ON A FUNCTIONAL DIFFERENTIAL EQUATION
 IN LOCALLY CONVEX SPACES

Sadayuki Yamamuro

Abstract

The notion of accretiveness for multi-valued nonlinear maps is defined in locally convex spaces and it is used to obtain a locally convex space version of a result of M.G. Crandal| and J.A. NoheI.

0 . Introduction

The aim of this note is to obtain a locally convex version of a result of Crandall and Nohel [2] about the existence of a unique solution of an initial value problem, where the functions involved have their values in a Banach space. The differential equation in the problem contains a multivalued map on this Banach space. We shall replace this Banach space with a class of locally convex spaces. To carry out this project, we shall use a method which has been introduced in [6] and developed in [7] and [8]. We begin with a brief account of this method.

1. 「-completions of locally convex spaces

Let E be a vector space and p be a semi-norm of E. A sequence $\left(x_{i}\right)$ in E is said to be p-Cauchy if $p\left(x_{i}-x_{j}\right) \rightarrow 0$ as $i, j \rightarrow \infty$. Two p-Cauchy sequences $\left(x_{i}\right)$ and $\left(y_{i}\right)$ are said to be equivalent if $p\left(x_{i}-y_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$.

[^0]Let $\left(x_{i}\right)$ be a p-Cauchy sequence and x be the set of all p-Cauchy sequences in E which are equivalent to $\left(x_{i}\right)$. Such a set $\underline{\underline{x}}$ is called a p-class on E. The set of all p-classes on E will be denoted by $E[p]$ and it will be called the p-completion of E. It is a vector space when $\alpha \underline{\underline{x}}+\beta \underline{\underline{y}}$ is defined to be the p-class which contains the sequence $\left(\alpha x_{i}+\beta y_{i}\right)$ for some $\left(x_{i}\right) \in \underline{\underline{x}}$ and $\left(y_{i}\right) \in \underline{\underline{y}}$. The zero element of $E[p]$ is, therefore, the p-class which contains a p-null sequence.

For $\underline{x} \in E[F]$, we define

$$
p(\underline{\underline{x}})=\lim _{i \rightarrow \infty} p\left(x_{i}\right) \quad \text { for } \quad\left(x_{i}\right) \in \underline{\underline{x}}
$$

Then the value $p(\underline{\underline{x}})$ does not depend on the choice of $\left(x_{i}\right)$ from $\underline{\underline{x}}$. It is obvious that p is a norm on $E[p]$ and, with this norm, $E[p]$ is a Banach space.

For each $x \in E$, let $S_{p}(x)$ be the element of $E[p]$ which contains the p-Cauchy sequence whose terms are identical to x. Then we have

$$
p\left(S_{p}(x)\right)=p(x) \quad \text { for every } \quad x \in E
$$

For $\underline{\underline{x}} \in E[p]$ and $\left(x_{i}\right) \in \underline{\underline{x}}$, we have

$$
\lim _{i \rightarrow \infty} p\left(S_{p}\left(x_{i}\right)-\underline{\underline{x}}\right)=0,
$$

which shows that $S_{p}(E)$ is a dense subset of $E[p]$.
Let E be a locally convex space. A directed set Γ of semi-norms on E which induces the topology of E will be called a calibration for E. Then, for each $p \in \Gamma$, we have the p-completion $E[p]$ of E. The family $\{E[p]: p \in \Gamma\}$ of Banach spaces will be called the Γ-completion of E. Thus we have a projective system

$$
S_{p}: E \rightarrow E[p] \text { for all } p \in \Gamma
$$

It is easy to see that the projective topology on E defined by this system coincides with the topology of E.

When $q \geq p$ in r, that is, $q(x) \geq p(x)$ for every $x \in E$, we have the natural embedding

$$
T_{q, p}: E[q] \rightarrow E[p]
$$

which maps every $\underline{\underline{x}} \in E[q]$ to the p-class which contains elements of $\underline{\underline{x}}$. Obviously, this map is linear,

$$
p\left(T_{q, p}(\underline{\underline{x}})\right) \leq q(\underline{\underline{x}}) \text { for every } \quad \underline{\underline{x}} \in E[q]
$$

and

$$
T_{q, p} \circ S_{q}=S_{p} .
$$

Furthermore, it is evident that $T_{q, p}(E[q])$ is a dense subset of $E[p]$.
The following fact will be used frequently. For the proof, we refer to [3], p. 231.
(1.1). Let E be a locally convex space and Γ be a calibration for E. Then E is complete if and only if the following condition is satisfied: if $\underset{=}{x} \in E[p]$ for all $p \in \Gamma$ and

$$
T_{q, p}({\underset{\mathrm{x}}{q}})=\underline{\underline{x}}_{p} \text { whenever } q \geq p \text { in } \Gamma,
$$

then there exists $x \in E$ such that $S_{p}(x)=\frac{x_{p}}{\underline{p}}$ for all $p \in \Gamma$.

2. -extensions of multi-valued maps

Let E and F be locally convex spaces and let Γ be a calibration for (E, F). In other words, each $p \in \Gamma$ has the E-component p_{E} and the F-component p_{F} and

$$
\Gamma_{E}=\left\{p_{E}: p \in \Gamma\right\} \text { and } \Gamma_{F}=\left\{p_{F}: p \in \Gamma\right\}
$$

are calibrations for E and F respectively. We shall denote the embeddings $S_{p_{E}}$ and $S_{p_{F}}$ by the same S_{p}.

Let A be a multi-valued map of E into F, that is, A is a subset of the product $E \times E$. For $p \in \Gamma$ and $[x, y] \in A$, we set

$$
S_{p}([x, y])=\left[S_{p}(x), S_{p}(y)\right]
$$

Then

$$
S_{p}(A) \subset E[p] \times F[p],
$$

and we set

$$
A_{p}=\overline{S_{p}(A)}
$$

where the closure is taken in the product $E[p] \times F[p]$ of Banach spaces $E[p]$ and $F[p]$. Hence A_{p} is always closed and it is easy to see that $A_{p}=(\bar{A})_{p}$.
(2.1). $\bar{A}=\bigcap_{p \in \Gamma} S_{p}^{-1}\left(A_{p}\right)$.

Proof. Since $S_{p}(A) \subset A_{p}$, we have

$$
S_{p}(\bar{A}) \subset \overline{S_{p}(A)}=A_{p} \text { for all } p \in \Gamma
$$

To prove the converse, assume that there exists $[x, y] \in S_{p}^{-1}\left(A_{p}\right)$ for all $p \in \Gamma$ such that $[x, y] k \vec{A}$. Then, since Γ is directed, there exist $p \in \Gamma$ and $\alpha>0$ such that

$$
\left([x, y]+U_{E}(p, \alpha) \times U_{F}(p, \alpha)\right) \cap A=\emptyset,
$$

where $U_{E}(p, \alpha)$ and $U_{F}(p, \alpha)$ are open p-balls around zeros with radius α in the spaces E and F respectively. However, for this p, since $S_{p}([x, y]) \in A_{p}$, we can choose $\left[x_{i}, y_{i}\right] \in A$ such that $S_{p}\left(\left[x_{i}, y_{i}\right]\right) \rightarrow S_{p}([x, y])$, which is a contradiction.

As usual, the domain of A is denoted by $D(A)$.
(2.2). (i) $\overline{D(A)}=\cap_{p \in \Gamma} S_{p}^{-1}\left(\overline{D\left(A_{p}\right)}\right)$.
(ii) $\overline{D\left(A_{p}\right)}=\overline{S_{p}(\bar{D}(A))}$.

Proof. Let $x \in \overline{D(A)}$ and choose a net $\left(x_{\lambda}\right)$ in $D(A)$ such that $x_{\lambda} \rightarrow x$. Then $S_{p}\left(x_{\lambda}\right) \in D\left(A_{p}\right)$ and $S_{p}\left(x_{\lambda}\right) \rightarrow S_{p}(x)$. Hence $S_{p}(x) \in \overline{D\left(A_{p}\right)}$, which holds for every $p \in \Gamma$. Conversely, assume that $S_{p}(x) \in \overline{D\left(A_{p}\right)}$ for every $p \in \Gamma$ and $x \notin \overline{D(A)}$. We choose $p \in \Gamma$ and $\alpha>0$ such that

$$
\left(x+U_{E}(p, \alpha)\right) \cap D(A)=\emptyset
$$

For this p, since $S_{p}(x) \in \bar{D}\left(\overline{A_{p}}\right)$, we can find $x_{n} \in D\left(A_{p}\right)$ such that $\underline{\underline{x}}_{n} \rightarrow S_{p}(x)$. Since there exist $x_{n} \in D(A)$ such that

$$
p\left(S_{p}\left(x_{n}\right)-\underline{\underline{x}}_{n}\right)<1 / n
$$

we can conclude that $S_{p}\left(x_{n}\right) \rightarrow S_{p}(x)$, which is a contradiction. Thus (i) was proved. The proof of (ii) is similar.
(2.3). Assume that $q \geq p$ in Γ. Then, for every ${\underset{\sim}{x}}_{q} \in D\left(A_{q}\right)$,
(i) $T_{q, p} \stackrel{\frac{x}{q} q}{ } \in D\left(A_{p}\right)$,

Proof. For $\underline{\underline{x}}_{q} \in D\left(A_{q}\right)$, assume that $\left[\underline{\underline{x}}_{q}, \underline{\underline{y}}_{q}\right] \in A_{q}$ and choose $\left[x_{i}, y_{i}\right] \in A$ such that $S_{q}\left(\left[x_{i}, y_{i}\right]\right) \rightarrow\left[\underline{\underline{x}}_{q}, \underline{\underline{y}}_{q}\right]$. Then

$$
S_{p}\left(\left[x_{i}, y_{i}\right]\right)=T_{q, p} \circ S_{q}\left(\left[x_{i}, y_{i}\right]\right) \rightarrow T_{q, p}\left[\frac{\mathrm{x}_{q}}{{\underset{q}{q}}^{\mathrm{y}}} \underline{\left.\underline{\mathrm{y}_{q}}\right]},\right.
$$

where we used the following notation:

$$
T_{q, p}\left[\underline{\underline{x}}_{q}, \underline{\underline{y}}_{q}\right]=\left[T_{q, p} \underline{x}_{q}, T_{q, p} \underline{\mathrm{y}}_{q}\right] .
$$

Thus we have (i) and ($i i$).

3. Surjectivity

Let Γ be a calibration for (E, F) and $A \subset E \times F$ be a multivalued map. The range of A will be denoted by $R(A)$.
(3.1). Assume that
(i) E is complete,
(ii) A_{p}^{-1} is a single-valued map for every $p \in \Gamma$,
(iii) $R\left(A_{p}\right)=F[p]$ for every $p \in \Gamma$.

Then $\quad R(\bar{A})=F$.
Proof. Let $y \in F$. Then, by (iii), there exists $\underline{\underline{x}}_{p} \in D\left(A_{p}\right)$ such that $\left[x_{p}, S_{p}(y)\right] \in A_{p}$ for every $p \in \Gamma$. Assume that $q \geq p$ in Γ. Then, by (2.3),

$$
T_{q, p} A_{q}{ }_{q} \underline{x}_{q} \subset A_{p} T_{q, p}{ }_{q}^{\mathrm{x}}
$$

and, since $S_{q}(y) \in A_{q} \underline{\underline{x}}_{q}$,

$$
S_{p}(y)=T_{q, p} \circ S_{q}(y) \in A_{p} T_{q, p} \frac{\mathrm{x}}{q},
$$

or $\left[T_{q, p} \frac{\mathrm{x}}{q}, S_{p}(y)\right] \in A_{p}$. Then, by (ii), we have $T_{q, p} \frac{x_{q}}{}=\underline{\underline{x}}_{p}$. Therefore, by (i) and (1.1), there exists $x \in E$ such that $S_{p}(x)=\underline{\underline{x}}$ for all $p \in \Gamma$. Hence, by (2.1), $[x, y] \in \bar{A}$, or $y \in R(\bar{A})$.

The converse of (3.1) is given by the following.
(3.2). Assume that
(i) $R(A)=F$,
(ii) if $\left[x_{i}, y_{i}\right] \in A$ and $\left(y_{i}\right)$ is a p-Cauchy sequence for some $p \in \Gamma$, then $\left(x_{i}\right)$ is also p-Cauchy.

Then $R\left(A_{p}\right)=F[p]$.
Proof. Let $\underline{y} \in F[p]$ and $\left(y_{i}\right) \in \underline{y}$. Then, by (i), we can choose $x_{i} \in D(A)$ such that $\left[x_{i}, y_{i}\right] \in A$. By (ii), $\left(x_{i}\right)$ is p-Cauchy. Hence $\left(x_{i}\right) \in \underline{\underline{x}}$ for some $\underline{\underline{x}} \in E[p]$. Then it is the definition of A_{p} that $[\underline{\underline{x}}, \underline{\underline{y}}] \in A_{p}$.

4. 「-contractions

Let Γ be a calibration for E. Then a map f of a subset $D(f)$ of E into E is said to be a Γ-contraction if

$$
p(f(x)-f(y)) \leq p(x-y)
$$

for all $p \in \Gamma$ and $x, y \in D(f)$. When f is a linear map, it is a Γ-contraction if and only if $p(f(x)) \leq p(x)$ for all $p \in \Gamma$ and $x \in D(f)$. In this case, the following theorem of Moore [4] is of fundamental importance.
(4.1). Let E be a locally convex space and S be an algebraic semigroup of continuous linear maps of E into E. Then S is equicontinuous if and only if there is a calibration Γ for E such that S
consists of Γ-contractions.
From this theorem we can immediately obtain a sufficient condition for a nonlinear map f to be a Γ-contraction for some Γ. We recall that f is said to be Gâteaux-differentiable on $D(f)$ if, for each $a \in D(f)$ and $x \in E$, the limit

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1}(f(a+\varepsilon x)-f(a))=f^{\prime}(a)(x)
$$

exists and $f^{\prime}(a)$ is a continuous linear map on E.
(4.2). Let f be a Gâteaux-differentiable map on a convex subset $D(f)$ into E. If the set $\left\{f^{\prime}(x): x \in D(f)\right\}$ is contained in an equicontinuous semigroup, there exists a calibration Γ for E such that f is a Γ-contraction.

The proof is an immediate consequence of the mean-value theorem (see [5], p. 15).

When f is a Γ-contraction and $p \in \Gamma,\left(f\left(x_{i}\right)\right)$ is a p-Cauchy sequence whenever $\left(x_{i}\right)$ is a p-Cauchy sequence. Hence, for every $\underline{\underline{x}} \in \overline{S_{p}}(D(f))$, we can set

$$
f_{p}(\underline{\underline{x}})=\lim _{i \rightarrow \infty} S_{p}\left(f\left(x_{i}\right)\right)
$$

Then f_{p} is a contraction of $\overline{S_{p}(D(f)]}$ into $E[p]$ and

$$
f_{p} \circ S_{p}=S_{p} \circ f
$$

We shall use the following fact later.
(4.3). Let f be a Γ-contraction and $p \in \Gamma . I f x_{i} \in D(f)$ and $S_{p}\left(x_{i}\right) \rightarrow \underline{\underline{x}}$ for some $\underline{\underline{x}} \in E[p]$, then $S_{p}\left(f\left(x_{i}\right)\right) \rightarrow f_{p}(\underline{\underline{x}})$.

5. F -accretive maps

Let Γ be a calibration for E. We shall also denote by Γ the calibration for (E, E) with the identical components.

A map $A \subset E \times E$ is said to be Γ-accretive if, for every $\lambda>0$, $(1+\lambda A)^{-1}$ is a single-valued Γ-contraction. If, furthermore,
$R(1+\lambda A)=E$, then A is said to be m - Γ-accretive.
(5.1). For any map $A \subset E \times E$ and $\lambda>0$,
(i) $(1+\lambda A)_{p}=1+\lambda A_{p}$ for $a \downarrow \tau p \in \Gamma$,
(ii) $\left((1+\lambda A)^{-1}\right)_{p}=\left(1+\lambda A_{p}\right)^{-1}$ for $a l 乙 \quad p \in \Gamma$.

Proof. If $[\underline{\underline{x}}, \underline{\underline{y}}] \in(1+\lambda A)_{p}$, we can choose $\left[x_{i}, y_{i}\right] \in 1+\lambda A$ such that $S_{p}\left(\left[x_{i}, y_{i}\right]\right) \rightarrow[\underline{x}, \underline{y}]$. Then $\left[x_{i}, \lambda^{-1}\left(y_{i}-x_{i}\right)\right] \in A$ and

$$
S_{p}\left(\left[x_{i}, \lambda^{-1}\left(y_{i}-x_{i}\right)\right]\right) \rightarrow\left[\underline{x}, \lambda^{-1}(\underline{\underline{y}-\underline{x}})\right]
$$

Hence $\left[\underline{x}, \lambda^{-1}(\underline{\underline{y}}-\underline{\underline{x}})\right] \in A_{p}$ which implies $[\underline{\underline{x}}, \underline{y}] \in 1+\lambda A_{p}$. The converse and (ii) can be proved similarly.

We are going to express the Γ-accretiveness of A in terms of the accretiveness of the family $\left\{A_{p}: p \in \Gamma\right\}$ of maps on Banach spaces.
(5.2). A is Γ-accretive if and only if every A_{p} is accretive.

Proof. Assume that A is Γ-accretive and $p \in \Gamma$. Then, for $J_{\lambda}=(1+\lambda A)^{-1}$, we have

$$
p\left(J_{\lambda} x-J_{\lambda} y\right) \leq p(x-y) \quad \text { for } \quad x, y \in R(1+\lambda A)
$$

Let $\underline{\underline{x}}, \underline{\underline{y}} \in R\left(1+\lambda A_{p}\right)$. Then, by (5.1) (i), there exist $x_{i}, y_{i} \in R(1+\lambda A)$ such that

$$
S_{p}\left(x_{i}\right) \rightarrow \underline{\underline{x}} \text { and } S_{p}\left(y_{i}\right) \rightarrow \underline{y}
$$

Then, by (4.3), we have

$$
\left.S_{p}\left(J_{\lambda} x_{i}\right) \rightarrow\left(J_{\lambda}\right)_{p}(\underline{\underline{x}}) \text { and } S_{p}\left(J_{\lambda} y_{i}\right) \rightarrow\left(J_{\lambda}\right)_{p} \underline{(\underline{x}}\right)
$$

Hence

$$
\begin{aligned}
p\left(\left(J_{\lambda}\right)_{p}(\underline{\underline{x}})-\left(J_{\lambda}\right)_{p}(\underline{\underline{y}})\right) & =\lim _{i \rightarrow \infty} p\left(J_{\lambda} x_{i}-J_{\lambda} y_{i}\right) \\
& \leq \lim _{i \rightarrow \infty} p\left(x_{i}-y_{i}\right)=p(\underline{\underline{x}} \underline{\underline{y}})
\end{aligned}
$$

Since $\left(J_{\lambda}\right)_{p}=\left(J_{p}\right)_{\lambda}$ by (5.1) (ii), we have proved that A_{p} is accretive. Conversely, assume that every A_{p} is accretive and $x, y \in R(1+\lambda A)$. Then, for every $p \in \Gamma, S_{p}(x), S_{p}(y) \in R\left(1+\lambda A_{p}\right)$. Therefore,

$$
p\left(\left(J_{p}\right)_{\lambda} S_{p}(x)-\left(J_{p}\right)_{\lambda} S_{p}(y)\right) \leq p(x-y)
$$

However, we always have $\left(J_{p}\right)_{\lambda} \circ S_{p}=S_{p} \circ J$. Hence

$$
p\left(J_{\lambda} x-J \lambda^{y}\right) \leq p(x-y)
$$

which shows that A is Γ-accretive.
(5.3). (i) If A is m-Г-accretive, every A_{p} is m-accretive.
(ii) If E is complete, A is closed and every A_{p} is m-accretive, then A is m-Г-accretive.

Proof. (i) By the assumption, $R(1+\lambda A)=E$. To prove that the condition (3.2) (ii) is satisfied for $1+\lambda A$, assume that $\left[x_{i}, y_{i}\right] \in 1+\lambda A$ and $\left(y_{i}\right)$ is p-Cauchy. Then, since $x_{i}=J_{\lambda} y_{i}$ and J_{λ} is a Γ-contraction, $\left(x_{i}\right)$ is also p-Cauchy. Hence, by (3.2), we have $R\left(1+\lambda A_{p}\right)=E[p]$.
(ii) We prove that the conditions (i), (ii) and (iii) in (3.1) are satisfied for $1+\lambda A$. However (i) is a part of our assumptions and ($i i$) is included in the definition of A_{p} being accretive. Finally, (iii) is satisfied by $(1+\lambda A)_{p}$. Thus we have $R(\overline{1+\lambda A})=E$. However, $\overline{1+\lambda A}=1+\lambda \bar{A}$ and, since A is closed, we arrive at $R(1+\lambda A)=E$.

The following facts are immediate consequences of the definition of m - Γ-accretiveness and the fact that m - Γ-accretive maps are "maximal"「-accretive.
(5.4). (i) A-「-accretive subset is closed in $E \times E$.
(ii) If A is m-r-accretive and $x \in D(A)$, then $A x$ is closed.

6. Some function spaces

Let E be a locally convex space equipped with a calibration Γ.

For a positive number T, we shall denote the closed interval $[0, T]$ by I, and let $C(I, E)$ be the set of all continuous functions of I into E. Then, for each $p \in \Gamma$ and $u \in C(I, E), p \circ u$ is a real-valued continuous function defined on the compact subset I. Therefore, we can set

$$
p_{t}(u)=\sup \{p(u(s)): 0 \leq s \leq t\}
$$

for $t \in I$, and we set $p^{\infty}(u)=p_{T}^{\infty}(u)$ for $u \in C(I, E)$. Then the set

$$
\Gamma^{\infty}=\left\{p^{\infty}: p \in \Gamma\right\}
$$

defines a locally convex topology on $C(I, E)$ and it is complete if E is complete.

Let A be a multi-valued map on E and we denote by $C(I, \overline{D(A)})$ the set of all continuous functions of I into $\overline{D(A)}$. Then it is a closed subset of $C(I, E)$.

We shall denote the p-completion of $C(I, E)$ by $C(I, E)[p]$. Then we have the natural embedding

$$
S_{p}: C(I, E) \rightarrow C(I, E)[p]
$$

We now set

$$
c\left(I, \overline{D(A))}[p]=\overline{S_{p}(C(I, \overline{D(A)}))}\right.
$$

(6.1). If $\overline{D(A)}$ is convex, $C(I, \overline{D(A)})[p]=C\left(I, \bar{D}\left(A_{p}\right)\right)$.

Proof. By (2.2) (ii), we have

$$
\left.S_{p}(C(I, \overline{D(A)})) \subset C\left(I, \overline{D\left(A_{p}\right.}\right)\right)
$$

and $C\left(I, \overline{D\left(A_{p}\right)}\right)$ is closed. Hence we only need to show that $C\left(I, \bar{D}\left(A_{p}\right)\right) \subset C(I, \overline{D(A)})[p]$. Now let $\left.\underline{\underline{\mathrm{v}}} \in C\left(I, \overline{D\left(A_{p}\right.}\right)\right)$ and we set

$$
\underline{\underline{v}}_{n}(t)=\frac{k T-n t}{k T} \underline{a}_{k-1}+\frac{n t}{k T} \underline{a}_{k} \text { if } \frac{(k-1) T}{n} \leq t \leq \frac{k T}{n}
$$

for $k=1,2, \ldots, n$, where

$$
\vec{a}_{k}=\underline{\underline{v}}(k T / n) \text { for } k=0,1, \ldots, n .
$$

Then, since $\overline{D\left(A_{p}\right)}$ is convex, $\underset{\ddot{v}_{n}}{\mathrm{v}} \in C\left(I, \overline{D\left(A_{p}\right)}\right)$ and $\lim _{n \rightarrow \infty} \underline{\mathrm{v}}_{n}=\underline{\underline{\mathrm{v}}}$ in the Banach space $C(I, E[p])$. Since $\underline{\underline{a}}_{k} \in \bar{D}\left(A_{p}\right)$, we can choose $a_{k, i} \in D(A)$ such that $S_{p}\left(a_{k, i}\right) \rightarrow a_{k}$ for $k=0,1, \ldots, n$, and we define functions $v_{n, i}: I \rightarrow E$ by

$$
v_{n, i}(t)=\frac{k T-n t}{k T} a_{k-1, i}+\frac{n t}{k T} a_{k, i} \quad \text { if } \quad \frac{(k-1) T}{n} \leq t \leq \frac{k T}{n}
$$

Then, since $\overline{D(A)}$ is convex, $v_{n, i} \in C(I, \overline{D(A)})$ and it is easy to see that

$$
p^{\infty}\left(S_{p} \circ v_{n, i}-\underline{v}_{n}\right) \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty
$$

This means that $\left(v_{n, i}\right)$ is a p-Cauchy sequence in $C(I, \overline{D(A)})$ and $\left(v_{n, i}\right) \in \underline{\underline{v}}_{n}$. Hence $\underline{\underline{v}}_{n} \in C\left(I, \overline{\left.D_{1}^{\prime} A\right)}\right][p]$. Since $C(I, \overline{D(A)})[p]$ is closed, $\quad \underline{\underline{v}} \in C(I, \overline{D(A)})[p]$.

We note that, when A is an m-accretive map on a Banach space which, together with its dual, is uniformly convex, then $\overline{D(A)}$ is conves. (See Barbu [1], p. 77, Proposition 3.6.) We shall call a calibration Γ dually uniformly convex if, for every $p \in \Gamma, E[p]$ and its dual are uniformly convex. Obviously $L_{l o c}^{p}(R)$ admits such a calibration if $l<p<\infty$. It is also known that every nuclear space admits a Hilbert calibration which is obviously dually uniformly convex.

Let, as before, E be a locally convex space equipped with a calibration Γ, and let $L^{1}(I, E)$ be the set of all integrable functions of I into E. Then, for each $p \in \Gamma$ and $u \in L^{1}(I, E)$, we can set

$$
p_{t}^{1}(u)=\int_{0}^{t} p(u(s)) d s \quad \text { for } \quad t \in I
$$

and we also set $p^{I}(u)=p_{T}^{I}(u)$. Then the set

$$
\Gamma^{1}=\left\{p^{1}: p \in \Gamma\right\}
$$

defines a locally convex topology on $L^{1}(I, E)$ and it is complete if E is complete. In the same manner as in the case of $C(I, \overline{D(A))}$, we can
prove that

$$
L^{\perp}(I, E)[p]=L^{\perp}(I, E[p]) \text { for every } p \in \Gamma
$$

In the proof of $L^{\perp}(I, E[p]) \subset L^{1}(I, E)[p]$ we can approximate elements of $L^{1}(I, E[p])$ by step functions which are, as can be proved easily, contained in $L^{1}(I, E)[p]$.

7. A result of Crandall and Nohel

Let E be a Banach space and $A \subset E \times E$ be an m-accretive map. For $a \in \overline{D(A)}$, let us consider the following initial value problem:

$$
\left\{\begin{array}{l}
\frac{d}{d t} u(t)+A u(t) \rightarrow G u(t) \quad(t \in I) \tag{*}\\
u(0)=a
\end{array}\right.
$$

where

$$
G: C(I, \widetilde{D(A)}) \rightarrow L^{\perp}(I, E)
$$

It has been proved in [2] that the problem (*) has a unique solution in $C(I, \overline{D(A)})$ if there exists $\gamma \in L^{1}(I, R)$ such that

$$
\begin{equation*}
p_{t}^{\perp}(G(u)-G(v)) \leq \int_{0}^{t} \gamma(s) p_{s}^{\infty}(u-v) d s \tag{**}
\end{equation*}
$$

for all $u, v \in C(I, \overline{D(A)})$ and $t \in I$, where p denotes the norm of E.
(7.1). Let E be a complete locally convex space equipped with a dually uniformly convex calibration Γ. If $A \subset E \times E$ is an $m-\Gamma-$ accretive map and the map G satisfies the condition (**) for every $p \in \Gamma$, then, for each $a \in \overline{D(A)}$, the initial value problem (*) has a wique solution in $C(I, \overline{D(A))}$.

Proof. The condition (**) implies

$$
p^{\perp}(G(u)-G(v)) \leq\left(\int_{0}^{T} r(s) d s\right) p^{\infty}(u-v)
$$

for $u, v \in C(I, \overline{D(A)})$. Hence $\left(G\left(u_{i}\right)\right)$ is p^{l}-Cauchy whenever $\left(u_{i}\right)$ is p^{∞}-Cauchy. Therefore, by (6.1), we can define a map

$$
G_{p}: C\left(I, \overline{D\left(A_{p}\right)}\right) \rightarrow L^{1}(I, E[p])
$$

such that

$$
G_{p}\left(S_{p} \circ u\right)=S_{p} \circ G(u) \text { for every } u \in C(I, \overline{D(A)}),
$$

and, if $q \geq p$ in Γ,

$$
T_{q, p}\left(G_{q}\left({\underset{q}{q}}^{q}\right)(t)\right)=G_{p}\left(T_{q, p} \circ \underline{\underline{u}}_{q}\right)(t)
$$

for all $\underline{\underline{u}}_{q} \in C\left(I, \bar{D}\left(A_{p}\right)\right)$ and $t \in I$. Furthermore, G_{p} satisfies the condition (**). Hence, for each $p \in \Gamma$, the initial value problem

$$
\left\{\begin{array}{l}
\frac{d}{d t} \underline{\underline{u}}(t)+A_{p} \underline{\underline{u}}(t) \rightarrow G_{p}(\underline{\underline{u}})(t) \quad(t \in I) \\
\underline{\underline{u}}(0)=S_{p}(a)
\end{array}\right.
$$

has a unique solution \underline{u}_{p} in $C\left(I, \bar{D}\left(A_{p}\right)\right)$. Then, if $q \geq p$ in Γ,

$$
T_{q, p} \underline{u}_{q}(0)=T_{q, p}\left(S_{q}(a)\right)=S_{p}(a)
$$

and

$$
T_{q, p}\left(\frac{d}{d \bar{t}} \underline{\underline{u}}_{q}(t)\right)+T_{q, p}\left(A_{q} \underline{\underline{u}}_{q}(t)\right) \ni T_{q, p}\left(G_{q}\left(\underline{u}_{q}\right)(t)\right),
$$

which, by (2.3), implies

$$
\frac{d}{d t} T_{q, p} \underline{\underline{u}}_{q}(t)+A_{p} T_{q, p} \underline{\underline{u}}_{q}(t) \ni G_{p}\left(T_{q, p} \circ \underline{\underline{u}}_{q}\right)(t) \quad(t \in I) .
$$

Hence, by the unicity of the solution,

$$
T_{q, p} \underline{u}_{q}(t)=\underline{u}_{p}(t) \text { for all } t \in I .
$$

Since E is complete, we can apply (1.1) to find $u(t) \in E$ such that

$$
\underline{u}_{p}(t)=S_{p}(u(t)) \text { for all } p \in \Gamma \text { and } t \in I .
$$

Then $u(t)$ is continuous with respect to t and, by (2.2),

$$
u(t) \in \cap_{p \in \Gamma} S_{p}^{-1}\left(\overline{D\left(A_{p}\right)}\right)=\overline{D(A)}
$$

Hence $u \in C(I, \overline{D(A)})$ and, furthermore,

$$
S_{p}\left\{\frac{d}{d t} u(t)+A u(t)\right\} \rightarrow S_{p}(G(u)(t)) \text { for all } t \in I \text { and } p \in \Gamma
$$

Then, by the lemma which will be proved below, we have

$$
\frac{d}{d t} u(t)+A u(t) \ni G(u)(t) \text { for all } t \in I
$$

The lemma referred to in the above is the following.
(7.2). Assume that B is a closed subset of E and

$$
S_{p}(x) \in S_{p}(B) \text { for every } p \in \Gamma
$$

Then $x \in B$.
Proof. For each $p \in \Gamma$ we choose $b_{p} \in B$ such that $S_{p}(x)=S_{p}\left(b_{p}\right)$, which means that $p\left(x-b_{p}\right)=0$. Then the net $\left(b_{p}\right)$ converges to x. Since B is closed, we have $x \in B$.

References

[1] Viorol Barbu, Nonlinear semigroups and differential equations in Banach spaces (Noordhoff, Leyden, The Netherlands, 1976).
[2] M.G. Crandall and J.A. Nohel, "An abstract functional differential equation and a related nonlinear Volterra equation", Israel J. Math. 29 (1978), 313-328.
[3] G. Köthe, Topological vector spaces I (Die Grundlehren der mathematischen Wissenschaften, 159. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[4] Robert T. Moore, "Banach algebras of operators in locally convex spaces", Bull. Amer. Math. Soc. 75 (1969), 68-73.
[5] Sadayuki Yamamuro, Differential calculus in topological linear spaces (Lecture Notes in Mathematics, 374. Springer-Verlag, Berlin, Heidelberg, New York, 1974).
[6] Sadayuki Yamamuro, A theory of differentiation in locally convex spaces (Memoirs of the American Mathematical Society, 212. American Mathematical Society, Providence, Rhode Island, 1979).
[7] Sadayuki Yamamuro, "Notes on the inverse mapping theorem in locally convex spaces", BulZ. Austral. Math. Soc. 21 (1980), 419-461.
[8] Sadayuki Yamamuro, "On the surjectivity of linear maps on locally convex spaces", J. Austral. Math. Soc. Ser. A 32 (1982), 187-211.

Department of Mathematics, Institute of Advanced Studies, Australian National University, PO Box 4, Canberra, ACT 2600, Australia.

[^0]: Received 19 November 1982. This work was completed while the author stayed at the Mathematics Research Center, University of Wisconsin. The author expresses gratitude for their hospitality.

