V a subgroup of finite

index of U+, the totally positive units of Φ, and let G(N, V) be the semi-

direct product

The module JV acts on tf2 by translations

(*i, Z2) > {Z, + μ*\ Z2 + μ<») , μβN.

The quotient J^2/N can be considered as an open subset of the algebraic

torus C2jN = 3Γ. We can identify the character group of 9* with the Z-

dual iV* of N and the group of 1-parameter subgroups of F with N. This

induces a pairing between N and N* which coincides with that given by

the trace.

We look for a rational partial polyhedral decomposition Σ of NR =

N<g)R which is invariant under the action of V, regular and such that

the convex hull of Σ coincides with the cone JV# of totally positive ele-

ments in NB.

Consider the convex hull of NR Π N in NR. Its boundary points can

be indexed by Z such that if Ak (keZ) are these points, Ak+1 > Ak.

Moreover, Ak and Ak+ί form a basis of N for each keZ.

The rational polyhedral decomposition Σ of N£ whose 1-simplices are

spanned by the Ak is a V-invariant regular decomposition of NR.

The torus embedding 9£'Σ thus found contains a partial smooth com-

pactification of Jf2jN. The exceptional divisor in it consists of an infinite

chain of non-singular rational curves Ck with Ck- Ck±1 = 1, C\ = — bk where

Ak_1 + Ak+ί = bkAk and CkCt = 0 otherwise.

The action of a generator ε of V is properly discontinuous and sends

Ck to Ck+r for some r. The exceptional divisor [Jk Ck projects down to a

cycle of r non-singular rational curves if r > 2 and to a rational curve

with an ordinary double point if r = 1. The quotient by V forms a partial

smooth compactification of Jf 2/G(N, V).

Since for each cusp x of Jf2/Γ, Γ a Hubert modular group, there exists

a neighbourhood of x in tf2\Γ isomorphic to W(d)lG{N, V), where W(d)
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28 G. VAN DER GEER AND K. UENO

= {(Zi> z2) e Jί?2\Im Zi lmZz > d > 0}, this procedure yields the resolution

of all cusps of «5f 2\Γ. Moreover, since all bk > 2 it is the minimal resolu-

tion of these cusps.

3.2. The Hirzebruch decomposition described above is not projective

with respect to the function

p(y) = min Tr vy
v£N*
v>0

on NR = iV(x) R. Here y = (yu y2) axe coordinates in NR derived from those

in Jf2: (i.e. (yu y2) = ordfo, z2)) and Tr uy — viί)yί + v(2)y2. Since for each

pair Ak_ly Ak there exists a Vk e N* such that Tr VkAk_λ = Tr VkAk = 1, p

is linear on each cone. Using this one easily verifies that p satisfies the

conditions i) and ii) of projectivity stated in (2.5). But p satisfies iii)

only if bk > 2 for all k, because p is linear on the cone spanned by Ak_t

and Afc+1 if Ak.u Ak9 Afc+1 are collinear, i.e. bk = 2 (cf. [1], p. 305).

Removing the 1-simplices of the Hirzebruch decomposition spanned

by those Ak for which bk — 2 yields a new (but no longer regular) de-

composition which we call the cuspidal decomposition. Its cones are the

maximal cones on which p is linear.

3.3. From the results of Baily-Borel ([2]) it follows that the cusp forms

of sufficiently large weight with respect to a Hubert modular group Γ

define an embedding of <#?2jΓ as an open subset of a projective variety.

Let us suppose that Γ acts freely on J?2. Denote by Smjn the C-vector

space of cusp forms for Γ of weight (m, n), i.e. satisfying

If S is the minimal smooth compactification of J4?2\Γ and Ks its canonical

divisor class then S2m>2m can be identified with H°(S, Θ(mKs + (m — 1)Z>)),

where D is the divisor ΣCk consisting of all curves occurring in the cusp

resolutions with multiplicity 1.

Remark. The identification of S2m>2m with H°(S, Θ(mKs + (m - ΐ)D))

allows us to compute dimS2 m,2 m. Assume for simplicity that Γ operates

freely. Then it follows from Hirzebruch's formulae that if
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K% = 2vol(^2IΓ) + Σ (2 - b{)
i = l

and

K(K + D) = 0.

From dim ίΓ(S, Θ(mKs + (m — 1)D) = 0 it follows by the Riemann-Roch-

Hirzebruch formula that

dim S2m,2m = (m2 - m) vol (^T/Γ) + χ(S, 0s)

this is Shimizu's formula in our case. Note that we use the volume form

(Im zί Im z2y
2dzι A dz: A dz2 A dz2 .

§ 4. A non-singular compactification of stf°

4.1. Let 21 and $8 be two projective (^-modules of rank 1, and let V

be a group of units preserving 21. We consider the algebraic torus SΓ

σ\% x c2/S3

which contains tff 2/2ί X C2/S3 as an open subset. We assume 2ί c S3. The

character group of F can be identified with 93 X 21. We look for a ra-

tional polyhedral decomposition Σ of 21̂  X 83Λ which satisfies

i) the projection of each cone in 21̂  X 83̂  onto 21̂  is contained in

a cone in 2ί£;

ii) the decomposition is invariant under

in) it is

(χ> y) —

(χ,y)-

regular.

->(εx

->(x,

,*y)

y +
>
ax) ,

εe

ae

V,

Θ;

4.2. We begin by assuming that 21 = S3. Let <*e2ί+. Consider the

quadratic form on 2ί* associated to a: Tr ξ2a (ξ e 21*). The map

α > Tr f 2α:

extends R+-linearly to a map

where ^ 2 is the cone of positive semi-definite quadratic forms. Similarly,

we may define Qβ by associating to a e 2ί£ the form Tr ξ2aβ for β e K with
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β% c G* and β > 0. After choosing coordinates in ^ 2 and a basis {uί9 u2}
of 2ί* we can write Qβ as

/Tr u\βx Tr u.uφxλ
\Tr w^βx Tr MJJSΛ: / '

Changing the basis of 2ϊ* induces on ^ 2 an action

X —

by UeGL(2,Z).

The coordinates ^ of

satisfy a linear relation of the form

aηt + bη2 + cη3 = 0

with integral coefficients. Equivalently, X satisfies a relation

EX - XιE = 0

with # e M2(Z). The number J = b2 - 4αc = (Tr Ef - 4 det E is invariant
under the action of GL(2, Z) Π D~1GL(2, Z)Z) and equals the discriminant
of the 0-module Si*:

det(< *Q\

4.3. Let us assume that β3I = nθ*, neN.
A rational polyhedral decomposition of ^ 2 which is invariant under

GL(2, Z) can be defined by equations

EX - 1 ^ = 0

with invariant 1 for its 2-cells. The function

7] min

is linear on each cone and satisfies the conditions in 2.3. This decom-
position coincides with the central cone decomposition of Igusa and
Namikawa's Delaunay-Voronoi decomposition (cf. [13]).
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4.4. By means of Qβ the decomposition of ^ 2 induces a decomposi-

tion on 2ϊfl. In general it does not coincide with the Hirzebruch decom-

position of %R. Obviously, the function

Σ min Tr ξ2βx
ί = α(mod2)

is linear on the cones of this decomposition.

4.5. EXAMPLE. Let p = 89, K = QU~p) We consider the map

>\rSτwεQjpZ T r ej-pz)

corresponding to a modular embedding of SL2(Θ) in Sp^Z). A comparison

of the cone decompositions of Θ% and ^ 2 yields the following picture (here

w = (1 — V§9)/2, ε0 = 500 + 53Λ/89). Here we represent ^ 2 modulo scalars.

On the image of j4?2 given by ηt + η2 — 22̂ 3 = 0 a number of consecutive

rays of the Hirzebruch decomposition are marked.

/1444 342\
\ 342 81)

'441 105\
105 25;

(1 0'

lo o

Fig. 1

4.6. Remark. Let p = (2a — I)2 + 4 be a prime and let

_ 2a- 1 +

be the fundamental unit of Q(Λ/P). Consider the map ΦR -> ^ 2 given by
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T r , T r

where w = (1 + </p)/2 Then the Hirzebruch decomposition coincides with

the induced one.

4.7. Consider now the rational polyhedral decomposition Σx of ^ 2

whose 2-cells are defined by the equations EX - XΈ = 0 (Xeίί2) with
invariant 1. Let σ be the polyhedral cone spanned by

1 "I)(I ΰ C ?) I)-
It is well-known that any polyhedral cone σ' in Σt has a form MσιM for
certain Me GL(2, Z). Let G(σ) be the subgroup of GL(2, Z) which leaves σ
invariant. The group G(σ) is a finite group and consists of twelve matrices.

l I) • 4Λ J) • <l -ί) •

The group G(σ) induces the automorphism group Aut (σ) of a and Aut (a)
is isomorphic to the symmetric group Si of degree 3. Let M be one of
the above twelve matrices and let us consider the action of M on R2 given
by y »-> yΛf. Then it is easy to see that the triangulation of R2 in Fig. 2
is invariant by this action where the vertices of triangles are the lattice
points Z2 in R\

Now using the map Qβ, from the polyhedral decomposition Σx of #2,
we obtain a decomposition of %%. Let J'̂  be the minimal refinement of
this decomposition which is regular and assume that its 1-dimensional
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cones are spanned by Bk, keZ, with B& > B^. For a generator ε of the

unit group V which preserve 21, we may assume

εB0 = Bt, I > 1 .

Moreover we may assume that Bo lies on a boundary of the polyhedral

cone σ spanned by

G X D •»» ( J
Let σ1? <72, , σm be polyhedral cones in Σx which intersect the segment

Qβ(BQBt) in # 2 . Let .B̂ .,, J5A2, , Bkm, Bt be all the points which lie on the

boundaries of these cones and Lt the common boundary of σt and σi+1,

where we put σ0 = σ and σm+ι is the polyhedral cone which contains the

segment Qβ{Bβ^x). (see Fig. 3)

Fig. 3

We fix Mt e GL(2, Z), i = 1, 2, , m + 1 so that M^t

 ιMt = σt^ and the

action of Mt on Lt is trivial.

4.8. Now we construct a polyhedral decomposition of 21̂  X S3Λ. First

assume that Qβ{B^) and Qβ(Bi+ί) lie in the cone σ. Then we can write

'<>=< SMS ? M J "ϊ) - f " + 1

with integers λi9 λι+ί9 μi9 μf+u vi9 vί+ί.
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Put x = sBf + tBi+l9 s,t>0. We define a decomposition of x X S3Λ

by giving it on a fundamental domain for the translations. We indicate

an example in Fig. 4. Since it is obvious from this example how to treat

the general case, we refrain from giving the equations for it.

(μk + vk)t)

- vkt)

Fig. 4

(In this example λk^ = 3, /£fc_, = 2, i^.j = 2, ^ = 4, //fc = 2, vfc = 1) .

Next if Qβ(Bτ) and Qβ(Bί+ί) lie in σl9 then by the choice of M,e

GL(2,Z) in 4.7, M&^BtfM, and M&^B^YM, lie in σ.

For x = sJB* + tBi+ί we have a decomposition of x X S3Λ by means of

MjQ^B^M, and M.Q^B^YM,. We then let Mr 1 act on ί8R: y ^ / M " 1 and

obtain the required decomposition of x X S3Λ. Since Mx acts on Lj trivially,

the induced decompositions of Bkl X S3Λ given by τkl^ X S3Λ and τfcl X S3Λ

coincide, where r̂  is the cone of SΓJ spanned by B^ and B i + 1. Next if

Qβ(Bi) and Qβ(Bί+1) lie in <r2, then by the choice of M2 e GL(2, Z) in 4.7,

M2Q
β(BτyM2 and M2Q

β(Bί+iyM2 lie in σ2. Hence we can apply the above

method. In this way, by induction we obtain a polyhedral cone decom-
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positions of r ; X S3Λ, where τ5 is the polyhedral cone of 2ί̂  spanned by

Bj and Bj+l9 and we can glue together the decompositions of τk X S3Λ and

τk+1 X 83 .̂ We repeat the process until k = I — 1. Then, using the action

of the unit group V, we obtain a decomposition of 2ί# X S3Λ. We need

to check that this decomposition is well-defined. For that purpose, it is

enough to show that the induced decomposition ε (J30 X 33Λ) by the action

of the unit e and the decomposition Bt X S3Λ coincide. (Note that Bt =

a JB0, See 4.7.) From the definition of Mi9 i = 1, 2, , m + 1 and the de-

composition of x X 83 ,̂ the decomposition of I?! X 33Λ, is obtained by the

decomposition of R2 given in Fig. 4 by means of M = MXMZ Mm+ί.

(Note that Mm+1 acts trivially on Lm+1). On the other hand by the modular

imbedding, the unit ε defines an element φ(ε) 6 GL(2, Z) and the action of

e on ^ 2 is given by X^> φ(ε)Xtφ(ε). As Mσm^M = σ and φ(ε)σtφ(ε) = σn+u

we have M~1φ(ε) e G(σ). Since the decomposition of R2 given in Fig. 2 is

invariant by the action of M~^φ{ε), the decomposition ε{B0 X S3Λ) and Bt

X S3Λ coincide. Thus we obtain a polyhedral decomposition of 2Γ̂  X S3#

which satisfies i), ii) and iii) in 4.1.

4.9. In paragraphs 4.3-4.8 we constructed a decomposition of 21̂  X

Ϊ8R under the assumption that β% = nΘ* and S3 = 0.

First note that by changing 21, if necessary, we may assume β — 1.

So in the general case we have 21 c 93 C 0* and we then proceed as

follows.

For x 6 2Iβ let Tr f2x be the associated quadratic form on S3*. The

metric on $5% induced by this quadratic form can be used to define poly-

hedral decompositions of S3̂  and 93Λ (cf. [11] and [13]). We say that a

set of elements of 83* {at}ieI spans a Delαunαy cell D(at) with respect to

x if there exists a γ e Ϊ8% such that

= U € S3* ds(r, η) = min
£633*£633*

These cells define a polyhedral decomposition of 33*> by bounded cells,

each of which has a finite number of faces. This is the Delaunay de-

composition of S3*>.

The ΉuaΓ decomposition of S3Λ is obtained by associating to each

Delaunay cell D{a^) the Voronoi cell

Ma ) = ly e ®R'Tr ( ( ? + α* ) 2* + (ξ + ady) - T r i Φ + a*
I Vf 6 S3*, Vi e I
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This decomposition, which is invariant under translations

y—>y + 2ξx (£eS3*),

is called the Voronoi decomposition.

Define an equivalence relation on 3ί£ by x —- x' if the Delaunay de-

compositions of S8% defined by x and xf coincide. The closure of an

equivalence class in 2ί£ is an unbounded polyhedral cone in 21 .̂ We

obtain a polyhedral decomposition Σ of 3Ϊ#. The equivalence

Tr (ξ(ξ + 2adx + ξy) > 0 φ=> Tr (ξ(ξ + 2a, + p)x + ξ(y - px)) > 0

implies that the Voronoi decomposition associated to

Tr ((£ + a)2x + (ξ + a)y) with a e |-93*/S3*

is the translation over a half period of the Voronoi decomposition as-

sociated to Tr (ξ2x + ξy). The superposition of the Voronoi decompositions

associated to Tr ((? + άfx + (ξ + a)y) for all a e JS3*/S* is a subdivision

of the Voronoi decomposition (see Fig. 5).

Fig. 5

4.10. Now we define several decompositions of 2ϊj£ X 83Λ. The mixed

decomposition is the decomposition of %% X Ϊ8R which induces Σ on Sl£

and on x X S3Λ the Voronoi decomposition defined by x e 2Γ£.

The half period decomposition is the subdivision of the mixed decom-

position obtained by translating in each fibre x X Ϊ8R the Voronoi decom-

position over the half periods. It is the maximal decomposition of 2Γ£ X

$8Λ on whose cones the four functions
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/, = min Tr ((£ + pfx + (ζ + p)y) p e 193*/93*
£€33*

are linear. This decomposition is not regular but satisfies conditions i)
and ii) of 4.1. We now show how to make it regular. We start by con-
structing in a minimal way a refinement Σ of Σ which is regular and

such that the image of every 2-dimensional cone of Σ under Qβ is con-

tained in a fundamental domain for the action of the image of the unit

group V in GL(2, Z).

Suppose that Au A2 e 21+ span a 2-dimensional cone of Σ. Then Ax

and A2 belong to the same equivalence class in 2i#. Consequently, there

exist elements bu b2 e S3 such that the Voronoi cell containing (0, 0) defined

by At (ί = 1, 2) is the convex hull of the points

{±λA, ±μA, ±Vi(bt + b2)} (λt, μi9 v% 6 Z) .

So the Voronoi cell containing (0,0) e S3Λ defined by x — sAλ + tA2

(s, teR) is the convex hull of the points

{±(sλι + tλdK ±(βft + tμ2)b2, ±(sv1 + tv2){bx + b2)}.

Translating the Voronoi decomposition over the half periods yields a sub-

division as in Fig. 5. Choose a fundamental domain 3t in ^ 2 f° r the

action of the group V consisting of transforms under GL(2, Z) of a fixed

cone of ΣA. Fix for the cones of Σ whose image under Qβ lies in £d a

choice of bx and 62. Having fixed bx and b2 we can apply the division

process explained in 4.8 (cf. Fig. 3) to the shaded domain in Fig. 5 and

by covering S3Λ by its translates. We get a polyhedral decomposition

of %iR, which we call a regular Voronoi decomposition w.r.t. x = sAi

+ tA2. Note that it depends on a choice of bx and b2 for the cones of

Σ contained in this fundamental domain. However, in the following we

shall assume that we have made such a choice and simply speak of the

regular Voronoi decomposition w.r.t. x. By an inductive process as in

4.8 we now can construct a decomposition of 2i£ X %5R which satisfies the

requirements of 4.1. We call it the regular half period decomposition.

Note that this decomposition is different from the one constructed in

4.7-4.8.

4.11. To the mixed decomposition (resp. the half period decomposition,

resp. the regular half period decomposition) we associate a torus embed-

ding containing Jf 2/ST X C2/93 which we denote by ^(St, S3) (resp. ^(St, S3),
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#j(Sί, 83)). It is a scheme which is locally of finite type. We refer to

[13] for a description of the fibres of Xx($l, 93) -> <̂ (2T), where ^(2ί) is the

2-dimensional torus embedding defined by Σ. The fibres of .3 (̂21, 93) -*

<̂ (2I) (resp. «Tέ(2l, S3) -> #(2ί), where #(2Ϊ) corresponds to ϊ) over limit

points lim^o ta (a e 2ί£) in ^(Sί) (resp. #(2ϊ)) are infinite unions of rational

surfaces. The dual graph of such a fibre is given by the decomposition

o f α X 58R.

If ε is a totally positive unit preserving 21 and 93, then the action

of ε on # X C2 extends to a well-defined action of ε on #Ί(8ί, 93) and

< (̂2l) (resp. Xtfjl, 93) and < (̂2ί), #έ(2ί, 93) and #(2T)) which is equivariant

with respect to the projection X1(% 93) -> < (̂2ϊ) (resp. 5^(21, 93) -> < (̂2ϊ),

^(2ί, 93)-> #(Sί)) and discontinuous on the closure of W(d)χC2,

4.12. Let Γ be a principal congruence group of SLJβ, 930 which acts

freely on Jf2, where 93' is a protective 0-module of rank 1. Consider the

action of Γ on / 2 X C2 as defined in 1.10. Let s denote a cusp and let

peSL2(K) with ps = oo. The stabilizer JΓTO of oo in pΓp'1 is the semi-

direct product G(V, 2ί) of an 0-modulo 21 and a group F of units preserv-

ing 2T. Let ^ / y 1 = SL2(Θ, %'&2) for some ideal © and set » = gS7©2. Then

21 c 93 and we may assume 93 C Φ*. There exists a /"^-invariant neigh-

bourhood W = W(d) = {(zl9 z2) e 3>f21 Im zx Im z2 > d} of oo such that when-

ever (z, ζ), (2̂ , ζf)eWx C2 and ^ e pΓp'1 the equation ^fe ζ) = (z\ ζ') implies

7* e JΓOO. The product 2ί X Ϊ8 acts on f χ C 2 and we have the inclusions

W X C2/2ί x 93 c je2 x C2/2ΐ x 93 c C2/2ί X C2/93 .

Hence by the theory of torus embeddings each of the rational polyhedral

decompositions of 2ί£ X 93Λ considered in 4.10 yields an embedding

W X C2/2T X 93 c 3Γ(8r, 93) («" = Xx, X± or # έ )

which is equivariant with respect to the action of V. By gluing J^2 X

C2\Γ X 93r with «r(2T,93) over Wx C2/G(V,W) X 58 and carrying out this

construction for all cusps we obtain a fibre space &(Γ, Jt) (Jt — Θ φ 58',

X = Xl9 Xi9 3t£) over a compactified Hubert modular surface (which we

denote by S(Γ) if X = Xx or .T^ and by S(Γ) if X = rh).

Following Namikawa we call each of these fibre spaces a family of

semi-universal coverings.

Next we define an action of 0 on the fibres of X(Γ, Jί). The action
of ae(9 on Jf2 XC2
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(*i, *«; Ci, Q > {z» z2; ζ, + a^zί9 ζ2 + a^z2)

is compatible with the action of Γ X 2ί on ̂ f2 X C2 and induces an action

of a on Jf2 X C2/Γ x S37 and thus on I f x C2/ST x S3. It extends to an

action on ^(Sί, S3) and on #^(Sί, S3), which is equivariant with respect to

the action of V. In this way we obtain an action of Φ on ^^(Γ, Jί) and

on &%(Γ, Jί) and one easily shows that it is properly discontinuous and

fixed point free. By taking the quotient we obtain families

>S(Γ)

and

π:Jh{Γ,Jί) >S(Γ)

of so-called stable quasi-abelian surfaces. Note that s$£Γ,Jί) and S(Γ)

are non-singular.

In case S£ = #Ί we proceed differently. We assume that Γ is a prin-

cipal congruence subgroup of SL2(Φ, SO of level 2ί C S3 with (2) | Sί. Con-

sider the surjection

je2 x c 2 -^> ^ x c 2 — > ^2/sί x c2/S3,

where Ψ(z; ζ) = (z/2, ζ). The action of G on tf2 X C2 defines an action of

G on the torus embedding #\(Sl, S3) which contains ^f 2/2ί X C2/S3. It is

properly discontinuous and fixpoint free.

By taking the quotient we obtain another family

lΓ,Jί) >S(Γ)

of stable quasi-abelian surfaces.

§ 5. Simple connectedness of stf

5.1. THEOREM. The analytic fibre spaces of stable quasi-abelian sur-

faces s/ = ^ ( Γ , Jί\ £h(Γ, Jί) and (2)^1(Γ, Jί) (with Jί = G Θ S3', Γ c

SL2(Θ, SO) are simply-connected.

Proof. Let Z7i, , £7n be (suitable) neighbourhoods of the connected

components of ^ — J^ 0. Choose base points ptes/ — jtf°, pt e [/<. Denote

by Kt the kernel of TΓXC/J Π ̂ °9pt) -> Ki(Ui,pt). By Van Kampen's theorem
0, p)/iV, where iV is the smallest normal subgroup of Γ X Jί

https://doi.org/10.1017/S0027763000020080 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020080


40 G. VAN DER GEER AND K. UENO

which contains Ki9 i = 1, , n. Now let s be a cusp and let p e SL2(K)

with ps = oo. Set Γ^ = pΓsp~\ and let Ts be the translation subgroup

of Γoo. Then pΓsp~ι = G(V,2l) for some 21 (cf. 3.1) and we construct a

torus embedding ^(Sί, 33) as in 4.9. Let U be the interior of the closure

of W(d)β X C2/33 in iT(SΪ, S3), where W(d) = {(zl9 z2) e ^ 2 | I m ^ I m ^ > d)

for sufficiently large d. Then U is simply-connected. Hence N contains

p'XTs X ίS)p9 in particular N contains p~ιTsρ for all s. But then, by a

theorem of Vaserstein (cf. [16]), JV contains Γ. By specializing 5 = oo

(resp. s = 0) we see that N contains

( 0{((o
(resp. l ^ 1 J), (a 0 ) ) e Γ κ l S3"1, α e

Consequently, iV contains P K

§6. Holomorphic forms on sf

In this section we consider the relation between holomorphic forms

on J / and Hubert modular forms.

6.1. Let us consider a modular embedding of a Hubert modular group

SL2(Θ) where 0 is the integer ring of a totally real number field of degree

72. For a subgroup Γ C SL2(Θ) which operates properly discontinuously

and freely on jf n

9 we have an action of G = Γ K (Z2 n X X Z2n) on

2tfn X C2W such that the quotient manifold s/°(m) = 3fn X C2m/G is a

smooth family of m-fold products of ra-dimensional polarized abelian

varieties over S° = ^n\Γ. By Sku...,kn we denote the space of Hubert

modular cusp forms of type (ku , kn). Suppose that kt > 2. Then, to

each fe SΛlf...fΛn and subsets Nj9 j = 1, 2, , m, of {1, , ή} satisfying kt

—2 = #{JV, I i e iV,}, we can associate a ^-invariant holomorphic d-form ώ/

on jen X Cnm defined by

ώ, = / f e , , zn)dzx Λ -ΛdznΛ dζ%\ Λ Λ d C ί ΰ ,

where

d = n + Σ ^
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Then ώf is G-invariant, hence defines a holomorphic d-form ωf on s

Note that any Hubert modular form of type (kl9 , kn) is a cusp

form, if kl9 - - -, kn are not the same.

PROPOSITION 1. The form ωf can be extended to a holomorphic d-

form on s/(m), where π: s/(m) —> S is any non-singular compactίficatίon of

πo:^°(m)-+S°.

Proof It is enough to show that ωf can be extended to a holomorphic

form on a non-singular compactification j/(m). Therefore, we may assume

that π:s/(m)—>S is constructed by means of toroidal embeddings ([14]).

Then, for any point q e s/(m) — <szf°(m), there is a neighbourhood V (resp.

U) of q in s/(m) (resp. π(q) in S) with π(V) = 17 and local coordinates

{uu u29 - - , ι/TO} in U, {υ19 υ29 , f(m+i)n} in V such that on *S0 and <$f°(m)

we have

ut = exp 2

vj = Π ul* Π
k = l k, I

where aik e R, ajk9 β(β e Z. Moreover, the morphism π is given by

(6.1) Ut =
 ( 7 Γ ^

where j^/s are non-negative integers. Then, in these coordinates, dzx Λ

• Λ dzg A dζ%\ A - - Λ dζJ5£ is expressed in a form

τ — LΛ ^kf kd-n 11 / x 11 >
ι = u i z uki

where Ckl...kd_n's are constant. Note that, by (6.1),

n d—n /"7τi

Π dut A Π — l i -

is holomorphic on V. Since / is a cusp form,

f n d-n
r v Ch...kd_n Π cίu, Λ Π

is holomorphic on V. Q.E.D.

Remark. From the above proof, it is clear that if / is not a cusp

form, ωf can no£ be extended to a holomorphic form.
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The converse of the proposition is also valid. First we prove

PROPOSITION 2. Let ω = Σ fiA*i A dζ{}\ Λ Λ dζ{j% be a G-invariant

holomorphic d-form on Jfn X Cmn. If d < n, then ω = 0. If n < d <

(m + ϊ)n, then we have

<o = Σ gjdz, A - Λ dzn A d&l A Λ dζ™ ,

where J = (Jί9 , J m ), each Jt is an ordered subset of {1, 2, , n},

— d — n and gj is a Hilbert modular form of type (ku k2, , fem) with

Proof. For simplicity we assume that m = 1. The other case can

be treated similarly and is left to the reader. We write

By a linear change of the coordinates (&, , ζg), we can assume that

the group G acts on ^ n X Cn in the form

ζ, = (ceo*, + dw)-1^ + Λ , + βω) .

Consider now the translations

C, •« = C, + α(0«* + i8(<)

on the fibres. Since ω is G-invariant, for the minimal value e = |/ | of |/ |

with fu Φ 0, we have fπ(z, ζ) = fu(z9 ζ% Hence, fu with |/ | = e is con-

stant along fibres. If e < n, for fVJ, with | I ' | = e + 1, we obtain

fi'Λ*, CO == Λvfe 0 +Σm

where mj^ ^ 0 if / c JP, J 7 C J. In particular dfVJ,\Ki is invariant under

the translations, hence constant along the fibres. Since fvr is invariant

under translation ζt —• ζέ + f̂}, it follows that /7/j/ is constant along the

fibres. Hence, we have

(6.2) Σ mijfu = 0 .
|/|=e

The invariance of ω under G implies

(6.3) fu{γ{z, 0) = Π (c(i% + dvytMfjΛz, ζ)
i l
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where e^I, J) = 2 #{I|ie/} + #{J|£e J}. Hence from (6.2) we infer that

fu = 0, if e < n and \J\ ΦO. Hence, by induction, we arrive at the case

e = noτe = d<n. Then by (6.3), fu is a Hubert modular form of type

(e^I, J), , en(I, J)). It is well-known that if et = 0 for some ί, there is

no non-zero Hubert modular form of type (el9 , en). Q.E.D.

By Propositions 1, 2 and the remark, we obtain

THEOREM. Let s/(m) be any non-singular compactification of j

Then we have

|Ό , if d< n or d> (m + ΐ)n ,

ifn<d<(m + ΐ)n9

where the sum is taken over all n-tuples (ku , kn) of integers satisfying

COROLLARY. Set s(kί9 , kn) = dim SΛlf...ϊΛn. Then the arithmetic genus

), 0^(m)) can 6e expressed as follows.

§{7. The arithmetic genus of <$/

We shall consider the fibre space ft: s&\{Γ', ^ ) —> S(Γ) more carefully

and compute its arithmetic genus. In this section we use the notations

s/ = Jh{Γ9 Jί\ S = S(Γ), π = π:^-+S.

7.1. Since π: stf -> S is flat, the dualising sheaf ω W 5 of π is isomorphic

to KA ® π^Kg1, where Kx denotes the canonical bundle of a complex

manifold X.

LEMMA 1. = π*(L) where L is an invertίble sheaf on S.

The proof is based on an explicit calculation of K^ by means of the

non-singular compactification π: stf -> S given in § 4. The calculation is

left to the reader. One can also use Proposition 1 in 6.1.

Let Θj be the structure sheaf of J/ .

LEMMA 2. The sheaf is locally free for each k>0.
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Proof. For each point s e S, the fibre As = π'^s) is reduced and

Gorenstein. The dualising sheaf ωAs is isomorphic to ω^/s ® ΘAs = ΘAs by

virtue of the above lemma. As As is reduced, we have

h\As, ΘJ = 1

h2(As, ΘAs) = h\As,ωA) = 1 .

By the invariance of the Euler characteristic under flat deformations we

obtain hι(A,, ΘAs) = 2. Q.E.D.

Remark We can directly calculate H\AS, (9As) as follows. For each

point s e S — J^2/Γ, the structure of As can be seen from the cell decom-

position x X S3Λ given in 4.7 and 4.8 and the action of 0 on this cell

decomposition. Identify x X 83̂  with R2 and 0 with Z2. Then the de-

composition gives a cell decomposition of a real torus T2 = R2/Z2. To

each 2-cell there corresponds an irreducible component of As and to each

1-cell there corresponds an intersection curve of two components. More-

over from this decomposition we infer that each irreducible component

is a non-singular rational surface and each intersection curve is a non-

singular rational curve. As was stated in 4.12, to the decomposition of

33̂  ĉ  R2 there corresponds a fibre Xs of the semi-universal covering

&(Γ, Jί) —> S over s. Then As is the quotient of Xs by the action of 0

>̂ Z2. (Note that the action is free.) Let us introduce an orientation

on each cell in R2 and write Za for the manifold corresponding to a cell

σ. Then we have a resolution of the constant sheaf ZXs on Xs

e zZσ-^> e zZΐ-^ e zZv—>o
σ, 2-cell τ , 1-cell v, 0-cell

by constant sheaves where c* is induced from the normalization'of Xs and

ψjc is given by

Hence we have an exact sequence

0 > 0X s > ® 0,. - ^ > ® ̂ r ^ % Θ (PΓ, • 0.

Dividing by the action of Θ, we obtain an exact sequence

0 >(pAι > 0 φSt > 0 φZτ • 0 oZv

d d d
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Since Zv is a non-singular rational variety for any cell η, we have HP(ZV,

d)Zi}) = 0, p > 1. From the exact sequence we have isomorphisms

H\An ΘA) ~ H\{® H°(Z,9 ΘZη)})

= H\{® CJ)

H%R2IZ\ C) = C© , ί = 0,1, 2 .

Moreover, since Hι(Zη9 Z) = 0 we have an isomorphism

£P(Af, Z) (g) C - H\A,, ΘA) .

This will be used later.

7.2. Let us consider the action of Γ c SL2(0, S3') (cf. 4.12). On

X C2 defined by

#!>* x c 2 > ̂  X C 2

(D O>

for (a P\ e Γ. Then Γ acts freely on Jf2 X C2 and the quotient space

Jf2 X C2/Γ with canonical projection to S° = ^f2/Γ defines a vector bundle

of rank 2 over S°. This bundle can be extended to S as a holomorphic

vector bundle.

To see this, let us recall briefly the compactification S = S(Γ, Jl) of

S°. The isotropy group of Γ at a cusp τ of S° has the form

(See 3.1). For a positive integer d, put W(d) = {(zl9 z2) e Jf21 Im ̂  Im <ε2

> d}. Then for a sufficiently large d, W(d)IG(N, V) U {τ} is an open

neighbourhood of the cusp τ of the Satake compactification of S°. The

quotient space W(d)/N is an open set of (C*)2. Using the cone decom-

position Σ of NR which is a refinement of the Hirzebruch decomposition

given in 3.1, we construct a torus embedding WΣ of (C*)2. Let &(d) be

the interior of the closure W(d)/N in 2£Σ. Then V operates freely on

and &(d)/V gives a desingularization of the cusp τ.

Now we extend our vector bundle to &(d)jV. Since we have W(d)
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X c2jN = W(d)/N X C\ this is the trivial bundle over W(d)IN. Hence

it can be extended to &(d) as the trivial bundle &(d) X C2. The group

V operates on &(d) X C2 such that the action is the natural extension

of that on W(d) X C2. The quotient %{d) X C2/V is a vector bundle over

&(d)IV. In this way we obtain the vector bundle VΓ over S which is

the extension of tf2 X C2/Γ over S° =

LEMMA 3. There is a natural isomorphism Kic^O* ̂ > 08{VΓ).

Proof. First we construct an isomorphism over S°. Put

It is easy to see that ωl9 ω2 define a trivialization of the sheaf Rιπ^Θ^Q on

Jf2 where π: s?°-+ tf2 is the pull back of τr°: J / ° - > S ° , ^° = π^S0) over

Jf2. We have

V
Since J R ^ ^ ^ ^ O is canonically isomorphic to Rπ^Θ^jΓ, there is a natural

isomorphism

Next, let us consider an open set &{d)jV described above. On 2£(d)

we have a family φ: sέ' —• « (̂ci) of semi-stable abelian varieties such that

s/'/V-* £ir(d)IV is the restriction of our family TΓ: si -> S on ar(d)IV. By

the remark given in 7.1, we have a natural isomorphism

Z (x) ̂ c ^
zz

where <F(d)c = ^ ( d ) - W(d)/G, φ-ι{X{dY) = <*?„ φc = φ\<x?c. Now Rψ%Z

is trivial on &(d)c and V acts on it by multiplication by (ε(1)~\ ε ( 2 r l ), εe V.

This means that there is a natural isomorphism

in a neighbourhood Z) of &(d)cjV in S. It is easy to see that ψt and ψ2

are compatible on (&(d)IV) ΓΊ S°. Q.E.D.

Let N be the normal bundle of o(S) in A where o: S -+ A is the zero

section. It is easy to check that the vector bundle N is isomorphic to

VΓ. Hence we have
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COROLLARY. Rιπ*ΦJ, =t <98(N).

From this corollary we obtain

COROLLARY. Let sΰ* be the analytic group scheme over S defined by

the exact sequence

0 > Rπ*Z > Rπ*Θ^ > Θs(stf\) • 0

where Θs{sf^ is the sheaf of germs of locally holomorphic sections of <s/*.

If Γ admits a modular embedding into Sp^Z) then s/^\s0 = ^° and si* is

a dense open subset of s/. In general, π*: <srf%* -> S° is a family of dual

abelίan varieties of π: J/° -* S°.

7.3. Let us consider actions of Γ on J4?2 X C defined by

2 x c —> / x c
α> Φ

„ ,„

where (a ζ) 6 A a n d £ = 1, 2. The quotient spaces of Jf2 X C by these

actions are complex line bundles L^} on S°. By an argument similar to

the one used above, L^ can be extended to S as a complex line bundle

Lt. From the definition of VΓ we have VΓ = Lx φ L2.

By an argument as used in the proof of Lemma 3, we can prove the

following lemma.

LEMMA 4. There is a natural isomorphism

On the other hand, by the Grothendieck duality for the morphism π,

^/s is dual to R2πtβ^ Hence we have

COROLLARY. The line bundle L in Lemma 1 is dual to Λ2 VΓ.

Remark. The vector space H°(S, (Λ2 V^)®m) - H°(S, L®m) is the vector

space of modular forms of type (m, m).

LEMMA 5. The spectral sequence

Etq = HP(S, Rqπ*ΘJ = Φ HP+Q(J/, s/J)

degenerates at E2-terms.
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Proof, Define, on a regular fibre of π: si -> S, the multiplication by

a positive integer m. This gives a morphism m: s/° —> s/° and a mero-

morphic mapping of si. By a succession of blowing ups with non-singular

centres, we obtain a morphism m!\ sif -+s/. Since Rkψ^Θ^ = 0 for k > 1

and ψxΘ** = Θ^ for the morphism ψ : J / ' — • J/ , there is a canonical iso-

morphism Rqπ^Θ^ ^ Rqπ*Θ^) where π' = πoφ. The morphism m' induces

an endomorphism of Rqπ^Θ^, which is multiplication by mq. The morphism

m' induces an endomorphism of the spectral sequence such that it com-

mutes with d£'q and on Eξ*q it is multiplication by mq. Hence d2 must

be zero. Q.E.D.

PROPOSITION. We have the following isomorphisms:

H\S, Rπ

Proof By Lemma 5, we have

hp(s/, ΦJ = Σ dim H^'iS, R'π^Θj .

ίί2(S, Rπ^Θj is dual to ίίo(S, Ks ® (Λ1;:^^ J v ) . By the definition of L,, it

is easy to see that H\S, Ks ® L;1) (resp. H°(S, Ks ® L2-
χ)) is the space of

modular forms of type (3, 2) (resp. type (2, 3)). Hence by Theorem in 6.3,

h°(S, Ks ® (Kπ*08γ) = A V , ^ 3 J - h%Λ?, ΘJ. Thus E^'2 = 0. This proves

the first three isomorphisms. On the other hand, since si is simply con-

nected we have h1^, ΘJ) = 0. Q.E.D.

COROLLARY. HP(S, R'π^ΘJ = 0 for p < 1.

Now let us compute the arithmetic genus χ(j/, ΘJ). By the above

spectral sequence, we have

J) = Σ ( - l ) p + 9 dim Eξ>*

= χ(S, 08) - χ(S, &π*OJ + χ(S, R2π*Θj

By the Hirzebruch Riemann-Roch theorem, we have

χ(S, VΓ) = Ud + c2) + te c T O + iVfeί^)2 - 2c2(Fr)) ,

^(L-1)) = | L (L + ΛΓS) + χ(S, &J ,
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where clf c2 are the Chern classes of S. Since VΓ is isomorphic to Lx ®

L2, VΓ satisfies the condition of Mumford's theorem on the Hirzebruch

proportionality principle in the non-compact case ([12], p. 262). Indeed,

VΓ corresponds to Θpi(ΐ) φ ΘPx(l) over P1 X P1 which is the compact dual

of Jf2. Hence c^Vpf — 2c2(VΓ). Moreover, by Corollary to Lemma 4,

Ci( VΓ) -c1 = L Ks. Hence we have

χ « ΦJ) = 2χ(S, Θs) - m + c2) + \U = \U ,

since χ(S, (5S) = ^(c j + c2). On the other hand, H°(S, L~m) is the vector

space of modular forms of type (m, m). Hence, by the Riemann-Roch

theorem, we have

i-L2 = lim i/ι°(SL-w)
2 m

Moreover, it is easy to see that

lim -\h°(S, L~n) = lim -\ dim S
m>m

where Sm>m is the space of cusp forms of type (m, m). By Shimizu's

dimension formula (see the remark in 3.3) we obtain

THEOREM. χ(j/, ΘJ) = vol (Jf2/Γ), where we use the volume form

_ 1 _ _ ft dz, A dz± Qn ^ 2

4(2ττ)2 <-i ( I m 0 j 2

Remark. Such a theorem also holds for elliptic modular surfaces.

One can obtain a similar result from Shioda's formula for the invariants

of elliptic modular surface ([15]) in that case.

§ 8. On the number of sections of s/(Γ, Jί)

The aim of this section is to prove that the families of abelian sur-

faces constructed in 1.10 and 1.11 admit only finitely many holomorphic

sections.

8.1. Let φ\st ->ir = jf/G be a family of abelian varieties over the

curve "Γ obtained from the action of G X Jt {Jί a lattice in C") on /

X Cn. We assume that G is an arithmetic subgroup of SL2(R) which
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acts properly discontinuously and freely on $P such that Ψ* = Jf/G is

compact Then Rcφ%Θsί (k > 0) is a locally free sheaf on "Γ. We claim:

rank R\r, Rφ*Z) = 2 dim ff(jr, KφJΰJ) .

We give a proof without appealing to the theory of vector valued dif-

ferential forms.

Consider the two exact sequences

( * ) 0 • φ*Ω^/r • Rφ^C ® 0r > Kφ*0, • 0

and

0 >Rψifi > Rφ*C® Θr-^+ Ωι

r®

where V is the Gauss-Manin connection. Since dim V = 1, Ω\. ® Rφ*C

= 0 and we get

o — > H%r, Rφ*c) — > B\r, Rφ*c ® or) —
0r) • Ή\r, Rφ*C ® Ωx

r)

Now Rφ*C is locally constant and self-dual (use the Riemann form),

hence under duality this sequence goes over into itself. In order to prove

our claim we must show

dim (image H°(rr9 Ω
ι

r ® Rφ*C) • H\ry Rφ*C)) =

and

dim (image H\T, Rφ*C) > H1^, Rφ*C ® 0r)) = dim H1

But by duality the two statements are equivalent. We shall prove the

first. It is not difficult to show that i ϊ o (^, Rφ*Θr) = 0. Consequently,

we obtain from (*)

0 > H\r, φ*Ω^r) • Ή\r, Rφ*C ® Θr) > 0

0 > H\iT, φ^lr) • H\r, Rφ*C ® Θr) > H\r, Rφ*Φj > 0 .

Hence

dim H\-T9 Rφ*C ® Ωι

r) - dim H\-r, Rφ*C ® 0r)

= dim ίΓC^, Rφ*C ® ^ ) - dim i ϊ o (^, ̂ ^β1 ,̂̂ -)

= dim ίΓ0r, ^^^i^) + dim f Γ ^ , Rφ*ΦJ - dim

= dim
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since dim H\Ψ~, φ*Ωι^r) = dim # ° ( ^ , (φ*Ω),ιr)
v ® Ω\) and by a local com-

putation (φ^Ωlflr)
v 0 Ωλ

r = ^ 4 2 ^ . From this our claim follows.

Now let J / # be the group scheme associated to φ\<srf' -+ir. Denote

by J / # the dual of s/*. Then we have an exact sequence

0 > Rφ*Z > Rφ*®^ > Θ(J*) > 0 .

Since W(f9 Rφ*@J = 0, we get

0 • H\i J

Consider the usual exact sequence

0 > Z > Θ^ > (9% > 0 .

The homomorphism H1^, Rφ%Z) -> Hι(Ϋ~, RφJBJ) is the restriction of the

homomorphism H2(sf, Z) -> H\sέ, ΘJ) (induced by this short exact sequence)

to the part of the cohomology on which multiplication by m in the fibre

induces multiplication by m. As is well-known, H2(s/,Z) generates

iJ 2 (y, ΘJ) over R. Hence, since dim H2(sf, ΘJ = dim H\i^, Rφ*OJ) =

2 rank fΓ(τr, Rφ*Z), it follows that H\ir, (9{J*)) has to be finite. Using

the dual family, it follows that H0(*r, Θ{^)) is also finite. We have thus

proved:

PROPOSITION. The fibre space φ\<srf ->Ψ" of abelίan varieties over Ψ*

= Jίf/G possesses only finitely many holomorphic sections.

8.2. Assume now that Γ is again a Hubert modular group of a real

quadratic field K without elements of finite order. Let π: <s/(Γ, J%) -> S(Γ)

be any toroidal compactifiaction of π°: sf\Γ, Jί) -> 2tf2/Γ, a family of abelian

surfaces with real multiplication, obtained from the action of Γ X Jί on

2tf2 X C2. The image of f̂2 under the period map ̂ f2 -> ©2 intersects in-

finitely many subvarieties of ©2 given by singular relations (see 1.4).

These intersections determine curves which are given in ^ 2 by equations

of the form:

α*A + $Pzx + β(2)z2 + γ = 0 (a,γeZ, βeK) .

These curves (or their quotients under J^2 —> J^2/Γ) are just the curves

"FN" studied by Hirzebruch (cf. [8]). There are infinitely many curves

FN which are compact in 34?2IΓ, and they lie dense in ̂ ίf2jΓ. Each compact

curve is the quotient of JP by a unit group Γx of an order in a division
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quaternion algebra. Let st\ be the identity component of the group

scheme associated to si.

THEOREM. Let Γ be a congruence subgroup of the Hίlbert modular

group SL2(Θ, a) and let π: si -> S be a toroidal compactificatίon of a family

of abelίan surfaces si° = Jf2 X C2/Γ X Jί. Then H\tf2\F, <9(s/l)) is finite.

Proof. We may assume that Γ is a principal congruence subgroup.

Then π°: jtf°-+ 2jΓ carries a level S3 structure (S3 an ideal). Let σ be a

section of si\3^JΓ1. Pull it back to tf XC2. Since it is of finite order it

is of the form az + β, a, β e K and (aβ){γ'1) 6 0 Θ α for all γ e Γx. Since

7- = 1 (mod 6) it follows that N(6)σ = 0. Since H\^2jΓ, Φ(s/t)) is finitely

generated, this proves the Theorem, for N(%ί)σ vanishes on a dense subset

of J^2/Γ for all sections a.

Remark. If Γ is the principal congruence subgroup of level St in

SL2(Θ, S3) then the 2V(2Ϊ)2 2ί-section points define sections of s/° that can

be extended to the toroidal compactification defined in § 4 and these give

all sections of sί\.

Remark. By applying a similar reasoning to families of abelian sur-

faces over &2IΓ(m), where Γ(m) is the level m congruence group of

SpXZ, D), we obtain an analogous theorem in this case.

8.3. Let Γ be a congruence subgroup of a Hubert modular group

which acts freely on Jf2 and denote the family of stable abelian varieties

for Γ constructed in section 4 by π:s/->S. We then have the exact

sequence

0 > Rιπ*Z > Kπ+0, > (P(J/J) • 0 ,

where sί\ is the identity component of the dual group scheme of si. It

gives rise to the exact sequence

> H\S, Kn*0,) > H\S, 0(JJ*)) • H\S,

In section 6 we proved that dim H\S9 Rιπ*Θj) = 0. This implies that

ίΓ(S, <D(sfl)) is a discrete ^-module. To each element η e IP(S, <D(s/D) given

by the cocycle {ηtj} on the covering {C7J of S we associate the analytic

fibre space obtained by gluing s/\U{ and sί\Όj over Ut Π U3 by means of

the translation in the fibre given by ηi3. The analytic space s/* thus
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obtained depends up to isomorphism only on the cohomology class of {ηi3).

An element aeΦ determines a holomorphic map ψa: s/η —> J / " 7 . From

this it follows that if η is of finite order then Av is an algebraic fourfold.

We can also prove the converse. It is therefore of some interest to

determine the structure of H\S>
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