ON A FUNCTIONAL DIFFERENTIAL EQUATION IN LOCALLY CONVEX SPACES

Sadayuki Yamamuro

The notion of accretiveness for multi-valued nonlinear maps is defined in locally convex spaces and it is used to obtain a locally convex space version of a result of M.G. Crandall and J.A. Nohel.

0. Introduction

The aim of this note is to obtain a locally convex version of a result of Crandall and Nohe! [2] about the existence of a unique solution of an initial value problem, where the functions involved have their values in a Banach space. The differential equation in the problem contains a multivalued map on this Banach space. We shall replace this Banach space with a class of locally convex spaces. To carry out this project, we shall use a method which has been introduced in [6] and developed in [7] and [8]. We begin with a brief account of this method.

1. Γ-completions of locally convex spaces

Let *E* be a vector space and *p* be a semi-norm of *E*. A sequence (x_i) in *E* is said to be *p*-Cauchy if $p(x_i - x_j) \neq 0$ as $i, j \neq \infty$. Two *p*-Cauchy sequences (x_i) and (y_i) are said to be *equivalent* if $p(x_i - y_i) \neq 0$ as $i \neq \infty$.

Received 19 November 1982. This work was completed while the author stayed at the Mathematics Research Center, University of Wisconsin. The author expresses gratitude for their hospitality.

Let (x_i) be a *p*-Cauchy sequence and \underline{x} be the set of all *p*-Cauchy sequences in *E* which are equivalent to (x_i) . Such a set \underline{x} is called a *p*-class on *E*. The set of all *p*-classes on *E* will be denoted by E[p] and it will be called the *p*-completion of *E*. It is a vector space when $\alpha \underline{x} + \beta \underline{y}$ is defined to be the *p*-class which contains the sequence $(\alpha x_i + \beta y_i)$ for some $(x_i) \in \underline{x}$ and $(y_i) \in \underline{y}$. The zero element of E[p] is, therefore, the *p*-class which contains a *p*-null sequence.

For $\underline{x} \in E[p]$, we define

$$p(\underline{x}) = \lim_{i \to \infty} p(x_i) \text{ for } (x_i) \in \underline{x}$$

Then the value $p(\underline{x})$ does not depend on the choice of (x_i) from \underline{x} . It is obvious that p is a norm on E[p] and, with this norm, E[p] is a Banach space.

For each $x \in E$, let $S_p(x)$ be the element of E[p] which contains the *p*-Cauchy sequence whose terms are identical to x. Then we have

$$p(S_p(x)) = p(x)$$
 for every $x \in E$.

For $\underline{x} \in E[p]$ and $(x_i) \in \underline{x}$, we have

$$\lim_{i\to\infty} p(S_p(x_i) - \underline{x}) = 0 ,$$

which shows that $S_p(E)$ is a dense subset of E[p].

Let E be a locally convex space. A directed set Γ of semi-norms on E which induces the topology of E will be called a *calibration* for E. Then, for each $p \in \Gamma$, we have the *p*-completion E[p] of E. The family $\{E[p] : p \in \Gamma\}$ of Banach spaces will be called the Γ -completion of E. Thus we have a projective system

$$S_p: E \neq E[p]$$
 for all $p \in \Gamma$.

It is easy to see that the projective topology on E defined by this system coincides with the topology of E.

When $q \ge p$ in Γ , that is, $q(x) \ge p(x)$ for every $x \in E$, we have the natural embedding A functional differential equation

$$T_{q,p} : E[q] \rightarrow E[p] ,$$

which maps every $\underline{x} \in E[q]$ to the *p*-class which contains elements of \underline{x} . Obviously, this map is linear,

$$p(T_{q,p}(\underline{x})) \leq q(\underline{x}) \text{ for every } \underline{x} \in E[q]$$

and

 $T_{q,p} \circ S_q = S_p$.

Furthermore, it is evident that $T_{q,p}(E[q])$ is a dense subset of E[p].

The following fact will be used frequently. For the proof, we refer to [3], p. 231.

(1.1). Let E be a locally convex space and Γ be a calibration for E. Then E is complete if and only if the following condition is satisfied: if $\underline{x} \in E[p]$ for all $p \in \Gamma$ and

$$T_{q,p}(\underline{x}_{q}) = \underline{x}_{p}$$
 whenever $q \ge p$ in Γ ,

then there exists $x \in E$ such that $S_p(x) = \underline{x}_p$ for all $p \in \Gamma$.

2. Γ-extensions of multi-valued maps

Let E and F be locally convex spaces and let Γ be a calibration for (E, F). In other words, each $p \in \Gamma$ has the *E*-component p_E and the *F*-component p_F and

$$\Gamma_E = \{ p_E : p \in \Gamma \} \text{ and } \Gamma_F = \{ p_F : p \in \Gamma \}$$

are calibrations for E and F respectively. We shall denote the embeddings $\underset{p_{F}}{S}$ and $\underset{p_{F}}{S}$ by the same $\underset{p}{S}$.

Let A be a multi-valued map of E into F, that is, A is a subset of the product $E \times F$. For $p \in \Gamma$ and $[x, y] \in A$, we set

$$S_p([x, y]) = [S_p(x), S_p(y)] .$$

Then

$$S_p(A) \subset E[p] \times F[p]$$

and we set

$$A_p = \overline{S_p(A)} ,$$

where the closure is taken in the product $E[p] \times F[p]$ of Banach spaces E[p] and F[p]. Hence A_p is always closed and it is easy to see that $A_p = (\overline{A})_p$.

$$(2.1). \quad \overline{A} = \bigcap_{p \in \Gamma} S_p^{-1}(A_p) \quad .$$

Proof. Since $S_p(A) \subset A_p$, we have

$$S_p(\overline{A}) \subset \overline{S_p(A)} = A_p \text{ for all } p \in \Gamma.$$

To prove the converse, assume that there exists $[x, y] \in S_p^{-1}(A_p)$ for all $p \in \Gamma$ such that $[x, y] \notin \overline{A}$. Then, since Γ is directed, there exist $p \in \Gamma$ and $\alpha > 0$ such that

$$([x, y]+U_E(p, \alpha) \times U_F(p, \alpha)) \cap A = \emptyset$$

where $U_E(p, \alpha)$ and $U_F(p, \alpha)$ are open *p*-balls around zeros with radius α in the spaces *E* and *F* respectively. However, for this *p*, since $S_p([x, y]) \in A_p$, we can choose $[x_i, y_i] \in A$ such that $S_p([x_i, y_i]) \neq S_p([x, y])$, which is a contradiction.

As usual, the domain of A is denoted by D(A) .

(2.2). (i)
$$\overline{D(A)} = \bigcap_{p \in \Gamma} S_p^{-1}(\overline{D(A_p)})$$

(ii) $\overline{D(A_p)} = \overline{S_p(D(A))}$.

Proof. Let $x \in \overline{D(A)}$ and choose a net (x_{λ}) in D(A) such that $x_{\lambda} \neq x$. Then $S_p(x_{\lambda}) \in D(A_p)$ and $S_p(x_{\lambda}) \neq S_p(x)$. Hence $S_p(x) \in \overline{D(A_p)}$, which holds for every $p \in \Gamma$. Conversely, assume that $S_p(x) \in \overline{D(A_p)}$ for every $p \in \Gamma$ and $x \notin \overline{D(A)}$. We choose $p \in \Gamma$ and $\alpha > 0$ such that

$$(x+U_E(p, \alpha)) \cap D(A) = \emptyset$$

272

For this p, since $S_p(x) \in \overline{D(A_p)}$, we can find $\underline{x}_n \in D(A_p)$ such that $\underline{x}_n \neq S_p(x)$. Since there exist $x_n \in D(A)$ such that

 $p(S_p(x_n) - \underline{x}_n) < 1/n$,

we can conclude that $S_p(x_n) \neq S_p(x)$, which is a contradiction. Thus (i) was proved. The proof of (ii) is similar.

(2.3). Assume that $q \ge p$ in Γ . Then, for every $\underline{x}_q \in D(A_q)$,

- (i) $T_{q,p=q} \in D(A_p)$,
- $(ii) \quad T_{q,p} \stackrel{A}{q=q} \subset \stackrel{A}{p} \stackrel{T}{q,p=q} \cdot$

Proof. For $\underline{x}_q \in D(A_q)$, assume that $[\underline{x}_q, \underline{y}_q] \in A_q$ and choose $[x_i, y_i] \in A$ such that $S_q([x_i, y_i]) \neq [\underline{x}_q, \underline{y}_q]$. Then

$$S_p([x_i, y_i]) = T_{q,p} \circ S_q([x_i, y_i]) \neq T_{q,p}[\underline{x}_q, \underline{y}_q] ,$$

where we used the following notation:

$$T_{q,p}[\underline{x}_{q}, \underline{y}_{q}] = [T_{q,p}\underline{x}_{q}, T_{q,p}\underline{y}_{q}] .$$

Thus we have (i) and (ii).

3. Surjectivity

Let Γ be a calibration for (E, F) and $A \subset E \times F$ be a multivalued map. The range of A will be denoted by R(A).

- (3.1). Assume that
 - (i) E is complete,

(ii)
$$A_p^{-1}$$
 is a single-valued map for every $p \in \Gamma$,
(iii) $R(A_p) = F[p]$ for every $p \in \Gamma$.

Then $R(\overline{A}) = F$.

Proof. Let $y \in F$. Then, by (iii), there exists $\underline{x}_p \in D(A_p)$ such that $[\underline{x}_p, S_p(y)] \in A_p$ for every $p \in \Gamma$. Assume that $q \ge p$ in Γ . Then, by (2.3),

 ${}^{T}_{q}, {}^{p}_{q} {}^{A}_{q} {}^{\underline{x}}_{q} \subset {}^{A}_{p} {}^{T}_{q}, {}^{\underline{x}}_{p} {}^{\underline{x}}_{q}$

and, since $S_q(y) \in A_{\underline{x}}$,

 $S_p(y) = T_{q,p} \circ S_q(y) \in A_p T_{q,p} \xrightarrow{X} q$

or $[T_{q,p} \xrightarrow{x}_{q}, S_{p}(y)] \in A_{p}$. Then, by *(ii)*, we have $T_{q,p} \xrightarrow{x}_{q} = \xrightarrow{x}_{p}$. Therefore, by *(i)* and (1.1), there exists $x \in E$ such that $S_{p}(x) = \xrightarrow{x}_{p}$ for all $p \in \Gamma$. Hence, by (2.1), $[x, y] \in \overline{A}$, or $y \in R(\overline{A})$.

The converse of (3.1) is given by the following.

- (3.2). Assume that
- (i) R(A) = F,
- (ii) if $[x_i, y_i] \in A$ and (y_i) is a p-Cauchy sequence for some $p \in \Gamma$, then (x_i) is also p-Cauchy.

Then $R(A_p) = F[p]$.

Proof. Let $\underline{y} \in F[p]$ and $(y_i) \in \underline{y}$. Then, by (i), we can choose $x_i \in D(A)$ such that $[x_i, y_i] \in A$. By (ii), (x_i) is p-Cauchy. Hence $(x_i) \in \underline{x}$ for some $\underline{x} \in E[p]$. Then it is the definition of A_p that $[\underline{x}, \underline{y}] \in A_p$.

4. Γ-contractions

Let Γ be a calibration for E. Then a map f of a subset D(f) of E into E is said to be a Γ -contraction if

$$p(f(x)-f(y)) \leq p(x-y)$$

for all $p \in \Gamma$ and $x, y \in D(f)$. When f is a linear map, it is a Γ -contraction if and only if $p(f(x)) \leq p(x)$ for all $p \in \Gamma$ and $x \in D(f)$. In this case, the following theorem of Moore [4] is of fundamental importance.

(4.1). Let E be a locally convex space and S be an algebraic semigroup of continuous linear maps of E into E. Then S is equicontinuous if and only if there is a calibration Γ for E such that S consists of Γ -contractions.

From this theorem we can immediately obtain a sufficient condition for a nonlinear map f to be a Γ -contraction for some Γ . We recall that fis said to be Gâteaux-differentiable on D(f) if, for each $a \in D(f)$ and $x \in E$, the limit

$$\lim_{\varepsilon \to 0} \varepsilon^{-1} (f(a + \varepsilon x) - f(a)) = f'(a)(x)$$

exists and f'(a) is a continuous linear map on E .

(4.2). Let f be a Gâteaux-differentiable map on a convex subset D(f) into E. If the set $\{f'(x) : x \in D(f)\}$ is contained in an equicontinuous semigroup, there exists a calibration Γ for E such that f is a Γ -contraction.

The proof is an immediate consequence of the mean-value theorem (see [5], p. 15).

When f is a Γ -contraction and $p \in \Gamma$, $(f(x_i))$ is a p-Cauchy sequence whenever (x_i) is a p-Cauchy sequence. Hence, for every $\underline{x} \in \overline{S_p(D(f))}$, we can set

$$f_p(\underline{x}) = \lim_{i \to \infty} S_p(f(x_i))$$

Then f_p is a contraction of $\overline{S_p(D(f))}$ into E[p] and

 $f_p \circ S_p = S_p \circ f$.

We shall use the following fact later.

(4.3). Let f be a Γ -contraction and $p \in \Gamma$. If $x_i \in D(f)$ and $S_p(x_i) \neq \underline{x}$ for some $\underline{x} \in E[p]$, then $S_p(f(x_i)) \neq f_p(\underline{x})$.

5. **Graceretive** maps

Let Γ be a calibration for E. We shall also denote by Γ the calibration for (E, E) with the identical components.

A map $A \subseteq E \times E$ is said to be Γ -accretive if, for every $\lambda > 0$, $(1+\lambda A)^{-1}$ is a single-valued Γ -contraction. If, furthermore,
$$\begin{split} R(1+\lambda A) &= E \text{, then } A \text{ is said to be } m-\Gamma-accretive. \\ & (5.1). \text{ For any map } A \subseteq E \times E \text{ and } \lambda > 0 \text{,} \\ & (i) \quad (1+\lambda A)_p = 1 + \lambda A_p \text{ for all } p \in \Gamma \text{,} \\ & (ii) \quad ((1+\lambda A)^{-1})_p = (1+\lambda A_p)^{-1} \text{ for all } p \in \Gamma \text{.} \\ & \text{Proof. If } [\underline{x}, \underline{y}] \in (1+\lambda A)_p \text{, we can choose } [x_i, y_i] \in 1+\lambda A \text{ such } \\ & \text{that } S_p([x_i, y_i]) \rightarrow [\underline{x}, \underline{y}] \text{. Then } [x_i, \lambda^{-1}(y_i - x_i)] \in A \text{ and} \\ & S_p([x_i, \lambda^{-1}(y_i - x_i)]) \rightarrow [\underline{x}, \lambda^{-1}(\underline{y} - \underline{x}_i)] \text{.} \end{split}$$

Hence $[\underline{x}, \lambda^{-1}(\underline{y}-\underline{x})] \in A_p$ which implies $[\underline{x}, \underline{y}] \in 1+\lambda A_p$. The converse and *(ii)* can be proved similarly.

We are going to express the Γ -accretiveness of A in terms of the accretiveness of the family $\{A_p : p \in \Gamma\}$ of maps on Banach spaces.

(5.2). A is Γ -accretive if and only if every A_p is accretive.

Proof. Assume that A is $\Gamma\text{-accretive}$ and $p\in\Gamma$. Then, for $J_\lambda=\left(1\!+\!\lambda A\right)^{-1}\ , \ \text{we have}$

$$p(J_{\lambda}x-J_{\lambda}y) \leq p(x-y)$$
 for $x, y \in R(1+\lambda A)$.

Let $\underline{x}, \underline{y} \in R(1+\lambda A_p)$. Then, by (5.1) (*i*), there exist $x_i, y_i \in R(1+\lambda A)$ such that

$$S_p(x_i) \rightarrow \underline{x} \text{ and } S_p(y_i) \rightarrow \underline{y}$$
.

Then, by (4.3), we have

$$S_p(J_\lambda x_i) \rightarrow (J_\lambda)_p(\underline{x}) \text{ and } S_p(J_\lambda y_i) \rightarrow (J_\lambda)_p(\underline{y}) .$$

Hence

$$\begin{split} p\left(\left(J_{\lambda}\right)_{p}(\underline{x}) - \left(J_{\lambda}\right)_{p}(\underline{y})\right) &= \lim_{i \to \infty} p\left(J_{\lambda}x_{i} - J_{\lambda}y_{i}\right) \\ &\leq \lim_{i \to \infty} p\left(x_{i} - y_{i}\right) = p(\underline{x} - \underline{y}) \end{split}$$

Since $(J_{\lambda})_p = (J_p)_{\lambda}$ by (5.1) (*ii*), we have proved that A_p is accretive. Conversely, assume that every A_p is accretive and $x, y \in R(1+\lambda A)$. Then, for every $p \in \Gamma$, $S_p(x)$, $S_p(y) \in R(1+\lambda A_p)$. Therefore,

$$p((J_p)_{\lambda}S_p(x)-(J_p)_{\lambda}S_p(y)) \leq p(x-y)$$
.

However, we always have $(J_p)_{\lambda} \circ S_p = S_p \circ J$. Hence $p(J_1x-J_1y) \leq p(x-y)$,

which shows that
$$A$$
 is Γ -accretive.

(5.3). (i) If A is m- Γ -accretive, every A is m-accretive. (ii) If E is complete, A is closed and every A is m-accretive, then A is m- Γ -accretive.

Proof. (i) By the assumption, $R(1+\lambda A) = E$. To prove that the condition (3.2) (ii) is satisfied for $1 + \lambda A$, assume that $[x_i, y_i] \in 1+\lambda A$ and (y_i) is *p*-Cauchy. Then, since $x_i = J_\lambda y_i$ and J_λ is a Γ -contraction, (x_i) is also *p*-Cauchy. Hence, by (3.2), we have $R(1+\lambda A_p) = E[p]$.

(*ii*) We prove that the conditions (*i*), (*ii*) and (*iii*) in (3.1) are satisfied for $1 + \lambda A$. However (*i*) is a part of our assumptions and (*ii*) is included in the definition of A_p being accretive. Finally, (*iii*) is satisfied by $(1+\lambda A)_p$. Thus we have $R(\overline{1+\lambda A}) = E$. However, $\overline{1 + \lambda A} = 1 + \lambda \overline{A}$ and, since A is closed, we arrive at $R(1+\lambda A) = E$.

The following facts are immediate consequences of the definition of $m-\Gamma$ -accretiveness and the fact that $m-\Gamma$ -accretive maps are "maximal" Γ -accretive.

(5.4). (i) A m- Γ -accretive subset is closed in $E \times E$. (ii) If A is m- Γ -accretive and $x \in D(A)$, then Ax is closed.

6. Some function spaces

Let E be a locally convex space equipped with a calibration Γ .

For a positive number T, we shall denote the closed interval [0, T] by I, and let C(I, E) be the set of all continuous functions of I into E. Then, for each $p \in \Gamma$ and $u \in C(I, E)$, $p \circ u$ is a real-valued continuous function defined on the compact subset I. Therefore, we can set

$$p_{+}(u) = \sup\{p(u(s)) : 0 \le s \le t\}$$

for $t \in I$, and we set $p^{\infty}(u) = p_T^{\infty}(u)$ for $u \in C(I, E)$. Then the set $\Gamma^{\infty} = \{p^{\infty} : p \in \Gamma\}$

defines a locally convex topology on C(I, E) and it is complete if E is complete.

Let A be a multi-valued map on E and we denote by $C(I, \overline{D(A)})$ the set of all continuous functions of I into $\overline{D(A)}$. Then it is a closed subset of C(I, E).

We shall denote the *p*-completion of C(I, E) by C(I, E)[p]. Then we have the natural embedding

$$S_p : C(I, E) \rightarrow C(I, E)[p]$$
.

We now set

$$C(I, \overline{D(A)})[p] = S_p(C(I, \overline{D(A)})) .$$
(6.1). If $\overline{D(A)}$ is convex, $C(I, \overline{D(A)})[p] = C(I, \overline{D(A_p)})$
Proof. Proof. (2.2) (*ii*) to have

Proof. By (2.2) (ii), we have

$$s_p(C(I, \overline{D(A)})) \subset C(I, \overline{D(A_p)})$$

and $C(I, \overline{D(A_p)})$ is closed. Hence we only need to show that $C(I, \overline{D(A_p)}) \subset C(I, \overline{D(A)})[p]$. Now let $\underline{v} \in C(I, \overline{D(A_p)})$ and we set

$$\underline{\underline{v}}_{n}(t) = \frac{kT-nt}{kT} \underline{\underline{a}}_{k-1} + \frac{nt}{kT} \underline{\underline{a}}_{k} \text{ if } \frac{(k-1)T}{n} \leq t \leq \frac{kT}{n}$$

for k = 1, 2, ..., n, where

$$\underline{\mathbf{a}}_{k} = \underline{\mathbf{v}}(kT/n) \quad \text{for} \quad k = 0, 1, \dots, n \; .$$

278

Then, since $\overline{D(A_p)}$ is convex, $\underline{v}_n \in C(I, \overline{D(A_p)})$ and $\lim_{n \to \infty} \underline{v}_n = \underline{v}$ in the Banach space C(I, E[p]). Since $\underline{a}_k \in \overline{D(A_p)}$, we can choose $a_{k,i} \in D(A)$ such that $S_p(a_{k,i}) \neq \underline{a}_k$ for k = 0, 1, ..., n, and we define functions $v_{n,i} : I \neq E$ by

$$v_{n,i}(t) = \frac{kT-nt}{kT} a_{k-1,i} + \frac{nt}{kT} a_{k,i} \quad \text{if} \quad \frac{(k-1)T}{n} \leq t \leq \frac{kT}{n}$$

Then, since $\overline{D(A)}$ is convex, $v_{n,i} \in C(I, \overline{D(A)})$ and it is easy to see that

$$p^{\infty}(S_{p} \circ v_{n,i} - \underline{v}_{n}) \neq 0 \text{ as } i \neq \infty.$$

This means that $(v_{n,i})$ is a *p*-Cauchy sequence in $C(I, \overline{D(A)})$ and $(v_{n,i}) \in \underline{\underline{v}}_n$. Hence $\underline{\underline{v}}_n \in C(I, \overline{D(A)})[p]$. Since $C(I, \overline{D(A)})[p]$ is closed, $\underline{\underline{v}} \in C(I, \overline{D(A)})[p]$.

We note that, when A is an *m*-accretive map on a Banach space which, together with its dual, is uniformly convex, then $\overline{D(A)}$ is conves. (See Barbu [1], p. 77, Proposition 3.6.) We shall call a calibration Γ dually uniformly convex if, for every $p \in \Gamma$, E[p] and its dual are uniformly convex. Obviously $L_{loc}^{p}(R)$ admits such a calibration if 1 . Itis also known that every nuclear space admits a Hilbert calibration whichis obviously dually uniformly convex.

Let, as before, E be a locally convex space equipped with a calibration Γ , and let $L^{1}(I, E)$ be the set of all integrable functions of I into E. Then, for each $p \in \Gamma$ and $u \in L^{1}(I, E)$, we can set

$$p_t^1(u) = \int_0^t p(u(s)) ds \quad \text{for} \quad t \in I,$$

and we also set $p^{1}(u) = p_{T}^{1}(u)$. Then the set

$$\Gamma^{1} = \{p^{1} : p \in \Gamma\}$$

defines a locally convex topology on $L^{1}(I, E)$ and it is complete if E is complete. In the same manner as in the case of $C(I, \overline{D(A)})$, we can

prove that

 $L^{1}(I, E)[p] = L^{1}(I, E[p])$ for every $p \in \Gamma$.

In the proof of $L^{1}(I, E[p]) \subset L^{1}(I, E)[p]$ we can approximate elements of $L^{1}(I, E[p])$ by step functions which are, as can be proved easily, contained in $L^{1}(I, E)[p]$.

7. A result of Crandall and Nohel

Let *E* be a Banach space and $A \subseteq E \times E$ be an *m*-accretive map. For $a \in \overline{D(A)}$, let us consider the following initial value problem:

(*)
$$\begin{cases} \frac{d}{dt} u(t) + Au(t) \ni Gu(t) \quad (t \in I) , \\ u(0) = a , \end{cases}$$

where

$$G : C(I, \overline{D(A)}) \rightarrow L^{1}(I, E)$$

It has been proved in [2] that the problem (*) has a unique solution in $C(I, \overline{D(A)})$ if there exists $\gamma \in L^{1}(I, R)$ such that

(**)
$$p_t^{l}(G(u)-G(v)) \leq \int_0^t \gamma(s) p_s^{\infty}(u-v) ds$$

for all $u, v \in C(I, \overline{D(A)})$ and $t \in I$, where p denotes the norm of E.

(7.1). Let E be a complete locally convex space equipped with a dually uniformly convex calibration Γ . If $A \subseteq E \times E$ is an $m-\Gamma$ -accretive map and the map G satisfies the condition (**) for every $p \in \Gamma$, then, for each $a \in \overline{D(A)}$, the initial value problem (*) has a unique solution in $C(I, \overline{D(A)})$.

Proof. The condition (**) implies

$$p^{1}(G(u)-G(v)) \leq \left(\int_{0}^{T} \gamma(s) ds\right) p^{\infty}(u-v)$$

for $u, v \in C(I, \overline{D(A)})$. Hence $(G(u_i))$ is p^1 -Cauchy whenever (u_i) is p^{∞} -Cauchy. Therefore, by (6.1), we can define a map

280

$$G_p : C(I, \overline{D(A_p)}) \rightarrow L^1(I, E[p])$$

such that

$$G_p(S_p \circ u) = S_p \circ G(u)$$
 for every $u \in C(I, \overline{D(A)})$,

and, if $q \ge p$ in Γ ,

$$T_{q,p}\left(G_{q}\left(\underline{\underline{u}}_{q}\right)(t)\right) = G_{p}\left(T_{q,p} \circ \underline{\underline{u}}_{q}\right)(t)$$

for all $\underline{\underline{u}}_{q} \in C(I, \overline{D(A_p)})$ and $t \in I$. Furthermore, G_p satisfies the condition (**). Hence, for each $p \in \Gamma$, the initial value problem

$$\frac{\frac{d}{dt} \underline{u}(t) + A_{p} \underline{\underline{u}}(t) \ni G_{p}(\underline{\underline{u}})(t) \quad (t \in I)$$

$$\underline{\underline{u}}(0) = S_{p}(a)$$

has a unique solution \underline{u}_p in $C(I, \overline{D(A_p)})$. Then, if $q \ge p$ in Γ ,

$$T_{q,p} = q^{(0)} = T_{q,p} (S_q(a)) = S_p(a) ,$$

and

$$T_{q,p}\left(\frac{d}{dt} \underline{\underline{u}}_{q}(t)\right) + T_{q,p}\left(A_{q\underline{\underline{u}}}(t)\right) \ni T_{q,p}\left(G_{q}\left(\underline{\underline{u}}_{q}\right)(t)\right) ,$$

which, by (2.3), implies

$$\frac{d}{dt} T_{q,p\underline{\underline{u}}q}(t) + A_{p,q,p\underline{\underline{u}}q}(t) \neq G_{p}(T_{q,p} \circ \underline{\underline{u}}q)(t) \quad (t \in I)$$

Hence, by the unicity of the solution,

$$T_{q,p} \underline{\underline{u}}_{q}(t) = \underline{\underline{u}}_{p}(t)$$
 for all $t \in I$.

Since E is complete, we can apply (1.1) to find $u(t) \in E$ such that

$$\underline{u}_{p}(t) = S_{p}(u(t)) \text{ for all } p \in \Gamma \text{ and } t \in I.$$

Then u(t) is continuous with respect to t and, by (2.2),

$$u(t) \in \bigcap_{p \in \Gamma} S_p^{-1}(\overline{D(A_p)}) = \overline{D(A)}$$

Hence $u \in C(I, \overline{D(A)})$ and, furthermore,

$$S_p\left(\frac{d}{dt}u(t)+Au(t)\right) \ni S_p\left(G(u)(t)\right)$$
 for all $t \in I$ and $p \in \Gamma$.

Then, by the lemma which will be proved below, we have

$$\frac{d}{dt}u(t) + Au(t) \ni G(u)(t) \text{ for all } t \in I.$$

The lemma referred to in the above is the following.

(7.2). Assume that B is a closed subset of E and

$$S_p(x) \in S_p(B)$$
 for every $p \in \Gamma$.

Then $x \in B$.

Proof. For each $p \in \Gamma$ we choose $b_p \in B$ such that $S_p(x) = S_p(b_p)$, which means that $p(x-b_p) = 0$. Then the net (b_p) converges to x. Since B is closed, we have $x \in B$.

References

- [1] Viorel Barbu, Nonlinear semigroups and differential equations in Banach spaces (Noordhoff, Leyden, The Netherlands, 1976).
- [2] M.G. Crandall and J.A. Nohel, "An abstract functional differential equation and a related nonlinear Volterra equation", Israel J. Math. 29 (1978), 313-328.
- [3] G. Köthe, Topological vector spaces I (Die Grundlehren der mathematischen Wissenschaften, 159. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
- [4] Robert T. Moore, "Banach algebras of operators in locally convex spaces", Bull. Amer. Math. Soc. 75 (1969), 68-73.
- [5] Sadayuki Yamamuro, Differential calculus in topological linear spaces (Lecture Notes in Mathematics, 374. Springer-Verlag, Berlin, Heidelberg, New York, 1974).
- [6] Sadayuki Yamamuro, A theory of differentiation in locally convex spaces (Memoirs of the American Mathematical Society, 212.
 American Mathematical Society, Providence, Rhode Island, 1979).
- [7] Sadayuki Yamamuro, "Notes on the inverse mapping theorem in locally convex spaces", Bull. Austral. Math. Soc. 21 (1980), 419-461.

[8] Sadayuki Yamamuro, "On the surjectivity of linear maps on locally convex spaces", J. Austral. Math. Soc. Ser. A 32 (1982), 187-211.

Department of Mathematics, Institute of Advanced Studies, Australian National University, PO Box 4, Canberra, ACT 2600, Australia.