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FAMILIES OF ABELIAN SURFACES WITH REAL
MULTIPLICATION OVER HILBERT
MODULAR SURFACES

G. VAN DER GEER anp K. UENO

§0. Introduction

Around the beginning of this century G. Humbert ([9]) made a detailed
study of the properties of compact complex surfaces which can be para-
metrized by singular abelian functions. A surface parametrized by singular
abelian functions is the image under a holomorphic map of a singular
abelian surface (i.e. an abelian surface whose endomorphism ring is larger
than the ring of rational integers). Humbert showed that the periods of
a singular abelian surface satisfy a quadratic relation with integral co-
efficients and he constructed an invariant D of such a relation with
respect to the action of the integral symplectic group on the periods. A
few years later Hecke ([6]) made the connection with real quadratic fields
by showing that the quotient of s X s#_ (the product of the complex
upper and lower half plane) by the action of the symmetric Hilbert
modular group of the field Q(v D) is the moduli space of singular abelian
surfaces whose periods satisfy a relation with invariant D. The Hilbert
modular surfaces have attracted new attention since Hirzebruch succeeded
in resolving their singularities ([7]). This has resulted in a detailed knowl-
edge of the geometry of these surfaces.

On the other hand, Mumford c.s. developed a compactification theory
based on toroidal embeddings and this theory is an effective tool for the
study of the degeneration of abelian varieties. Namikawa applied it to
the quotient of the Siegel upper half space by the integral symplectic
group to obtain a new compactification of this quotient and constructed
degenerating abelian varieties over the compactified quotient. These
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recent developments have motivated us to study complex analytic families
of abelian surfaces over Hilbert modular surfaces.

The composition of this paper is as follows. After having explained
the meaning of the Hilbert modular surfaces as moduli spaces of abelian
surfaces in section 1, we recall in section 2 some notions from the theory
of torus embeddings and we describe Hirzebruch’s resolution of the cusps
of Hilbert modular surfaces in section 3. Section 4 is devoted to the con-
struction of two compactifications, &/, and «7;, of a (universal) family of
polarised abelian surfaces over a Hilbert modular surface. Here we assume
that the reader has some acquaintance with the construction of degen-
erating abelian varieties by means of toroidal embeddings (cf. Mumford
[11] or Namikawa [13]). The first compactification &/, (the half period
compactification) is singular; it seems to be the right compactification for
the study of the degeneration of singular Kummer surfaces. For the con-
struction of a non-singular compactification </, we are indebted to Y.
Namikawa, who suggested to us the division process as explained in 4.8.
In section 5 we prove that &/; and 7, are simply connected. Holomorphic
differential forms on a toroidal compactification are described in section
6. In section 7 we express the arithmetic genus of such a compactifica-
tion in terms of the volume of the Hilbert modular surface. In the last
section we give a proof for the fact that a certain family of abelian varieties
over a (compact) curve has only finitely many holomorphic sections and
we apply it to obtain the number of sections of &/, and <7,.

The authors would like to express their gratitude to Y. Namikawa
for communicating to them the idea on which the non-singular compacti-
fication is based. They also want to thank D. Zagier for some useful
comments during the preparation of this paper.

Notation

0*: dual order of ¢ with respect to the Trace. x—x® (I =1,2)
denotes the two real embeddings of an element x of a real quadratic field.
If V,® YV, is an eigen decomposition of a vector space V such that x¢ @
acts on V, by multiplication with x®, then Tr xv = x®v, + x®v, for v =
(v, vy).

§1. Abelian surfaces with real multiplication

1.1. Let 0 be a maximal order in a real quadratic field K and let %
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be an invertible 0-module of rank 1 contained in ¢*, the Z-dual of ¢ with

respect to the trace. We define a Z-valued form E, on the projective 0-
module .Z = 0 DU by

E (e, .31), (0, B) = TrKIQ (1B, — )
for (o, B)e ODYU.
Let s be the complex upper half plane. To a point z = (2, 2,) € #*
= J# X # we associate the embedding Z,: K® K — V = C? given by

(0(, ‘3) _ > (6\6(1)21 4 ‘3(1)’ 0((2)2'2 + 13(2)) s

where x — x% (i = 1, 2) denote the two real embeddings of K. This em-
bedding determines a lattice Z,(#) in V. Transferring E, to Z,(4) by
%, and extending it R-linearly we obtain an R-valued R-bilinear form
E,.: VX V-—>R. We easily compute that

BadCr) = 3 (m 2" Tm (7))

for £ = (¢, &), = (g, ) € V. In particular
Ej,z(i(:’ ”7) = EJ,z(C’ 77) and Ex,z(i% 7) = Z (Im zj)—1 |77f|2 .

Since E,, is integral on .Z,(#) it defines a Riemann form on V with
respect to Z,(#). In this way the complex torus V/Z,(#) becomes a
polarized abelian surface A(z, #). Moreover, there is an injective homo-
morphism m: 0 — End (A(z, .#)) given by

m(a): (&, &) —> (@, a®y) , aed.

1.2, Suppose that T is a complex torus of dimension 2 and let m: @
— End (T') be a homomorphism sending 1 to Id. Set V = Lie(T), & =
H(V,Z). Then T = V/% and m gives a complex linear action of @ on
V under which # is stable. We have an eigen space decomposition of
Vas VOO V® (dim V¥ = 1) such that ¢ e @ acts on V® by multiplica-
tion with a® C R. Since 0 is a Dedekind ring, we can find an isomorphism
¢ of the projective ¢-module % of rank 2 with @ ® % for some invertible
0-module U of rank 1. Choosing ¢ determines an isomorphism of V =
VO P V® with C® C such that (0,8)e 0P U = L C VYDV maps to
B, ®). Then («, 0) maps to (a®z, a®z,)e C® C with well-defined ele-
ments 2z, € C\R.

Replacing U by AU replaces (2, 2,) by (1%z,, 1¥2,), so we may assume
2,2, €H.
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Thus (2, 2,) € #? and we get coordinates on V with & = £,(0® Y)
as in 1.1. Hence the construction of 1.1 shows that T carries the struc-
ture of a polarized abelian variety with real multiplication by @; however,
this structure is not unique, but depends on the isomorphism ¢.

1.3. Conversely, we assert that any polarization on T arises in the
manner described above for some ¢. The Riemann form E: ¥ X ¥ —Z
extends to an alternating form E: K X K— Q and satisfies E(xl, l,) =
E(l, xl,) for xe€ K. The set of xe K for which the form (I, 1) — E(xl, )
is Z-valued on £ X & equals U* for some ideal A < ¢0*. Then £ is iso-
morphic as an @-module to A4 = 0 P YU in such a way that E corresponds
to E,. The different ¢’s with this property differ by the action of the
group

SL(0, %) = {(‘;‘ (’;) c SLZ(K)Ia, 50, Bed, re 21-1} ,

and they lead to points z e s#* differing by the action of SL,(0, %) on #*
given by

a®z, + BY a®z, 4+ 13(2))

(zly 22)———9( %) 1 ° 2 2
7 zl+5() T()zz+5()

Thus an abelian variety A with multiplication by ¢ and a given polari-
zation determines uniquely an invertible @-module % C @0* of rank 1 and
a point ze #?/SL(0,%). Hence the coarse moduli space for polarized
abelian surfaces with multiplication by @ is the disjoint union of infinitely
many components #%/SL,(0, %), A C O* an invertible ¢-module of rank 1.

Observe that the surfaces #%/SL,(0,A) and #2/SL,(0, 2A) A€ K, 21> 0
(totally positive)) are isomorphic via (z,, 2,) — (A%z,, 1?2,) but this changes
the polarization of the corresponding abelian varieties. The coarse moduli
space of abelian varieties with multiplication by @ (without specified
polarization) has A* components, where h* is the order of the group of

narrow ideal classes of 0.

1.4. Consider an abelian surface A with period matrix 7" = (TD),
where T is a complex symmetric 2 X 2 matrix whose imaginary part is
positive definite and D is a diagonal matrix diag (d,, d,) with d, e N, d,|d,.

Suppose that A admits complex multiplication. This means that

MT" =TS
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for some Me GL(2,C), M ¢ Z-1, and some Se M(Z)). The existence of
complex multiplication implies conditions on T, namely

TS, DT + DS,D'T — TS,, — DS, =0
where we have written S = (S,)),<;,;<; With S;; € M(Z). If we write T =

(:‘ :2), we get relations of the form:
2 3

ar, + br, + ¢ty + d(if — 7)) + e =0,

where the coefficients @, b, ---, e are integers. We call such a relation
between the 7, a singular relation.

Principally polarized abelian surfaces whose period matrix 77 = (T, I,)
satisfies a singular relation, were studied by Humbert ([9]). He defined
4 = b* — 4ac — 4de as the invariant of a singular relation and proved that
Sp(Z) acts transitively on the set of singular relations with invariant 4.
The invariant 4 is a positive integer which is congruent to 0 or 1 (mod 4).

1.5. Let 4 be the discriminant of a real quadratic field K and O the
ring of integers of K. In his thesis ([6]) Hecke showed that one may
embed # X #_ (#_: lower half plane of C) into the Siegel half space
©, in such a way that every point 7T in the image satisfies a singular
relation with invariant 4 and that the stabilizer in Sp,(Z) of the image
of # X o#_ is the symmetric Hilbert modular group (the extension of
SL,(0) by the involution (z, 2,) — (—2,, —2,)). The embedding is given by

1 <Tr gV Az Trppy Zz)
N A \Trpp/ 4z Trpvdz

where g, ¢, is an oriented basis of the inverse different 0* (i.e. pVp® —
P = +4/4) and Tryz = y2, + y®2z,. The map

(21, 2) —> («/ZZ,, - \/Zzz)

(2, 2) —>

defines an equivalence between the action of SL,(0?) on s X s/ _ and that
of SL,(0, 0*%) on #*.
If © has a unit of negative norm ¢, then

(21: 22) —_—> (521, 5,22)

(assume ¢ > 0) identifies the action of SL,(0) on # X s _ with that on 2

1.6. We consider a generalization of Hecke’s idea. Let D be an
elementary divisor matrix,
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o d1 0 d
D—(O d2>’ dl] 2 dieN'

We denote by Sp,(Z, D) the paramodular group

{(“ 2) ¢ Sp(@|a, -, d e M{Q), a, bD, D~'c, D'dD ¢ MZ(Z)} .
c

By a modular embedding of a Hilbert modular group I” into Sp.(Z, D) we
mean a homomorphism

p: I'—> Sp4(Z9 D)
and a holomorphic embedding
P — &

such that

i) ¢o(I") is contained in the stabilizer of p(#?),

ii) Siegel modular forms yield Hilbert modular forms by restriction
to p(A#?).

The concept of modular embedding was studied by Hammond, Freitag
and Schneider ([4], [3]).

1.7. We consider a special kind of modular embedding. For z = (z,, z,)

0

(1)
e A* we set z¥ = (g‘ 22). Similarly, for « € K we set a* = (g ag).

Let Be GL(2, R). We define

05 K —> &
by
ps(2) = Bz*‘B
and
vp: ' —> Sp(Z, D)
by

oy D=0 5)(e 50 3)
\r o 0 B-'/\s* &/\0 B/’
If ' = SL(0) and 0@ is the maximal order in K, then (pg ¢;) defines a

modular embedding if and only if B‘BD is unimodular and Ba*B-! is
integral for all « € 0.
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1.8. Call two modular embeddings (oz ¢;) and (o, ¢r) as in (1.9)
equivalent if B’ = UB with Ue SL(Z) and DUD ' e GL(2, Z). Freitag and
Schneider ([3]) have proved that the equivalence classes of such modular
embeddings of SL,(®) are in 1-1 correspondence with the decompositions
of the inverse different 0* as p-%-9B, where p > 0, and ¥, B are fractional
ideals with B C % such that %/B = Z/d,Z X Z|d,Z as an abelian group.
Here the decompositions 0* = p-U-B and O* = pa™*-a¥-aB are regarded
as equivalent. In particular, a modular embedding of this type of SL,(®)
in Sp(Z) (i.e. with d, = d, = 1) is possible only if 0* = p-U% p > 0, i.e.
if 0* is a square in the narrow ideal class group. On the other hand,
there is always a modular embedding of SL,0d, 0*) in Sp,(Z), namely the
one given by B = (6{"), where 6,0, is a basis of ¢* (this in fact holds
for any order @, not just the maximal order).

1.9. Let ze #” and let 4 = 0 ® U be a projective O-module of rank
2. On the abelian surface A(z, #) we have the Riemann form E (see 1.1).
Then the polarization is given by the elementary divisors of the abelian
group O/ = Z|d,Z X Z|d,Z; in particular, A(z, #) has principal polari-
zation only for U = O*.

The action of SL,(0) on s# X s _ is equivalent with that of SL,(0, 0¥)
on 2. If it is equivalent to that of SL,(0) on s, then SL,(0) admits a
modular embedding in Sp(Z), hence 0* = p%*. Conversely, if 0% = pU?,
then there is an equivalence between the actions of SL,(0) on s# X #
and 5 X s _ given by conjugating SL,(O) into SL,(0, 0*) by an element

(g 3) € GL(K) with (¢, d) = % (cf. Hammond [5]).

1.10. Let I' be a congruence subgroup of SL,(0,%). We define an
action of # = 0@ YU on #* X C* by

(21,258, 8) —> (2, 25 & + a®z, + B8Y, L + a®z, + .3(2)) (o, /9) el0DdY).
The Hilbert modular group SL 0, %) acts on #* X C* by

(21, 22381, &)

[¢Y) [¢)) @) (@)
(:mj i gﬂ) ’ (;ej i §<2> P 102+ 07, (% + 5(2))_{2)
1 2

for (;‘f g) e SLL(0, %0).

These two actions define an action of the semi-direct product I" X 4
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on % X C° It is properly discontinuous. Moreover, it is free if the
action of I' on #* is free. Let us assume this.

By taking the quotient we obtain a complex analytic family of abelian
surfaces with (real) multiplication by ¢. We shall write

n: LN, M) —> H#T
or simply
r: A —> A
for this family.

1.11. Let (o, ) be a modular embedding of I" into Sp,(Z, D). Assume
that p(I") is contained in the principal congruence group of level N of
Sp(Z, D), N> 3. Then (p, ) defines a family of polarized abelian surfaces
over »#*/I'. Indeed the translations

G XC'— G, XC*
w w

(7,0 =@+ mr+n)
for m, n e Z* and the action of the paramodular group

(7, Q) —>((Ar + B)(Cr + D)7, {(Cr + D))

for (‘é B) € 5p2, D) define an action of Sp(Z, D) X Z* on & X C*

The quotient &, X C*I'(N) X Z* (I'(IV) the principal congruence sub-
group of Sp,(Z, D) of level N > 3) is a family of polarized abelian surfaces
over &,/'(N). Its pull-back by means of p is a family over s#*I'. It
coincides with a family constructed as in 1.10 if the modular embedding
is as in 1.9.

§2. Toroidal embeddings

2.0. In this section we recall the notions from the theory of toroidal
embeddings (over C) which we need in the sequel. We refer to [10] and
[1] for the general theory.

2.1. Consider J = Spec (C[T,, T7%, ---,T,, T;') = G*(C), the n-di-
mensional complex algebraic torus. We write

M = Hom (G2, G,) for the algebraic character group
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and N = Hom (G, G*) for the group of algebraic 1-parameter subgroups
of 7. To each re M we can associate canonically a section X" e I'(T, 0,).
There exists a natural pairing

(S MXN—>2Z

such that X7(A(¢)) = ¢~ for all te J.
We may view M and N as dual free abelian groups of rank n.

2.2. We shall write J as a product of its maximal compact torus
and NQ R,

Identify N canonically with the fundamental group #,(7) of . This
gives a canonical isomorphism of 7 with N® C/N. Then N® R/N lies
in J as the maximal compact torus and we have an isomorphism

N®CIN—> (NQR)/IN X (N®R) .

We denote by ‘‘ord” the projection J — N® R defined by taking the
imaginary part.

2.3. A convex rational polyhedral cone ¢ in Mr = M@ R (or in Ny
= NQ®R) is a set

g ={xeMy (resp. Np)|l(x)>0i=1,---,k},

where the [/, denote linear forms defined over Q.

A rational partial polyhedral decomposition of Ny consists of a col-
lection 3 = {g,} of convex rational polyhedral cones such that

i) no g, contains a linear subspace,

ii) for ¢,€ 2 all faces of ¢, belong to X,

iii) the intersection of two different ¢,’s is a face of both ¢, and g,.

We define the dual cone ¢ of a convex rational polyhedral cone ¢
in N as

6 ={meMgp|{m,ny >0 for all nea}.
Then ¢ is a convex rational polyhedral cone in Mj.

2.4. An (affine) torus embedding of J is an (affine) variety contain-
ing J as an open subset together with an action of J which extends
the action of J on itself given by the translations. To a semi-group
S C M we associate the subspace C[S] of I'(, 0,) generated by X7, re S.
If S generates M as a group then C[S] C I'(Z, 0,) induces an affine torus
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embedding J — Spec (C[S]). This procedure yields all affine torus em-
beddings of 9. Let ¢ be a convex rational polyhedral cone in N which

contains no linear subspace. Then ¢ defines a normal affine torus em-
bedding

&, = Spec (C[6 N M]) .

If ¥ = {o,} is a rational partial polyhedral decomposition of Ng, the torus
embeddings Z',, can be glued together to form a normal torus embedding
Z 5, which is locally of finite type.

There exists a bijection between the set of J -orbits of X; and the
set of convex rational polyhedral cones. All elements v € N in the relative
interior ¢° of ¢ determine the same limit v(0) = lim,_,v(f). It is the unique
closed orbit O(s) of &,. We have

dime¢ + dim O(¢) = dim T,

6, C g, if and only if O’ c (O")

2.5. A convex rational polyhedral cone in N ® R is said to be regular
if it is the cone over a simplex in N® R whose vertices are part of a
Z-basis of N. A rational partial polyhedral decomposition 5 is said to
be regular if all ¢, are regular. If ¥ is regular, then Z'; is non-
singular.

A rational partial polyhedral decomposition is said to be projective
if there exists a convex real-valued function f on the convex hullof
Uses ¢ © Ng such that

i) the restriction of f to ¢ is linear for every e,

ii) f is integral on (U,ez0) N N,

iii) each cone ¢e€2 can be defined by

0'={!J€N3lf(y) = li,a(”)’ i= .- kv}

where the 2,, are linear forms on Ny defined over Q.
If ¥ is projective, the I'(Z,, @,,)-modules

Ly, = @ C-x

p>fone
HEM

can be patched together to an invertible sheaf L, on &'y, and L, is ample
if 3 is a finite set.

https://doi.org/10.1017/50027763000020080 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020080

ABELIAN SURFACES 27

§3. Compactification of Hilbert modular surfaces

3.1. We review Hirzebruch’s resolution of the cusps of a Hilbert
modular surface (cf. [7]).

Let N be a projective ¢0-module of rank 1, V a subgroup of finite
index of U,, the totally positive units of ¢, and let G(IN, V) be the semi-
direct product

(5 7)esmeo

€€ V,,ueN}.

The module N acts on s by translations
(zl, zZ) —> (Zl + ,u(l); 22 + #(2)) B ﬂ € N .

The quotient s#*/N can be considered as an open subsst of the algebraic
torus C*/N = 9. We can identify the character group of 7 with the Z-
dual N* of N and the group of 1-parameter subgroups of  with N. This
induces a pairing between N and N* which coincides with that given by
the trace.

We look for a rational partial polyhedral decomposition X of N =
N ® R which is invariant under the action of V, regular and such that
the convex hull of X coincides with the cone N} of totally positive ele-
ments in Ng.

Consider the convex hull of Nj N N in N;. Its boundary points can
be indexed by Z such that if A, (keZ) are these points, A.,, > A;.
Moreover, A, and A,,, form a basis of N for each k¢ Z.

The rational polyhedral decomposition 3 of N} whose 1-simplices are
spanned by the A, is a V-invariant regular decomposition of Nj.

The torus embedding % ; thus found contains a partial smooth com-
pactification of #2/N. The exceptional divisor in it consists of an infinite
chain of non-singular rational curves C, with C,-C,,, = 1, C} = —b, where
A, + A, =0bA, and C,-C, = 0 otherwise,.

The action of a generator ¢ of V is properly discontinuous and sends
C, to C,,, for some r. The exceptional divisor |, C, projects down to a
cycle of r non-singular rational curves if r > 2 and to a rational curve
with an ordinary double point if r = 1. The quotient by V forms a partial
smooth compactification of #*/G(N, V).

Since for each cusp x of #%/I", I" a Hilbert modular group, there exists
a neighbourhood of x in s#*/I" isomorphic to W(d)/G(N, V), where W(d)
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= {(z, 2)) e #*|Im 2,-Im 2, > d > 0}, this procedure yields the resolution
of all cusps of #*/". Moreover, since all b, > 2 it is the minimal resolu-
tion of these cusps.

3.2. The Hirzebruch decomposition described above is not projective
with respect to the function

o(y) = ngvrg Tryy
v»0

on N, = N® R. Here y = (v, ¥,) are coordinates in N derived from those
in % (i.e. (y,y,) = ord (2, 2,)) and Tryy = v®y, + v®y, Since for each
pair A,_;, A, there exists a V, e N¥ such that Tr V,.A, ,=Tr V.4, =1,p
is linear on each cone. Using this one easily verifies that p satisfies the
conditions i) and ii) of projectivity stated in (2.5). But p satisfies iii)
only if b, > 2 for all %, because p is linear on the cone spanned by A4,_,
and A,., if A,_,, A,, A,,, are collinear, i.e. b, = 2 (cf. [1], p. 305).

Removing the 1-simplices of the Hirzebruch decomposition spanned
by those A, for which b, = 2 yields a new (but no longer regular) de-
composition which we call the cuspidal decomposition. Its cones are the
maximal cones on which p is linear.

3.3. From the results of Baily-Borel ([2]) it follows that the cusp forms
of sufficiently large weight with respect to a Hilbert modular group I"
define an embedding of #*/" as an open subset of a projective variety.

Let us suppose that I" acts freely on s#%. Denote by S,, , the C-vector
space of cusp forms for I' of weight (m, n), i.e. satisfying

[¢)) 2 b(l) ) (@) . Ny -
f(‘clm: —I_{—_ an’ (clm? —_][—_ 2(2>) = (V2 + dO)™(c®z + dO)(f(z, 2)) -
1 2

If S is the minimal smooth compactification of #?/I" and K its canonical
divisor class then S,, .. can be identified with H(S, O(mKg + (m — 1)D)),
where D is the divisor JC; consisting of all curves occurring in the cusp
resolutions with multiplicity 1.

Remark. The identification of S,,., with H(S, O0(mK; + (m — 1)D))
allows us to compute dim S,,, ;,. Assume for simplicity that I" operates
freely. Then it follows from Hirzebruch’s formulae that if

D=3C, Ci=-b
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t — 2vol (#I) + 312 — b))
i=1
and
KK+D)=0.

From dim H'(S, O(mKs + (m — 1)D) = 0 it follows by the Riemann-Roch-
Hirzebruch formula that

dim S;;,,5r = (m* — m) vol (#*[I") + (S, Oy) ;

this is Shimizu’s formula in our case. Note that we use the volume form

—El—? (Im z,Im 2,)"%dz, /\ dz, N\ dz, )\ dZ, .
T

§4. A non-singular compactification of .«/°

4.1. Let ¥ and B be two projective 0-modules of rank 1, and let V
be a group of units preserving 2. We consider the algebraic torus J°

CHU X C*[B

which contains #?/% X C*/% as an open subset. We assume % C 8. The
character group of J can be identified with 8 X 2. We look for a ra-
tional polyhedral decomposition 2 of U} X B which satisfies

i) the projection of each cone in U; X By onto A is contained in
a cone in Uj;

ii) the decomposition is invariant under

(x9y)__’)(ex7 ey)’ € V9
(x,y)%(x,y*‘“x), O(E@;

iii) it is regular.

4.2. We begin by assuming that % = B. Let acU*. Consider the
quadratic form on 2* associated to a:Tr &« (6 e ¥*). The map

a—> Tr &«
extends R*-linearly to a map
QU —%,,

where %, is the cone of positive semi-definite quadratic forms. Similarly,
we may define @* by associating to « € U3 the form Tr &« for fe K with
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BU C 0% and 8> 0. After choosing coordinates in %, and a basis {u,, u,}
of A* we can write Q° as

x (Tr u;px Tr u,uzﬁx) )

Tr w,u,fx  Tr u2fx

Changing the basis of U* induces on ¥, an action

X—UX'U, Xe%,,

by Ue GL(2, Z).

The coordinates 7, of

X = (711 772) = Q%)
I/
satisfy a linear relation of the form
ap, + by, +cp, =0

with integral coefficients. Equivalently, X satisfies a relation
EX - X'E=0

with Ee€ M,(Z). The number 4 = b* — dac = (Tr E)* — 4 det E is invariant
under the action of GL(2, Z) N D'GL(2, Z)D and equals the discriminant
of the ¢-module A*:
u® O\
det (u}) uﬁ)) .
4.3. Let us assume that g% = nd*, neN.

A rational polyhedral decomposition of ¥, which is invariant under
GL(2, Z) can be defined by equations

EX—-X'E=0
with invariant 1 for its 2-cells. The function

min ‘£X¢
aEZ2/2Z2 ¢ezZ2
é=a(mod 2)

is linear on each cone and satisfies the conditions in 2.3. This decom-
position coincides with the central cone decomposition of Igusa and
Namikawa’s Delaunay-Voronoi decomposition (cf. [13]).
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4.4. By means of @ the decomposition of ¥, induces a decomposi-
tion on Y%. In general it does not coincide with the Hirzebruch decom-
position of 3. Obviously, the function

min Tr &8x
acF2u* Ut
é=a(mod 2)

is linear on the cones of this decomposition.

4.5. ExAmMPLE. Let p =89, K = Q(+/p). We consider the map

Tr we/pz Trwey/p z)
Trwen/pz Tr e/pz

corresponding to a modular embedding of SL,0) in Sp(Z). A comparison
of the cone decompositions of 03 and %, yields the following picture (here
w = (1 — v/89)/2, & = 500 4 53+/89). Here we represent %, modulo scalars.
On the image of s#* given by » + 7, — 227, = 0 a number of consecutive
rays of the Hirzebruch decomposition are marked.

(), 2) —> <

342 81

289 68 1444 342
68 16

7 + 7 — 227]3 =0

441 105
105 25

)

(c 3

Fig. 1

4.6. Remark. Let p = (2a — 1* + 4 be a prime and let

20— 1+ 4D
80—-~——2———~—

be the fundamental unit of @(,/p). Consider the map 0 — %, given by
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(0 92 ( Tr w?,/py —Tr w'eOJ}Ty)
’ ~Trweypy Tr ew/Dy’

where w = (1 4+ 4/ p)/2. Then the Hirzebruch decomposition coincides with
the induced one.

4.7. Consider now the rational polyhedral decomposition X, of %,
whose 2-cells are defined by the equations EX — X'E = 0 (X e &,) with
invariant 1. Let ¢ be the polyhedral cone spanned by

(1 0) , (O 0) and < 1 ——1) .
00 0 1 -1 1
It is well-known that any polyhedral cone ¢’ in X, has a form Mq¢'M for

certain M e GL(2, Z). Let G(o) be the subgroup of GL(2, Z) which leaves ¢
invariant. The group G(o) is a finite group and consists of twelve matrices.

i(l O>’ i( 1 0)’ j:(l 1),
01 -1 -1 0 -1
A R A ]
10 1 1 1 0
The group G(¢) induces the automorphism group Aut (¢) of ¢ and Aut (o)
is isomorphic to the symmetric group S, of degree 3. Let M be one of
the above twelve matrices and let us consider the action of M on R* given
by v+ y:M. Then it is easy to see that the triangulation of R* in Fig. 2

is invariant by this action where the vertices of triangles are the lattice
points Z* in R:.

Fig. 2

Now using the map Q*, from the polyhedral decomposition X, of %,,
we obtain a decomposition of ¥3. Let 5, be the minimal refinement of
this decomposition which is regular and assume that its 1-dimensional
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cones are spanned by B,, ke Z, with By > B{",. For a generator ¢ of the
unit group V which preserve U, we may assume

E,Bo:Bl, l21.

Moreover we may assume that B, lies on a boundary of the polyhedral
cone ¢ spanned by

(1 0) (0 0) ( 1 -—1)

s and .
0 0/°\0 1 —1 1
Let 6,0, - - -, 0, be polyhedral cones in 3, which intersect the segment
Q*B,B) in ¥,. Let B,, B,,, -, B,,, B, be all the points which lie on the
boundaries of these cones and L, the common boundary of ¢, and o,,,,

where we put ¢, = ¢ and o,,, is the polyhedral cone which contains the
segment Q*(B,B,;.,). (see Fig. 3)

Fig. 3

We fix M,eGL(2,Z), i =1,2, ---,m + 1 so that M,,'M, = 0,_, and the
action of M, on L, is trivial.

4.8, Now we construct a polyhedral decomposition of A} X B,. First
assume that Q*(B,) and Q*(B,.,) lie in the cone ¢. Then we can write

1 0) (o 0) ( s N
¥B) = . , —ii+1
Q*(B)) 11(0 0 + #; 0 1 + v 1 1 J=11+

With integers Z'l, 21+1’ iy Lisrs Yoy YVisre
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Put x = sB;, + tB,,,, 5,t > 0. We define a decomposition of x X B,
by giving it on a fundamental domain for the translations. We indicate
an example in Fig. 4. Since it is obvious from this example how to treat
the general case, we refrain from giving the equations for it.

(=ve-ss — i, (s + ve-)s + (e + 20

t
\l£ N
©, s + ) (s + A, Mi-1S + ‘lel)
(=ve18 — wid, ¢
VisS + v,t) t
s
P i
K = (lkﬂs + Ad, 0)
0,0
s
S
es8 + vty —v, 8 — u,t) Rt + veo)s + (e + ),
—Vii8 — vt)
Fig. 4

(In this example 2,y =3, o1 =2, v =2, 4, =4, pf =2, v, = 1.

Next if Q*(B,) and Q*B,,, lie in ¢, then by the choice of M, ¢
GL(2,Z) in 4.7, M,Q*(B)'M, and M,Q*(B,.,)'M, lie in o.
For x = sB, + tB,,, we have a decomposition of x X B by means of
M,Q*(B)M, and M,Q*B,.,)'M,. We then let M;* act on Bg:y — y’M~*' and
obtain the required decomposition of x X B;. Since M, acts on L, trivially,
the induced decompositions of B,, X By given by ., X By and z,, X By
coincide, where z; is the cone of %j; spanned by B, and B,,,. Next if
Q*B,) and Q*(B,.,) lie in g, then by the choice of M,e GL(2, Z) in 4.7,
M,Q%B,)'M, and M,Q*B,.,)'M, lie in ¢,. Hence we can apply the above
method. In this way, by induction we obtain a polyhedral cone decom-
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positions of z; X By, where z; is the polyhedral cone of ¥; spanned by
B; and B,,,, and we can glue together the decompositions of 7, X Bz and
Toe1 X Bgr. We repeat the process until £ = [ — 1. Then, using the action
of the unit group V, we obtain a decomposition of Ui X Br. We need
to check that this decomposition is well-defined. For that purpose, it is
enough to show that the induced decomposition ¢-(B, X By) by the action
of the unit ¢ and the decomposition B, X B, coincide. (Note that B, =
e-B,, See 4.7.) From the definition of M,, i =1,2,---,m + 1 and the de-
composition of x X B, the decomposition of B, X By, is obtained by the
decomposition of R? given in Fig. 4 by means of M = MM, --- M,...
(Note that M,,,, acts trivially on L,,.,,). On the other hand by the modular
imbedding, the unit ¢ defines an element ¢(c¢) € GL(2, Z) and the action of
e on %, is given by X — ¢(e)X‘d(e). As Mg, .M = ¢ and ¢(e)a'd(c) = 7.1,
we have M-'¢(c) € G(s). Since the decomposition of R? given in Fig. 2 is
invariant by the action of M~'¢(c), the decomposition ¢-(B, X Br) and B,
X B coincide. Thus we obtain a polyhedral decomposition of U} X B
which satisfies 1), ii) and iii) in 4.1.

4.9. In paragraphs 4.3-4.8 we constructed a decomposition of 23 X
Br under the assumption that g% = n0* and B = 0.

First note that by changing ¥, if necessary, we may assume g = 1.
So in the general case we have 2 C B C 0* and we then proceed as
follows.

For xe¥U; let Tr &x be the associated quadratic form on B*. The
metric on B% induced by this quadratic form can be used to define poly-
hedral decompositions of 8% and B (cf. [11] and [13]). We say that a
set of elements of B* {a;},c; spans a Delaunay cell D(a;) with respect to
x if there exists a y € B} such that

{a}ic: = {77 € B*

dz(rv V) = min dz(?’! 5)} .
ceB*

These cells define a polyhedral decomposition of B by bounded cells,
each of which has a finite number of faces. This is the Delaunay de-
composition of BE.

The ‘dual’ decomposition of B is obtained by associating to each
Delaunay cell D(a,) the Voronoi cell

Aa) = {y €Be|Tr (5 + a)’x + (6 + a)y) > Tr(aix + az.’)’)} .
‘ VéeB*, Viel
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This decomposition, which is invariant under translations
y—>y+2x (€3,

is called the Voronoi decomposition.

Define an equivalence relation on U3 by x ~ &’ if the Delaunay de-
compositions of 8% defined by x and %' coincide. The closure of an
equivalence class in %} is an unbounded polyhedral cone in 3. We
obtain a polyhedral decomposition 3 of €3;. The equivalence

Tr (8¢ + 2a)x + §y) > 0 & Tr (5 + 2a, + p)x + §(y — px)) >0
implies that the Voronoi decomposition associated to
Tr (¢ + @)x + (€ + a)y) with ae1B*/B*

is the translation over a half period of the Voronoi decomposition as-
sociated to Tr (§%x + £y). The superposition of the Voronoi decompositions
associated to Tr ((¢ + a@)’x + (¢ + a)y) for all ac B*/B* is a subdivision
of the Voronoi decomposition (see Fig. 5).

\\

N
N

O .

Fig. b

4.10. Now we define several decompositions of U3 X Bz. The mixed
decomposition is the decomposition of U3 X Br which induces 3 on U
and on x X By the Voronoi decomposition defined by x € Uj.

The half period decomposition is the subdivision of the mixed decom-
position obtained by translating in each fibre x X By the Voronoi decom-
position over the half periods. It is the maximal decomposition of UAj; X
Bz on whose cones the four functions
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fy=minTr (& + oFx + (€ + ) pe}B¥/*

are linear. This decomposition is not regular but satisfies conditions i)
and ii) of 4.1. We now show how to make it regular. We start by con-
structing in a minimal way a refinement 3 of ¥ which is regular and
such that the image of every 2-dimensional cone of 3 under @* is con-
tained in a fundamental domain for the action of the image of the unit
group V in GL(2, Z).

Suppose that A,, A,eU* span a 2-dimensional cone of 5. Then A,
and A, belong to the same equivalence class in %}. Consequently, there
exist elements b,, b, € B such that the Voronoi cell containing (0, 0) defined
by A, (¢ = 1, 2) is the convex hull of the points

{20, £p.b;, £v(b, + by)} Ay py v € Z) .

So the Voronoi cell containing (0,0)e B defined by x = sA, + tA,
(s, te R) is the convex hull of the points

{i(‘gll + t2)b,, i"(s,ul + t#z)bz; +(sv; + tw,)(b, + bz)} .

Translating the Voronoi decomposition over the half periods yields a sub-
division as in Fig. 5. Choose a fundamental domain 2 in %, for the
action of the group V consisting of transforms under GL(2, Z) of a fixed
cone of X, Fix for the cones of 5 whose image under Q° lies in 9 a
choice of b, and b,, Having fixed b, and b, we can apply the division
process explained in 4.8 (cf. Fig. 3) to the shaded domain in Fig. 5 and
by covering By by its translates. We get a polyhedral decomposition
of B, which we call a regular Voronoi decomposition w.rt. x = sA,
-+ tA,. Note that it depends on a choice of b, and b, for the cones of
5 contained in this fundamental domain. However, in the following we
shall assume that we have made such a choice and simply speak of the
regular Voronoi decomposition w.r.t. x. By an inductive process as in
4.8 we now can construct a decomposition of U; X By which satisfies the
requirements of 4.1. We call it the regular half period decomposition.
Note that this decomposition is different from the one constructed in
4.7-4.8.

4.11. To the mixed decomposition (resp. the half period decomposition,
resp. the regular half period decomposition) we associate a torus embed-
ding containing #?/% X C*/B which we denote by (¥, B) (resp. Z',(¥, B),

https://doi.org/10.1017/50027763000020080 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020080

38 G. VAN DER GEER AND K. UENO

Z,%,%8)). It is a scheme which is locally of finite type. We refer to
[13] for a description of the fibres of Z (¥, B) — ¥ (¥), where ¥ () is the
2-dimensional torus embedding defined by X. The fibres of Zy(¥, %) —
Q) (resp. T4(¥,B) — (), where Z(¥) corresponds to ) over limit
points lim, ., (@ € ¥3) in Z(Y) (resp. Z(A)) are infinite unions of rational
surfaces. The dual graph of such a fibre is given by the decomposition
of @ X Bg.

If ¢ is a totally positive unit preserving % and B, then the action
of ¢ on #* X C* extends to a well-defined action of ¢ on £,(¥,B) and
YY) (resp. 4%, B) and Z¥), F,(¥,B) and #()) which is equivariant
with respect to the projection %,(¥,B) — F(A) (resp. Z;(¥, B) — ¥(¥),
Z (U, B) — Z(W)) and discontinuous on the closure of W(d)xC?

4.12. Let I" be a principal congruence group of SL,(0, B’) which acts
freely on #?, where %’ is a projective 0-module of rank 1. Consider the
action of I" on #* X C*® as defined in 1.10. Let s denote a cusp and let
p € SL(K) with ps = . The stabilizer I", of oo in plp~' is the semi-
direct product G(V,¥) of an @-modulo A and a group V of units preserv-
ing A. Let pl'p~" = SL,(0, B'C?) for some ideal € and set B = B'C%. Then
A < B and we may assume B C 0*. There exists a ['.-invariant neigh-
bourhood W = W(d) = {(z,, 2,) € #?|Im 2,-Im 2z, > d} of o« such that when-
ever (2,0, (2,8)e WX C* and r € pI"p™* the equation y(z, {) = (2, {’) implies
rel.. The product & X B acts on W X C* and we have the inclusions

WX CHU X B CH*XCHUXBCCHA X CHDB .

Hence by the theory of torus embeddings each of the rational polyhedral
decompositions of Uz X By considered in 4.10 yields an embedding

WX CHU X B C X, B) (Z =Z,%, or T3)

which is equivariant with respect to the action of V. By gluing #* X
CYI' X B’ with (X, B) over W x C*/G(V,¥) X B and carrying out this
construction for all cusps we obtain a fibre space Z([", #) (# = 0D Y,
X =2%,%,%,;) over a compactified Hilbert modular surface (which we
denote by S(I') if & = &, or &, and by S(I") if & = 7).

Following Namikawa we call each of these fibre spaces a family of
semi-universal coverings.

Next we define an action of ¢ on the fibres of Z(I", #). The action
of ae® on #* X C*
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(21,258, &) —> (21, 23 & + a2, &, + a®z2,)

is compatible with the action of I" X % on #? X C? and induces an action
of « on #* X C*I" x B’ and thus on W X C*U X B. It extends to an
action on Z,(%, B) and on Z,(¥, B), which is equivariant with respect to
the action of V. In this way we obtain an action of ¢ on & (", #) and
on Zy(I', #) and one easily shows that it is properly discontinuous and
fixed point free. By taking the quotient we obtain families

n: A, M) —> S(I)
and
#: Ty, M) —> S(I)

of so-called stable quasi-abelian surfaces. Note that o7, (I", #) and g(l’)
are non-singular.

In case ¥ = 2, we proceed differently. We assume that I" is a prin-
cipal congruence subgroup of SL,0@, B’) of level & C B with (2)|U. Con-
sider the surjection

v
H* X C'—> A X C*—— A X CB,

where ¥(z;0) = (2/2,0). The action of @ on #* X C*? defines an action of
0 on the torus embedding Z,(%,B) which contains #2/% X C*/B. It is
properly discontinuous and fixpoint free.

By taking the quotient we obtain another family

2®: O (I, M) —> ST

of stable quasi-abelian surfaces.

§5. Simple connectedness of </

5.1. TureorReEM. The analytic fibre spaces of stable quasi-abelion sur-
faces o = A (', M), Z', M) and OL ([, M) (With 4 =0DY, ' C
SL,(0, B’)) are simply-connected.

Proof. Let U, ---, U, be (suitable) neighbourhoods of the connected
components of &/ — o/°. Choose base points p, € & — &° p, € U,. Denote
by K, the kernel of =,(U, N «° p,) — n,(U,, p,). By Van Kampen’s theorem
() = n(4° p)/N, where N is the smallest normal subgroup of I' X A4
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which contains K,, i =1,---,n. Now let s be a cusp and let pe SL,(K)
with ps = co. Set I', = p[',p™', and let T, be the translation subgroup
of I',. Then pl',p~' = G(V,¥) for some U (cf. 3.1) and we construct a
torus embedding Z'(¥, B) as in 4.9. Let U be the interior of the closure
of W(@)/A X C*B in ¥, B), where W(d) = {(z,, 2,) € #*|Im 2z, Im 2, > d)
for sufficiently large d. Then U is simply-connected. Hence N contains
o (T, X B)p, in particular N contains p'T,p for all s. But then, by a
theorem of Vaserstein (cf. [16]), N contains I'. By specializing s = oo
(resp. s = 0) we see that N contains

{(((1) ;“) © ,@))el"'x%/lxe%,ﬁe%*}

(resp. {((; (1’) (« 0)>e]’b<¢//|ye§8“, a(—:@}).

Consequently, N contains I" X 4.

§6. Holomorphic forms on </

In this section we consider the relation between holomorphic forms
on & and Hilbert modular forms.

6.1. Let us consider a modular embedding of a Hilbert modular group
SL,(0) where 0 is the integer ring of a totally real number field of degree
n. For a subgroup I' C SL,(0®) which operates properly discontinuously
and freely on ", we have an action of G=1 X (Z*" X --- X Z*) on
H" X C*™ such that the quotient manifold «%(m) = #" X C*"|/G is a
smooth family of m-fold products of n-dimensional polarized abelian
varieties over S° = #"/". By S,, .. Wwe denote the space of Hilbert
modular cusp forms of type (&, ---,k,). Suppose that k, > 2. Then, to
each fe S,,..;, and subsets N, j =1,2,---,m, of {1,---, n} satisfying &,
—2 = #{N,|ie N}, we can associate a g-invariant holomorphic d-form &,
on #" X C"™ defined by

@y =f(zy, -, 2)dz, \ --- Ndz, NdCE, N -+ N ALY,
where
d=n+3 N,
dif, =dlP N - - Ndg, Ny={ky -k}, B<---<k.
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Then @&, is G-invariant, hence defines a holomorphic d-form o, on «/°(m).
Note that any Hilbert modular form of type (&, ---,k,) is a cusp
form, if &, - - -, k, are not the same.

ProposiTiON 1. The form o, can be extended to a holomorphic d-

form on /(m), where z: o/(m)— S is any non-singular compactification of
n°: &/%(m) — S°.

Proof. It is enough to show that o, can be extended to a holomorphic
form on a non-singular compactification «/(m). Therefore, we may assume
that z:.o/(m) — S is constructed by means of toroidal embeddings ([14]).
Then, for any point g € &/(m) — «/°(m), there is a neighbourhood V (resp.
U) of g in «/(m) (resp. n(q) in S) with (V) = U and local coordinates

{wy, usy -+, w,} in U, {v, Uy -+, Umsnat In V such that on S, and «°(m)
we have

u;, = exp (27:«/ —-13 aikz,c)
k
v, = [ ug [T (exp 2nv/ — 1LY
k=1 kL

where a,, € R, a;, X € Z. Moreover, the morphism = is given by
(m+1)n s
(6.1) U, = H vji]

Jj=1

where 7,’s are non-negative integers. Then, in these coordinates, dz, A
e ANdz, NAEE N -+ A\ dESP is expressed in a form

n d—n
T = Z Ckl"‘kd-—n Hl% /\ l—[ ‘(_i‘v—h‘ ’

i= i=1 vki

where C,,...;, ,’s are constant. Note that, by (6.1),

n d-n
H du, N\ H QUL
i=1 i=1 Uy,

is holomorphic on V. Since f is a cusp form,

i d-n
_t—z Chroban Ul du, N\ ﬂz

ul v un i=1 vki
is holomorphic on V. Q.E.D.

Remark. From the above proof, it is clear that if f is not a cusp
form, o, can not be extended to a holomorphic form.
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The converse of the proposition is also valid. First we prove

PropositioN 2. Let w = 3 fr,dz, AN dEP N -+ - N\ dES™ be a G-invariant
holomorphic d-form on #" X C™. If d<mn, then 0 =0. If n<d<
(m + Dn, then we have

wzzg"dzl/\/\dzn/\dc‘(rl,)/\/\dc_(,’;),

where J = (J,, - - -, J,,), each J; is an ordered subset of {1,2, ---,n}, > ||
=d — n and g, is a Hilbert modular form of type (ky, ks, - - -, k,) with k,
"‘2 = #{Jl l i € Jl}-

Proof. For simplicity we assume that m = 1. The other case can
be treated similarly and is left to the reader. We write

0= 3 (; fudz A dg,) .

11]=0

By a linear change of the coordinates ({, ---,{,), we can assume that
the group G acts on " X C" in the form

(z iz C C) R a(l)z1+b(l) a(n)gﬂ_{_b(”) ~ ...Z
15 » “ny Sy s bz C(l)21+d(l) ’ ’c(”>zn—|—d("” 1y 15g )

g, = (cV2, + dO) (¢, + a®z, + BD) .
Consider now the translations
L—> 8 = + a9z, + @

on the fibres. Since w is G-invariant, for the minimal value e = |I| of ||
with f;; #+ 0, we have f;,(z,¢) = f;,(z, ). Hence, f;; with |I| =e is con-
stant along fibres. If e < n, for f,.,, with |I’| = e + 1, we obtain

fri(2,8) = frs(2,0 + [“Z=:e myfi

where m;, =0 if IC I’', J' © J. In particular df.; [0, is invariant under
the translations, hence constant along the fibres. Since f;.,. is invariant
under translation ¢, — ¢, + B¢, it follows that f,.,, is constant along the
fibres. Hence, we have

(6.2) 21 myf, =0.

I]=¢
The invariance of w under G implies

n

(6.3) fr(r(z,0) = [] (c®z, + d9)@"f (2, 0)

i=1
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where eI, J) = 2-#{I|ie I} + #{J|ieJ}. Hence from (6.2) we infer that
fir=0,if e<n and |J| # 0. Hence, by induction, we arrive at the case
e=nor e=d<n. Then by (6.3), f;; is a Hilbert modular form of type
(e, ), ---,e,(,J)). Tt is well-known that if e, = 0 for some i, there is
no non-zero Hilbert modular form of type (e, - - -, e,). Q.E.D.

By Propositions 1, 2 and the remark, we obtain

THEOREM. Let /(m) be any non-singular compactification of </°(m).
Then we have

0, ifd<nord>(@m-+4 n,
hO,li MO —
(" (m)) 5 (Z) - (’”) &mS,,. .., ifn<d<(m+Dn,
ik \ Ry

k,
where the sum is taken over all n-tuples (k, -- -, k,) of integers satisfying
B>2, Sk=d+n.
i=1

CoroLLARY. Set s(k,, - -+, k,) = dim Sy, ... »,- Then the arithmetic genus
(L (m), 0.,..,) can be expressed as follows.

Ut (), Oui) =1+ 31 o (~1)d(2j)- (Yot - ).

n k
ki>2 n
Zki=d+n

§7. The arithmetic genus of </

We shall consider the fibre space #:7,(I", M) — S(I') more carefully
and compute its arithmetic genus. In this section we use the notations
oA = A, M), S=8(), = =7 — 8.

7.1. Since #: &/ — S is flat, the dualising sheaf w_,s of # is isomorphic
to K, ® n*K;', where K, denotes the canonical bundle of a complex
manifold X.

LemmA 1. o, = n*(L) where L is an invertible sheaf on S.

The proof is based on an explicit calculation of K, by means of the
non-singular compactification z: .« — S given in §4. The calculation is
left to the reader. One can also use Proposition 1 in 6.1.

Let 0, be the structure sheaf of «.

Lemma 2. The sheaf Rz, 0, is locally free for each k > 0.
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Proof. For each point se S, the fibre A, = n7'(s) is reduced and
Gorenstein. The dualising sheaf w,, is isomorphic to w,,; ® 0,, = 0,, by
virtue of the above lemma. As A, is reduced, we have

ho(As’ 0A,) =1
(A, 0,) = K(A,04) = 1.

By the invariance of the Euler characteristic under flat deformations we
obtain A'(A,, 0,,) = 2. Q.E.D.

Remark. We can directly calculate H'(A,, @,,) as follows. For each
point s€ S — #*I", the structure of A, can be seen from the cell decom-
position x X By given in 4.7 and 4.8 and the action of ¢ on this cell
decomposition. Identify x X B with R* and ¢ with Z%. Then the de-
composition gives a cell decomposition of a real torus T? = R*Z:. To
each 2-cell there corresponds an irreducible component of A, and to each
1-cell there corresponds an intersection curve of two components. More-
over from this decomposition we infer that each irreducible component
is a non-singular rational surface and each intersection curve is a non-
singular rational curve. As was stated in 4.12, to the decomposition of
Br ~ R* there corresponds a fibre X, of the semi-universal covering
Z(', #)— S over s. Then A, is the quotient of X, by the action of @
= Z% (Note that the action is free.) Let us introduce an orientation
on each cell in R? and write Z, for the manifold corresponding to a cell
og. Then we have a resolution of the constant sheaf Zy, on X,

O__)sz—i g—Du ZZ"—@_) 1€Buzzr—1ﬁ) oC-DuZZ”——)O
by constant sheaves where ¢* is induced from the normalization’of X, and
4, 1s given by
¥l(@)) = (b) b= > [o:7]a,.

<o

Hence we have an exact sequence

o* Yo Y1
0—> 0y, —> DO, —> DO, —> DO, —>0.
Dividing by the action of ¢, we obtain an exact sequence

0—0s—> D Oz,—> @ Uz,—> @D O0;,,—>0.

¢ modg *modg vmodg
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Since Z, is a non-singular rational variety for any cell », we have H*(Z,
0;,) =0, p > 1. From the exact sequence we have isomorphisms

HY(A,, 0,) =~ H({® HZ,, 0.}
= H'{® C,})
H®[z,C)=c®), i=0,1,2.
Moreover, since H(Z,, Z) = 0 we have an isomorphism

H'(A,, Z) (>Z§ C=~H'(A,0,).

This will be used later.

7.2. Let us consider the action of I' C SL,(0, %) (cf. 4.12). On #*
X C* defined by

HPXC? —>HXC?
w w

a®z + 13(1) a®z, + ﬁ(2)
(Zx, 25 Cn C2) (T(I)ZZ + 5O s 7‘(2)22 T 5® s (T(l)zl -+ 5(1))Cla (T(2)22 + 5(2))C2 s

for (;Y g) el’. Then I" acts freely on #* X C* and the quotient space

#? X C*/I" with canonical projection to S° = s#*/I" defines a vector bundle
of rank 2 over S°. This bundle can be extended to S as a holomorphic
vector bundle.

To see this, let us recall briefly the compactification S = S(I", #) of
S°. The isotropy group of I" at a cusp ¢ of S° has the form

G(N, V) = {(g fi‘) e SL(K)

ee V,,ueN}.

(See 3.1). For a positive integer d, put W(d) = {(z,, z,) € #*|Im z,-Im 2,
> d}. Then for a sufficiently large d, W(d)/G(N, V) U {z} is an open
neighbourhood of the cusp r of the Satake compactification of S° The
quotient space W(d)/N is an open set of (C*). Using the cone decom-
position X' of Nj which is a refinement of the Hirzebruch decomposition
given in 3.1, we construct a torus embedding 2, of (C*). Let Z(d) be
the interior of the closure W(d)/N in % ;. Then V operates freely on
Z(d) and £(d)/V gives a desingularization of the cusp .

Now we extend our vector bundle to Z'(d)/V. Since we have W(d)
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X C*N = W(d)/N X C% this is the trivial bundle over W(d)/N. Hence
it can be extended to Z(d) as the trivial bundle Z(d) X C®. The group
V operates on 2(d) X C* such that the action is the natural extension
of that on W(d) X €% The quotient Z(d) X C*V is a vector bundle over
Z(d)/V. In this way we obtain the vector bundle V. over S which is
the extension of #* X C?*/I" over S° = s#*I.

LemMA 3. There is a natural isomorphism R'm,0, = 04 Vy).
Proof. First we construct an isomorphism over S°. Put
w; = 5{(1111 2)'(¢C — Zi)} ’ i=12.
It is easy to see that w,, @, define a trivialization of the sheaf R'%,0; on
H#? where #:2° — #* is the pull back of z": &/°— 8° «° = z~(S° over
#*%. We have

(g*wl) —_ ((T(l)zl + 5(1))(01) g = (“ ﬁ)
g*w, @z + 6w,/ ’ r o

Since R'r,0,|s is canonically isomorphic to R'#,0;/I", there is a natural
isomorphism
Yyt R, 0,150 —> O Vilso) -

Next, let us consider an open set £'(d)/V described above. On Z'(d)
we have a family ¢: o/’ — %'(d) of semi-stable abelian varieties such that
A’V — %(d)]V is the restriction of our family =: o — S on Z(d)/V. By
the remark given in 7.1, we have a natural isomorphism

¥yt R'@SZ QZ<) 4, —> R'y.0,, ,

where Z(d) = Z(d) — W(d)/G, o (Z{@A)) = &, ¢°=¢|,. Now R'¢ Z
is trivial on £(d)° and V acts on it by multiplication by (¢®7*, e®7), e e V.
This means that there is a natural isomorphism

¥y Ryl —> Op(Vrlp)
in a neighbourhood D of Z(d)*/V in S. It is easy to see that +, and +,
are compatible on (Z(d)/V) N S° Q.E.D.

Let N be the normal bundle of o(S) in A where 0: S — A is the zero
section. It is easy to check that the vector bundle N is isomorphic to
V,. Hence we have
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CoroLLARY. R'z, 0, = Os(N).
From this corollary we obtain

COROLLARY. Let 7% be the analytic group scheme over S defined by
the exact sequence

0—> R'r,Z —> Rz, 0,—> O0(4,) —> 0

where 0(s7,) is the sheaf of germs of locally holomorphic sections of </*
If I' admits a modular embedding into Sp(Z) then o/, = ° and /% is
a dense open subset of /. In general, #*: o, — S° is a family of dual
abelian varieties of n: /° — S°.

7.3. Let us consider actions of I” on s#* X C defined by
H* X C—> H* X C

w w

az + B0 a®z, + O © o >
(@, 2, 0) — (7(1)21 T ow’ 19z, + 6 , 2.+ 99X,

where (;)f ‘g) el', and i = 1, 2. The quotient spaces of s#* X C by these

actions are complex line bundles L{® on S°. By an argument similar to
the one used above, L’ can be extended to S as a complex line bundle
L, From the definition of V, we have V, =L, ® L,

By an argument as used in the proof of Lemma 3, we can prove the
following lemma.

LemmA 4. There is a natural isomorphism
R, 0, > O(N\* V}) .

On the other hand, by the Grothendieck duality for the morphism =,
T4, is dual to Rz,0, Hence we have

CoroLLARY. The line bundle L in Lemma 1 is dual to N\* V.

Remark. The vector space H(S, (A* V7)®™) = HYS, L®™) is the vector
space of modular forms of type (m, m).

LEMMA 5. The spectral sequence
Epe = H*(S, Rz, 0,) —> H*(«, )

degenerates al E,-terms.
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Proof. Define, on a regular fibre of z: ./ — S, the multiplication by
a positive integer m. This gives a morphism m: &°— &/° and a mero-
morphic mapping of «/. By a succession of blowing ups with non-singular
centres, we obtain a morphism m’: &/’ — /. Since R*,0, =0 for k£ > 1
and .0, = 0, for the morphism +: o’ — &/, there is a canonical iso-
morphism R%,0, = R'r,0,, where n’ = mop. The morphism m’ induces
an endomorphism of R‘,0,, which is multiplication by m? The morphism
m’ induces an endomorphism of the spectral sequence such that it com-
mutes with d?? and on E?? it is multiplication by m? Hence d, must
be zero. Q.E.D.

ProrositioN. We have the following isomorphisms:
H'(«,0,) > HYS, R*z,0,) ,
H¥(s, 0,)—> HYS, R'r,0,) ,
HY«/, 0,,) > H¥S, 0,,)
H{(,0,)=0.

Proof. By Lemma 5, we have
h(st,0,) = 3. dim H?~¥(S, R'z,0,) .

H*S, R'z,0,,) is dual to HY(S, Ky ® (R'z,0,)V). By the definition of L,, it
is easy to see that H(S, K; ® L) (resp. H(S, K; ® L;")) is the space of
modular forms of type (3, 2) (resp. type (2, 3)). Hence by Theorem in 6.3,
RS, K3 ® (R'z,05)Y) = hY, £23) = hi(«/, 0,). Thus E}* = 0. This proves
the first three isomorphisms. On the other hand, since </ is simply con-
nected we have h'(«, 0,) = 0. Q.E.D.

CoroLLARY. H?(S, R'n,0,) = 0 for p < 1.

Now let us compute the arithmetic genus y(«, @,). By the above
spectral sequence, we have
x(Z,0,) =3, (—1)P**dim Ep*
= 1(S, 0s) — xS, R'z,0,) + (S, F°n,0.)
= 1(S, Os) — 1(S, Os(V1)) + x(S, O(L)) .

By the Hirzebruch Riemann-Roch theorem, we have

1S, Vi) = 3 + ) + 3e- (Vi) + 15(eVir)' — 2¢(Vy))
2(S, O(L9) = 3L-(L + Ky) + (S, 0.) ,

https://doi.org/10.1017/50027763000020080 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020080

ABELIAN SURFACES 49

where c,, ¢, are the Chern classes of S. Since V, is isomorphic to L, @
L,, V, satisfies the condition of Mumford’s theorem on the Hirzebruch
proportionality principle in the non-compact case ([12], p. 262). Indeed,
V, corresponds to 0p,(1) ® Op,(1) over P' X P! which is the compact dual
of s#2 Hence c¢(V;) = 2¢(V;). Moreover, by Corollary to Lemma 4,
¢(Vy)-¢, = L-K;. Hence we have

2w, 0.) = 2¢(S, O5) — ¥(ci + ¢) + 3L° = 317,

since (S, O0s) = 75(ci + ¢;). On the other hand, H(S,L-™) is the vector
space of modular forms of type (m,m). Hence, by the Riemann-Roch
theorem, we have

17— tim L RS, L) .
2 m?

m— + oo

Moreover, it is easy to see that

lim L A8, L") = lim L dimS,..,

m—+e N m—+o M

where S, , is the space of cusp forms of type (m,m). By Shimizu’s
dimension formula (see the remark in 3.3) we obtain

$L* = vol (%I .
THEOREM. x(«, 0,) = vol (s#*|I"), where we use the volume form

1 ﬁ dz, N\ dz,

on % .
42r)* =1 (Im z,)*?

Remark. Such a theorem also holds for elliptic modular surfaces.
One can obtain a similar result from Shioda’s formula for the invariants
of elliptic modular surface ([15]) in that case.

§8. On the number of sections of «/(I", #)

The aim of this section is to prove that the families of abelian sur-
faces constructed in 1.10 and 1.11 admit only finitely many holomorphic
sections.

8.1. Let ¢: o/ — ¥ = #/G be a family of abelian varieties over the
curve ¥~ obtained from the action of G X # (4 a lattice in C*) on #
X C*. We assume that G is an arithmetic subgroup of SL.R) which
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acts properly discontinuously and freely on s such that v = #/G is
compact. Then R*p, 0, (k > 0) is a locally free sheaf on 7'. We claim:

rank H'(/", R'o,Z) = 2 dim H'(?", R'¢,0.) .

We give a proof without appealing to the theory of vector valued dif-
ferential forms.
Consider the two exact sequences

(%) 0—> 0,2, —> Rip,C® 0, —> R'o, 0, —> 0

and

0—> R'p,C—> Rp,CR 0O, > 0L ® Rip,C —> D ® ¢, C —> -+,

where V is the Gauss-Manin connection. Since dimV =1, 22 ® Ry, C
= 0 and we get

0 —> H(V", R'¢,C) —> H'(¥", R'9,C ® 0,) —> H'(V", R'9,C ® 2})

—> H'(V", R'p,C) —> H'(V", R'¢,€ ® 0,) —> H'(¥", R'o,C ® 2,)

—> H¥7", R'¢,C) —>0.

Now R'g,C is locally constant and self-dual (use the Riemann form),
hence under duality this sequence goes over into itself. In order to prove
our claim we must show

dim (image H(¥", 2% ® R'¢,C) —> H'(?", R'¢,C)) = dim H'(¥", R'p,0,)
and

dim (image H'(¥", R'p,C) —> H'(#", R¢,C R 0,)) = dim H'(#", R'p,0.) .

But by duality the two statements are equivalent. We shall prove the
first. It is not difficult to show that H(?", R'¢,0,) = 0. Consequently,
we obtain from (x)

0——> H"7, 0,02%,,) —> H' (¥, R'p,C® 0,) —> 0
00— H'(V", 0 8%,) —> H' (7", R'¢,C ® 0,) —> H(?V", R'¢,0,) —> 0.
Hence
dim H(¥", R'¢,C ® 2\) — dim H'(¥", R'¢,C® 0,)
= dim H'(7", R'¢,C ® 0,) — dim H'(¥", ¢, 2%,,)
= dim H'(¥", p45%,,) + dim H\(¥", R'¢,0,) — dim H (¥, p,.02%,,)
= dim H'(7", R'¢,0.)
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since dim H'(7", ¢, £2%,,) = dim HY(?", (p2%,,)V ® £%) and by a local com-
putation (¢.2%,)V ® 2 = ¢, 82%,,. From this our claim follows.

Now let «* be the group scheme associated to ¢:.o/ — ¥". Denote
by /% the dual of % Then we have an exact sequence

0 —> R'¢,Z —> R'¢,0, —> O(4*) —> 0.
Since H(?", R'p,0,) = 0, we get

0 — HV", 0(%) —> H\(V", R'¢,Z) —> H\(V", R'¢,0.) —>
—— H'(V", 0(4%)) —> HYYV", R'¢Z) —> HY(V", R'p,0,) —> -+ - .

Consider the usual exact sequence

0—Z—0,—>0t—>0.

The homomorphism H(?", R'¢,Z) — H'(?", R'¢,0,) is the restriction of the
homomorphism H*</, Z) — H </, 0,,) (induced by this short exact sequence)
to the part of the cohomology on which multiplication by m in the fibre
induces multiplication by m. As is well-known, H%</,Z) generates
H¥s/,0,) over R. Hence, since dim H«, 0,) = dim H'(¥", R'¢,0,,) =
2 rank H'(¥", R'¢,Z), it follows that H(¥", 0(+/*)) has to be finite. Using
the dual family, it follows that H°(¥", O0(«/¥)) is also finite. We have thus
proved:

ProrosiTioN. The fibre space ¢: o/ — ¥~ of abelian varieties over 7~
= H#|G possesses only finitely many holomorphic sections.

8.2. Assume now that I' is again a Hilbert modular group of a real
quadratic field K without elements of finite order. Let zn: &/ (I", #) — S(I")
be any toroidal compactifiaction of z°: (", M) — #*/", a family of abelian
surfaces with real multiplication, obtained from the action of I" X .# on
H#* x C%. The image of 2#* under the period map #*— &, intersects in-
finitely many subvarieties of &, given by singular relations (see 1.4).
These intersections determine curves which are given in s#* by equations
of the form:

aziz, + P2, + P2, + ¢ =0 (0,7€Z, peK).

These curves (or their quotients under #*— s#*[I") are just the curves
“F,” studied by Hirzebruch (cf. [8]). There are infinitely many curves
F, which are compact in s#*/I", and they lie dense in s#*/I". Each compact
curve is the quotient of 2# by a unit group I, of an order in a division
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quaternion algebra. Let .#{ be the identity component of the group
scheme associated to «7.

THEOREM. Let I' be a congruence subgroup of the Hilbert modular
group SL,(0, a) and let n: o/ — S be a toroidal compactification of a family
of abelian surfaces ° = #* X C*I" X M. Then H'(, O(£Y) is finite.

Proof. We may assume that I' is a principal congruence subgroup.
Then z°: «/°—?/" carries a level B structure (B an ideal). Let ¢ be a
section of &7 |#/I',, Pull it back to s# X C*® Since it is of finite order it
is of the form az + B, @, fe K and (@f)(y)e @D a for all yel',. Since

=1 (mod b) it follows that N(b)e = 0. Since H°(s#*/I", O(</%)) is finitely
generated, this proves the Theorem, for N(8)s vanishes on a dense subset
of s#7|I" for all sections o.

Remark. If I' is the principal congruence subgroup of level U in
SL,(0,B8) then the N(Y)* U-section points define sections of .«/° that can
be extended to the toroidal compactification defined in §4 and these give
all sections of /¢

Remark. By applying a similar reasoning to families of abelian sur-
faces over &*I'(m), where I'(m) is the level m congruence group of
Sp(Z, D), we obtain an analogous theorem in this case.

8.3. Let I' be a congruence subgroup of a Hilbert modular group
which acts freely on #? and denote the family of stable abelian varieties
for I' constructed in section 4 by zn:/ — S. We then have the exact

sequence
0 —> R7,Z —> Rz, 0, —> O(/) —> 0,
where /% is the identity component of the dual group scheme of «/. It
gives rise to the exact sequence
——> HY(S, R'z,0.,) —> H'(S, 0(</%)) —> H*(S, R'n,Z)
- —> HS, Rz, 0,) —> ---.

In section 6 we proved that dim H'(S, R'z,0,) = 0. This implies that
H'(S, 0(s7%) is a discrete O-module. To each element € H(S, 0(s/%)) given
by the cocycle {7;;} on the covering {U,} of S we associate the analytic

fibre space obtained by gluing «/|,, and «/|,, over U, N U, by means of
the translation in the fibre given by 7,,, The analytic space /7 thus
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obtained depends up to isomorphism only on the cohomology class of {7;,}.
An element a¢ec @ determines a holomorphic map +.: &7 — . From
this it follows that if 7 is of finite order then A’ is an algebraic fourfold.
We can also prove the converse. It is therefore of some interest to
determine the structure of H'(S, O(s7%)).
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