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Stationary internal hydraulic jumps

Gregory A. Lawrence1,† and Laurence Armi2

1Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
2Scripps Institution of Oceanography, La Jolla, CA 92093, USA

(Received 3 July 2021; revised 6 January 2022; accepted 16 January 2022)

This is a theoretical and laboratory study of stationary internal hydraulic jumps. These
jumps are rapid transitions between internally supercritical flow, generated by placing a sill
on the bed of a horizontal rectangular channel, and internally subcritical flow, generated by
installing a downstream contraction. This contraction generates an approximately uniform
flow downstream of the jump; thus mimicking barotropically driven two-layer flows, as
found in tidally driven flows over underwater sills, and flows over mountain ranges driven
by large-scale pressure gradients. Upstream of the jump a train of Kelvin–Helmholtz
billows forms on the interface between the layers. Upper layer fluid is entrained into
these billows, which are subsequently advected into the lower portion of the jump. These
billows are broken down by the turbulence of the jump, and the entrained upper layer
fluid is mixed with lower layer fluid. Downstream of the jump the upper layer remains
homogeneous, the density step at the interface is weakened, the upper portion of the
lower layer is approximately linearly stratified, and the lower portion of the lower layer
is undisturbed. This altered density profile is the downstream conjugate state of the jump.
When the contraction is narrowed the jump moves upstream and ‘drowns’ part of the train
of billows, reducing the amount of entrainment. Thus, while the jump is responsible for
mixing fluid from the upper layer into the lower layer, it is the position of the jump relative
to the upstream train of billows that determines the amount of entrainment.

Key words: hydraulic control, topographic effects, shear layers

1. Introduction

Compelling motivation for the study of internal hydraulic jumps is provided by
observations in the atmosphere, in oceans and in coastal and inland waters. The ‘Bishop
Wave’ is an internal hydraulic jump several kilometres high that forms on the east side
of the Sierra Nevada mountain range (Colson 1952; Armi & Mayr 2011). Similarly,
internal hydraulics jumps can dominate the flow in the lee of underwater sills, notably
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the Camarinal Sill in the Strait of Gibraltar (Armi & Farmer 1988; Wesson & Gregg
1994). Internal hydraulic jumps also occur in turbidity currents in oceans, lakes and
reservoirs (Garcia & Parker 1989), and when heated water from power plants is discharged
into cooling ponds (Wilkinson & Wood 1971). In these, and many other circumstances,
considerable entrainment and mixing of fluids of different density is associated with
internal hydraulic jumps with important environmental consequences.

There are two main challenges in the study of internal hydraulic jumps. The first is that
since internal hydraulic jumps are the rapid transitions matching internally supercritical
upstream flows with internally subcritical downstream flows, they cannot by studied in
isolation of upstream and downstream conditions. While the same problem exists, and has
long been resolved for open channel (free-surface) hydraulic jumps (Bélanger 1828); the
problem is more complicated for internal hydraulic jumps, since there are many possible
combinations of upstream and downstream conditions. The goal of the present study
is to understand stationary internal hydraulic jumps occurring in barotropically driven
two-layer flows over a fixed obstacle, as occurs in tidally driven flows over underwater
sills, or flows over mountains driven by large-scale pressure gradients. The important
characteristics of this configuration are: (i) downstream of the jump the average flow
velocity in each of the layers is approximately equal; and (ii) upstream of the jump the
lower layer is flowing faster than the upper layer.

Many theoretical studies of internal hydraulic jumps have assumed that mixing between
the layers is negligible. In this case many of the techniques developed in the study of
free-surface hydraulic jumps in open channel flows can be used. If the flow rate and depth
upstream (downstream) of a free-surface jump are known, then the downstream (upstream)
conjugate depth is determined by equating the flow force upstream and downstream of the
jump (Chow 1959; Henderson 1966). However, in two-layer flows there are two unknowns
– the depth of each layer, but only one equation for flow force. Yih & Guha (1955)
circumvented this closure problem by considering each layer separately and assuming the
pressure on the face of the jump to be hydrostatic. (Chu & Baddour 1977) and (Wood
& Simpson 1984) queried the validity of Yih and Guha’s model, since it implies that
the contracting layer gains energy. They solved the problem by assuming that energy
is conserved in the contracting layer. However, (Klemp, Rotunno & Skamarock 1997)
postulated that, for some internal bores (moving internal hydraulic jumps) propagating
into a stagnant two-layer fluid, the assumption of energy conservation in the expanding
layer may be more appropriate. Subsequently, Li & Cummins (1998) proposed a model
where energy loss could be assigned arbitrarily to both the layers. Here, we circumvent the
closure problem by imposing a uniform velocity profile downstream of the jump, both in
our theoretical development and our experimental facility.

The experimental study of internal hydraulic jumps and internal bores was pioneered
by Long (1954) and Yih & Guha (1955). Long (1954, 1972) studied the disturbances
caused by towing an obstacle along the bottom of a tank filled with two layers of fluid
of slightly different density. Yih & Guha (1955) generated internal hydraulic jumps either
by discharging dense fluid beneath a less dense stationary ambient, or discharging buoyant
fluid over a denser stationary ambient.

Towed obstacle experiments are characterised by internal bores moving upstream and
downstream of the obstacle at speeds that are only indirectly related to the towing speed.
Considerable attention has been paid to understanding the propagation speed of upstream
bores into quiescent fluid, and the relationship between the interface heights upstream and
downstream of them (e.g. Li & Cummins 1998; Baines 1995; Borden & Meiburg 2013).
Upstream of the bore the layer velocities are equal, and downstream of the bore the upper
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Stationary internal hydraulic jumps

layer velocity is greater than the lower layer velocity. This configuration is opposite to that
of the stationary internal hydraulic jumps considered in the present study. The result is that
the structure of upstream internal bores is fundamentally different than that of stationary
internal hydraulic jumps, since there is no shear upstream of the bores (Yeh 1991; Rotunno
& Smolarkiewicz 1995; Klemp et al. 1997).

The flow structure of internal bores generated downstream of a towed obstacle is
similar to that of stationary internal hydraulic jumps: with the lower layer moving
faster than the upper layer upstream of the bore, and uniform flow downstream of
the bore. Wood & Simpson (1984), Rottman & Simpson (1989) and Kite, Topham &
Van Hardenburg (1995) have studied downstream bores in the laboratory, but took no
quantitative measurements of entrainment and mixing. Such measurements would be
challenging since the instrumentation would need to be towed, mixing would result in
a modified density structure after each experiment, and the tank might not be long enough
for steady state to be achieved (Long 1954; Baines 1984; Lawrence 1993).

Motivated by engineering applications, where the objective is to either minimise (e.g.
Wilkinson 1970; Findikakis & Law 1998) or maximise dilution (e.g. Stefan & Hayakawa
1972); there have been numerous studies similar to Yih & Guha (1955) where inflows
were discharged horizontally into stationary deep ambients either as buoyant surface jets
(e.g. Wilkinson & Wood 1971; Stefan & Hayakawa 1972; Rajaratnam & Subramanyan
1985; Arita, Jirka & Tamai 1986), or as negatively buoyant bottom jets (e.g. Rajaratnam
& Subramanyan 1986; Baddour 1987; Barahmand & Shamsai 2010). These wall jets grow
by entraining and mixing significant amounts of ambient fluid, and are often described
as entrainment zones. The amount of entrainment and mixing that occurs depends on the
length of the entrainment zone, which is sensitive to downstream, as well as upstream,
conditions. When a jet grows to the point where it is conjugate to the internally subcritical
flow imposed by a downstream control a roller region forms similar to that observed in
free-surface hydraulic jumps. This phenomenon is often referred to as a ‘density jump’
since it is accompanied by a change in the density of the flowing layer. A density jump
consists of two distinct zones; an entrainment zone and a roller region (Wilkinson & Wood
1971). Nearly all of the entrainment that occurs in the jump takes place in the entrainment
zone.

We distinguish between internal hydraulic jumps and density jumps. The transition from
internally supercritical to internally subcritical flow that occurs in an internal hydraulic
jump is similar to regular free-surface hydraulic jumps, except that upstream of internal
hydraulic jumps there is a shear layer that can generate mixing between the layers.
However, in the internal hydraulic jumps studied in the present paper, this shear layer does
not penetrate throughout the active layer, and the flow is still approximately two-layered.
In density jumps the upstream flow is a wall jet rather than a supercritical two-layer flow,
and mixing penetrates throughout the jet.

Theoretical and numerical models have applied various idealisations of the flow
upstream and downstream of the phenomena described above. Some have assumed
basically the same configuration as Wilkinson & Wood (1971), e.g. Hassid, Regev & Poreh
(2007) and Ogden & Helfrich (2020); others have considered flows with no upstream
shear between the layers, e.g. Borden, Meiburg & Constantinescu (2012) and Borden &
Meiburg (2013); and Thorpe (2010), Thorpe & Li (2014) and Thorpe et al. (2018) account
for vertical variations in the density and velocity of the lower layer, while assuming a deep
stagnant upper layer of uniform density.

In general, neither the configurations adopted in theoretical and numerical studies, nor
the experimental approaches of Long (1954) or Yih & Guha (1955), are compatible with
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Figure 1. Two-layer flow-through facility. Flow is from left to right, with the lower layer dyed red. An
internal hydraulic jump has formed above the lee face of the underwater sill.

the goal of the present study, which is to understand stationary internal hydraulic jumps.
Yih & Guha (1955) also had this goal, but commented:

Experimentally it would be rather difficult and expensive to enable the discharges to vary
independently and to realize a stationary jump with two moving layers.

Nevertheless, we were able to generate such flows in the two-layer, flow-through facility
shown in figure 1. A crucial component of our experimental set-up is an adjustable
downstream contraction, which ensures that downstream of an internal hydraulic jump the
flow is internally subcritical flow with approximately the same average velocity in both
layers.

In § 2 we summarise the basic theory of hydraulics jumps using a framework that
clarifies the similarities between free-surface and internal hydraulic jumps, and aids in
the design and interpretation of our experiments. We then extend internal hydraulic theory
to facilitate the analysis of our experiments. The results of the laboratory experiments
performed to investigate the hydraulics of internal hydraulic jumps are discussed in § 3.
Entrainment and mixing associated with internal hydraulic jumps in barotropically driven
two-layer flows is addressed in § 4. Our conclusions are presented in § 5.

2. Theory of free-surface and internal hydraulic jumps

Here, we discuss the theoretical and graphical framework (see figures 2 and 3) that we
use in the presentation and analysis of our experimental results. We break from tradition
by presenting the momentum and energy functions in terms of the appropriate Froude
numbers rather than non-dimensional layer thicknesses. The uniform downstream velocity
profile eliminates the closure problem recognised by Yih & Guha (1955), and allows us
to refine the theory of internal hydraulic jumps (Chu & Baddour 1977; Wood & Simpson
1984). Our analysis is supported by strong analogies between single and two-layer internal
hydraulic jumps.
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Figure 2. (a) Definition sketch adapted from the first known depiction of a hydraulic jump in Guglielmini
(1697). (b) The dimensionless single-layer energy, ES (- - - -) and momentum, MS (——) functions plotted as
a function of Fr2. These curves apply to all single-layer flows in a horizontal, rectangular channel of constant
cross-section. The values at points U, D and F have been calculated for the flow depicted in (a) where the
flow depth downstream of the jump is taken to be double the flow depth upstream of the jump. Values of ES
are represented by solid circles, values of MS are represented by open squares. From point U, just upstream
of the jump, to point D, just downstream of the jump, momentum is assumed to be conserved, but there is
considerable energy dissipation. For illustrative purposes the losses of momentum and energy due to friction
between D to F are based on an estimated distance between D and F of 10 times the flow depth at D, and a
friction factor f = 0.03.
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Figure 3. (a) Photograph of two-layer flow over an obstacle with a downstream (free) internal hydraulic jump
(adapted from Lawrence (1993), figure 6b). (b) Definition sketch. Here, E denotes the end of the sill; U and D
the sections immediately upstream and downstream of the jump, respectively; and O denotes the end of the test
section, which is at the start of the downstream contraction. (c) Energy and momentum plotted as functions of
composite Froude number for r = 0.5 and G2

0 = 0.56.
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Both free-surface and internal hydraulic jumps in a horizontal channel are governed by
the momentum, or flow force

S =
∫

A

(
P + ρu2

)
dA, (2.1)

where: A is a cross-section perpendicular to the flow, P is the pressure, ρ is the fluid density
and u is the flow velocity. A simple force balance yields

dS
dx

=
∫

C
τ(l) dl, (2.2)

where x is the flow direction, and τ is the frictional shear stress on the bed and sidewalls
of the channel, C.

We make the standard hydraulic assumptions, namely: the pressure is hydrostatic, the
density is constant within each layer, the velocity is cross-sectionally uniform within each
layer and S is constant across hydraulic jumps (Chow 1959; Henderson 1966).

2.1. Free-surface hydraulic jumps
For single-layer flow in a horizontal channel of constant width, W, the basic parameters
are the flow depth, y, the volumetric flow rate per unit width, q, the fluid density, ρ,
and the gravitational acceleration, g. It is customary in open channel hydraulics (see
Henderson (1966), § 2.3) to evaluate (2.1) using the standard hydraulic assumptions, and
then non-dimensionalise by ρgWy2

c , where the critical depth, yc = (q2/g)1/3, to obtain the
non-dimensional, single-layer momentum function

MS = y′2

2
+ 1

y′ = y′2
(

1
2

+ Fr2
)
, (2.3a)

where y′ = y/yc, and the Froude number for single-layer flow

Fr2 ≡
(

q2

gy3

)
= y′−3

. (2.3b)

Note that, whenever we refer to a Froude number, we refer to the squared quantity, as in
(2.3).

A free-surface hydraulic jump is a rapid transition from supercritical upstream flow,
Fr2

U > 1, to subcritical downstream flow, Fr2
D < 1, where the subscripts U and D refer to

the conjugate conditions immediately upstream and downstream of the jump.
Assuming negligible friction losses over the length of the jump, and equating the

momentum function upstream and downstream of the jump, yields (see Henderson 1966)

yD

yU
= 1

2

(√
1 + 8Fr2

U − 1)
)
. (2.4)

The dimensionless specific energy (Bernoulli constant) for a single-layer flow is given by

ES = y′
(

1 + Fr2

2

)
. (2.5)
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The loss of specific energy across a free-surface hydraulic jump (see Henderson 1966) is

�EJ ≡ ESU − ESD = ( y′
D − y′

U)
3

4y′
Dy′

U
. (2.6)

Upstream and downstream of a free-surface hydraulic jump (2.1)–(2.3) give

dMS

dx′ = − f
8

y
Rh

Fr2y′, (2.7)

where x′ = x/yc, the hydraulic radius, Rh ≡ A/P = Wy/(W + 2y), where A is the
cross-sectional area of the channel and P is its wetted perimeter. Methods for determining
the Darcy–Weisbach friction factor, f , are given in Chow (1959) and Finnemore & Franzini
(2002).

The above concepts are illustrated in figure 2(b) by plotting MS and ES vs Fr2 for the flow
depicted in figure 2(a). In this flow yD/yU ≈ 2, and (2.3a) and (2.4) give the conjugate
states Fr2

U = 3 and Fr2
D = 3/8. Across the jump momentum is assumed constant, and

(2.6) gives �EJ = 0.087. Downstream of the jump, between D and F, friction results in a
gradual decrease in MS, in accordance with (2.7).

While (2.4) allows us to calculate the relationship between upstream and downstream
conditions, we must emphasise a point made by Henderson (1966, p. 69) that is central to
the present study:

But it is most important to realize that this downstream depth is caused not by the upstream
conditions but by some control acting further downstream. If this control produces the required
depth y2, a jump will form; otherwise, it will not.

Consider the flow depicted in figure 2(a) where the jump is located at a transition in bed
slope (a transitional jump). If the height of a downstream weir (not visible) were lowered,
so that the flow depth and momentum function at D were reduced, then the momentum
function at D would be less than that at U. To redress this imbalance the position of the
jump would move downstream (a free jump), exposing a reach of supercritical flow that,
due to friction, would reduce the momentum so that that the flow conditions upstream
and downstream of the jump were again conjugate to each other. On the other hand, if the
downstream depth were increased the position of the jump would move upstream, creating
a drowned hydraulic jump (see Chow 1959), and the analysis would need to be modified
to account for the sloping bed upstream of U.

2.2. Momentum and energy functions for two-layer flows
Now we follow the procedure presented above to derive momentum and energy functions
for two-layer flows. The experiment depicted in figure 3, will be used to provide context.
For two-layer flow in a channel of constant width, W, the basic flow parameters are:
the layer depths, yi, where the subscripts i = 1, 2 refer to the upper and lower layers,
respectively; the volumetric flow rate per unit width of each layer, qi; the flow rate ratio,
r = q2/q, where q = q1 + q2; and the reduced gravitational acceleration, g′ = εg, where
ε = (ρ2 − ρ1) /ρ2. In the present study we assume ε � 1. The total flow depth, Y = y1+
y2 + h, where h is the local height of the sill.

For two-layer flows in a horizontal channel of constant width (2.1) becomes

S =
∫ y2

0
(P2 + ρ2u2

2)W dz +
∫ Y

y2

(P1 + ρ1u2
1)W dz. (2.8)
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To evaluate (2.8), Chu & Baddour (1977) and Wood & Simpson (1984) assumed that the
pressure is hydrostatic, and that within each layer the density is constant and the velocity
is cross-sectionally uniform. After dividing by ρg′WY2, they obtained to O(ε)

ST = 1
2ε

+ y′
2

2
(

1
2

+ F2
2

)
+ y′

1
2F2

1, (2.9)

where y′
i = yi/Y . For single-layer flows there exists a critical depth, yc, which we used for

non-dimensionalisation in § 2.1. No simple critical depth exists for two-layer flows, and we
use the total depth, Y , for the non-dimensionalisation. The densimetric Froude number

F2
i = q2

i

g′y3
i
. (2.10)

Note again, that whenever we refer to a Froude number, we refer to the squared quantity.
Note also, that the composite Froude number (Armi 1986),

G2 = F2
1 + F2

2 − εF2
1F2

2, (2.11)

rather than the densimetric Froude number, is commonly used to describe the criticality
of two-layer flows (see Appendix A for details).

In density jumps the assumptions of constant density and uniform velocity within
each layer are not satisfied. Wilkinson & Wood (1971) and others have relaxed these
assumptions by using correction factors in their analyses of density jumps. However, the
internal hydraulic jumps that we investigate in the present paper cause far less disruption to
the flow than density jumps, and we do not incorporate correction factors into our analysis
of the hydraulics of two-layer flows. This allows us to focus on understanding the processes
that govern the entrainment and mixing associated with internal hydraulic jumps.

As it stands (2.9) is not particularly useful, since the first term on the right-hand side is
O(ε−1) times as large as the other terms. Following Chu & Baddour (1977) and Wood
& Simpson (1984), we eliminate this term by assuming that the upper layer energy,
E1 = ρ1gY + ρ1u2

1/2, is constant. The resulting non-dimensional momentum function for
two-layer flows to O (ε) is

MT ≡ ST − 1
2ε

(
E1

ρ1gY

)2

= y′
2

2
(

1
2

+ F2
2

)
+ 1

2
( y′

1 − y′
2)y

′
1F2

1. (2.12)

To O (ε) (2.12) is the same as those obtained by Chu & Baddour (1977) and Wood &
Simpson (1984). Note that if the upper layer is passive, i.e. if F2

1 � F2
2, (2.12) has the

same form as (2.3a), its single-layer counterpart.
While our focus is on variations in the momentum function, since they determine the

position of internal hydraulic jumps, it is also informative to consider variations in the
two-layer energy function, defined by Baddour & Abbink (1983) and others, as

ET ≡ E2 − E1

ρ2g′Y
= y′

2

(
1 + 1

2
F2

2

)
− 1

2
y′

1F2
1. (2.13)

As in the case of the momentum function, if the upper layer is passive, i.e. when F2
1 � F2

2,
(2.13) has the same form as (2.5), its single-layer counterpart.

2.3. Internal hydraulic jumps in barotropically driven two-layer flows
We study two-layer flow in a horizontal, rectangular channel, as depicted in figure 3.
An internally supercritical flow downstream of the crest of a sill is followed by an
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internal hydraulic jump that transitions to an internally subcritical flow. We model a
barotropically driven two-layer flow by installing a downstream width contraction, which
imposes an approximately uniform velocity profile at the downstream end of the channel
(see Appendix A for details). The uniform downstream velocity profile eliminates the
closure problem recognised by Yih & Guha (1955), and allows us to refine the theory
of internal hydraulic jumps.

Here, we derive the appropriate momentum and energy functions needed to analyse this
configuration. Wood (1968) and Armi (1986) show that, to O (ε)

u1o = u2o = q
Yo
, (2.14)

where the subscript ‘o’ designates conditions at the end of the test section; i.e. at the start
of the downstream contraction. Substituting (2.14) into (2.11), yields

G2
o = q2

g′r(1 − r)Y3
o
, (2.15)

where the two-dimensional flow rate, q = q1 + q2; the total depth, Y0 = y1o + y2o, and
the flow rate ratio

r = q2

q
. (2.16)

The present study investigates flows with G2
0 < 1. At low flow rates, the flow is internally

subcritical throughout the channel with only a slight depression in the interface level over
the sill. This case is not of interest in the present study, since there is no internal hydraulic
jump. At sufficiently higher flow rates the flow will become internally supercritical on the
lee face of the sill; in such flows an internal hydraulic jump will form between the crest
of the sill and the downstream contraction. Lawrence (1993) has shown that G2

0 and r,
in conjunction with the non-dimensional obstacle height, βm = hm/Y0, where hm is the
maximum height of the obstacle, determine which of these cases occurs. The values of
G2

0, r andβm for the experiments performed in the present study are given in table 1.
Under the assumption of uniform flow at the downstream end of the channel, y2o = r,

and (2.12) simplifies to

MTo = 1
2 {r2 + r(1 − r)G2

0}. (2.17)

To best illustrate the properties of internal hydraulic jumps, we define the non-dimensional
two-layer momentum function

M ≡ MT − MTo = 1
2
η (2r + η)+ r(1 − r)G2

0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r2

r + η
+

(
1
2

− r − η

)
(1 − r)

2

(1 − r − η)2
− 1

2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

(2.18)

where η = y′
2 − r.

Applying (2.2) to gradually varying two-layer flow in a horizontal channel yields

dM
dx′ = − f1

8

(
y1

Rh1

)
F2

1y′
1 − f2

8

(
y2

Rh2

)
F2

2y′
2, (2.19)

where f1 and Rh1 = W/2, and f2 and Rh2 = Wy2/(W + 2y2), are the friction factors and
hydraulic radii for the upper and lower layers, respectively. Equation (2.19) is analogous
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to (2.7), the corresponding single-layer result. In our experiments the walls of the channel
can be assumed to be smooth, in which case

fi = 0.223Re−1/4
hi

, (2.20)

where the hydraulic Reynolds number, Rehi = uiRhi/ν, i = 1, 2 (see Chow 1959). Note
that f1 and f2 are the friction factors due to shear on the bed and sidewalls of the channel;
they are not interfacial friction factors. Interfacial friction does not play a role in the
calculation of M.

Following our approach for momentum, we define the non-dimensional two-layer energy
function

E ≡ ET − ETo = η + 1
2

r (1 − r)G2
0

{[
r

r + η

]2

−
[

(1 − r)
(1 − r − η)

]2
}
, (2.21)

see Lawrence (1993). Note that, for convenience, we have defined the two-layer momentum
and energy functions so that, at the downstream end of the channel where η = 0, (2.18)
and (2.21) give M = 0 and E = 0, respectively.

The above concepts are illustrated by the two-layer flow examined in figure 3. This flow
has been visualised in figure 3(a) by dyeing the lower layer red and the upper layer blue, so
that mixing between the layers appears purple. Note that mixed fluid is present in a shear
layer upstream of the jump, as well as in the jump itself. This mixing can be ignored for the
moment, but will be examined in detail in § 4. A definition sketch for the flow is presented
in figure 3(b). The variation of M and E with G2 is presented in figure 3(c). While there are
differences, this plot is very similar to its single-layer counterpart presented in figure 2(b),
as are the basic causes of variation in the momentum and energy.

Let us consider the changes in M and E from the end of the sill (E) to end of the test
section (O). From E until the start of the jump (U) the flow is internally supercritical with
an active lower layer, i.e. F2

2 � F2
1. The values of M and E gradually decrease due to

friction on the bed and sidewalls of the channel. From U to the downstream end of the
jump (D) momentum loss is negligible, but there is a considerable loss of energy. In the
internally subcritical reach from D to O, M and E gradually decrease, as in the shear layer
upstream of the jump, but the rate of decrease is less than in the shear layer, since the lower
layer velocity is less, figure 3(b).

Hydraulic jumps can form: downstream of the obstacle (free jumps); between the crest
and downstream end of the sill (drowned jumps); or the start of the jump may occur at the
end of the sill (transitional jumps). The flow of Guglielmini (1697), shown in figure 2, is an
example of a transitional free-surface hydraulic jump. For a transitional jump to form, ME,
the flow’s momentum at the end of the sill, should match Mf , the loss of momentum due
to friction on the sidewalls and bed of the flume in the internally subcritical flow between
the end of the sill and the end of the test section. If the hydraulic assumptions hold, ME
can be estimated using the approach outlined in Lawrence (1993) and Mf can be estimated
using (2.19). The jump type can be predicted according to the following:

If

⎧⎪⎨
⎪⎩

ME > Mf a free jump occurs,
ME ≈ Mf a transitional jump occurs,
ME < Mf a drowned jump occurs.

(2.22)

While ME and Mf are small quantities that are difficult to evaluate experimentally, (2.22)
serves as a useful guide to the location of internal hydraulic jumps.
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Stationary internal hydraulic jumps

3. Experiments on the hydraulics of internal hydraulic jumps

Thirteen experiments were performed to better understand the internal hydraulic jumps
that form downstream of a two-dimensional fixed obstacle in steady, barotropically driven
two-layer flow. The flow parameters and important results for each of these experiments
are given in table 1. The experiments were performed in the facility shown in figure 3.
The experimental set-up and procedures will be discussed briefly, for further details see
Lawrence (1985, 1993).

Fresh and salt water were introduced separately into a 3.05 m wide chamber at the
upstream end of the flow facility (figure 4a,b). Fresh water was drawn from the mains into
a constant head tank, and salt water was pumped from San Francisco Bay into a 370 m3

pond, and then into a second constant head tank. The maximum discharge from each of the
head tanks was 10−2 m3 s−1, so that the experiment could be run at maximum discharge
for approximately 10 hours before the saltwater pond was emptied. The discharges were
measured to within ±2 % with orifice meters (figure 4b). The two-dimensional flow rates
in the experiments were in the range 200 ≤ q ≤ 408 cm2 s−1, yielding bulk Reynolds
numbers, Re = q/ν = 2.0–4.1 × 104, where ν is the kinematic viscosity of water. The
density of each fluid was measured using a hydrometer that enabled the relative density
difference to be determined to within ±0.0003. The relative density differences of the
experiments were in the range 0.0082 ≤ ε ≤ 0.0204. Note that up to 10 000 kg of salt
passed through the facility during a 10 h series of experiments.

Perforated pipes discharged the inflows evenly across the width of the inflow chamber,
see figure 4(c). A splitter plate installed between these pipes was hinged so that it could
be adjusted to match the interface level imposed from downstream. Synthetic horsehair
matting was installed above and below the splitter plate, and a fine mesh screen was placed
perpendicular to the flow, to reduce the magnitude of turbulent fluctuations and minimise
upstream mixing between the two layers. The velocity and density profiles were measured
at selected locations along the length of the channel using a miniature propellor meter
and a conductivity probe. The glass-sided flume was 12.9 m long, 37.6 cm wide and the
depth of flow, Y , varied from 33.9 to 58.0 cm with a measurement error of approximately
±0.2 cm.

The plan view of the facility (figure 4b) shows that after passing through the inflow
section, into the constant width flume, the flow passes over an obstacle spanning the width
of the flume placed approximately half-way along the flume. An internal hydraulic jump
forms downstream of the crest of the obstacle to match the internally subcritical flow
imposed by the virtual control in the adjustable downstream contraction (figure 4d). The
obstacle shape was built to satisfy the equation

h (x) = hm cos2
(

π

2
x
Ls

)
(3.1)

to within ±2 mm over the domain |x/Ls| ≤ 1, where: the maximum height of the obstacle,
hm = 8.0 cm for all experiments (except Exps. 13 and 14, with hm = 15.0 cm); and the
half-width of the sill, Ls = 2πhm. The downstream contraction was 50 cm long, with an
exit width, Wmin, that was varied from 1.2 to 2.2 cm over the course of the experiments.
The total flow depth only decreased visibly as Fr2 → 1, in the last few centimetres before
the exiting the downstream contraction (figure 4a). The flow discharged freely from the
contraction into a sump.

By analogy with the experiments of Wilkinson & Wood (1971), we assumed that the
mixing associated with internal hydraulic jumps in our facility would depend on their
position with respect to the obstacle. To test this assumption, we conducted two series of
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Instrumentation
trolley

Flow
conditioning

Free surface

Internal hydraulic
jump

Sill

1.8 m 2.7 m 12.9 m

Upstream
contraction

W = 0.38 m

0.5 m

Adjustable
downstream
contraction

LT = 7.17 – 7.88 m

Splitter
plate

Orifice meters

Sill

Delivery
pipes

3.05 m

Hinge

Fresh water

Salt water
Hinge

0.3 m
(max)

0.3 m

(b)

(a)

(c) (d )

Figure 4. Details of the two-layer flow facility. (a) Elevation and (b) plan views (not to scale). (c) Photographs
of inflow section and (d) adjustable downstream contraction. The minimum width of the adjustable downstream
contraction is varied between 1.2 and 2.2 cm. The length of the test section, LT , varied depending on the location
of the sill.

experiments, Series A (Exps. 1–5) and Series B (Exps. 6–9). Each series of experiments
took about 10 hours to complete, during which time the flow rate of each layer remained
almost constant, as did the densities of each layer, see table 1. Only the exit width of
the downstream contraction, Wmin, was adjusted from experiment to experiment within
each Series. Once Wmin was set, we waited for approximately 1 hour to ensure that the
free surface elevation and jump position were at steady state. Measurements of interfacial
elevation, and profiles of velocity and density were taken, and the flow was visualised
with dye and photographed. Then the width of the downstream contraction was increased
and the process repeated. In each series of experiments the range of widths for the
downstream contraction, and consequently the range of flow depths, was chosen such that
free, transitional and drowned jumps formed.

936 A25-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.74


Stationary internal hydraulic jumps

0.030

0.025

0.020

Downstream
losses

Downstream
losses

Conservation

Conservation

Upstream
losses

at jump

at jump

Insufficient
momentum
at end of sill

Exp.5 Free jump

Exp.3 Transitional jump

Exp.1 Drowned jump

0.015

–0.005

–0.010

–0.015
0 1 2 3 4 5

G2

M

6 7 8 9 10

Figure 5. Momentum function plotted as a function of G2 for Exps. 1, 3 and 5 together with photographs of
these experiments. Solid circles indicate conditions at the end of the sill, open squares indicate conditions at
the start of the jump, solid squares indicate conditions at the end of the jump and diamonds indicate conditions
at the end of the channel. The experiments were performed on the same day and the upstream inflow rates and
densities were constant (see table 1). In Exp. 1 the total depth, Y = 44.1 cm, the exit width of the downstream
contraction, Wmin = 1.4 cm and a drowned jump formed over the lee face of the sill. In Exp. 3 Wmin was
increased to 1.8 cm, causing the total depth to decrease to 38.1 cm, and a transitional jump formed at the end of
the sill. In Exp. 5, Wmin = 2.2, Y = 33.7 cm, and a free jump formed downstream of the sill. Red dye injected
upstream at the density interface helps visualise the flow.

To further understand the processes of mixing and entrainment we conducted four
additional experiments. Experiments 10 and 11 were performed with the centreline of the
channel illuminated by a sheet of laser light. This enabled us to observe the details of the
flow while minimising sidewall effects. Exp. 12 was conducted to obtain high-resolution
vertical profiles of conductivity upstream of the obstacle, between the obstacle and the
jump, and downstream of the jump. Finally, Exp. 13 was conducted to obtain time series
of conductivity above, below and at several locations within a jump.

3.1. Series of experiments to verify two-layer hydraulic theory (Exps. 1–5)
The Series A experiments were performed with hm = 8.0 cm, q1 = 190, q2 = 95 cm2 s−1

and g′ ≈ 18 cm s2 (see table 1) The width of the downstream contraction was set at 1.4 cm
for Exp. 1 and increased to 1.6, 1.8, 2.0 and 2.2 cm for Exps. 2–5, respectively. The
upstream flow rate ratio was fixed at r = 0.33, and the other governing non-dimensional
parameters, G2

0 and βm, varied as the free surface elevation dropped (see figure 5 and
table 1). We use the theory presented in Lawrence (1993) to predict the momentum at
the end of the sill, ME, and integrate (2.19) to calculate Mf . In figure 5(a) the M vs G2

curves for r = 0.33 are plotted for flows with a drowned jump (Exp. 1), a transitional jump
(Exp. 3) and a free jump (Exp. 5). These curves are used in conjunction with photographs
of the experiments (figure 5b–d) to explain the dynamics of the flow in each of these
experiments.
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Exp. x (m) q12 q21 qENT ψINT

6 –1.5 0.006 0.004 0.002 0.402
6 4.5 0.014 0.004 0.009 0.409
7 4.5 0.023 0.004 0.019 0.419
8 4.5 0.035 0.004 0.031 0.431
9 4.5 0.040 0.013 0.027 0.427

Table 2. Entrainment fluxes in Experiments 6–9.

In Exp. 1 (ME = −0.003, Mf = 0.006) a drowned internal hydraulic jump formed
midway down the lee face of the sill, in accordance with (2.22). Note that in this
experiment ME < 0, indicating that a drowned jump would have formed even if there
were no frictional momentum loss (see figure 5). A thin filament of red dye injected at
the interface between the two layers at the entrance to the flume remained undisturbed
until it reached the drowned jump. The dye was then entrained and mixed into the jump,
highlighting the location of the jump, and the disturbed portion of the lower layer, which
persisted until the end of the flume. A train of Kelvin–Helmholtz billows is observed
underneath the nose of the jump, and the lower portion of the lower layer remained
undisturbed. Experiments performed to investigate Kelvin–Helmholtz billowing and the
entrainment and mixing that it causes are presented in § 4. Note that in all our experiments,
the increase in the flow rate ratio caused by this entrainment and mixing is less than 10 %
(see table 2), which does not warrant replotting the illustrative M vs G2 curves in figure 5.
This observation is in contrast with the higher internal Froude number density jumps of
Wilkinson & Wood (1971) in which substantial mixing and entrainment occurred in the
jet upstream of the jump and extended throughout the lower layer. The reasons for this
difference are discussed in § 4.

In Exps. 2–5 both ME and Mf increased as the downstream contraction, Wmin, was
progressively opened decreasing the total depth of flow, Y (table 1). However, ME
increased more rapidly than Mf and, as a consequence, the jump moved progressively
further downstream. In Exp. 2 (ME = 0.007, Mf = 0.008) the jump remained drowned,
since ME < Mf , but moved further down the lee face of the obstacle. Otherwise,
Exp. 2 was very similar to Exp. 1. In Exp. 3 (ME = 0.011, Mf = 0.009) a transitional
jump formed at the end of the sill, since ME ≈ Mf . In this experiment a train of
Kelvin–Helmholtz billows formed on the interface upstream of the jump (figure 5).

Free jumps formed in Exps. 4 and 5, respectively, since in both cases ME > Mf (see
figure 5 and table 1). In these experiments the decrease in M due to friction is greater
than Mf , since Mf is calculated assuming subcritical flow; whereas, in these experiments
the rate of frictional loss in the supercritical flow between the end of the sill and the
jump is greater, in accordance with (2.19). From the end of the sill until the jump, the
lower layer depth increases gradually until the lower layer depth, y2U , and the composite
internal Froude number just upstream of the jump, G2

U , are conjugate to the depth, y2D,
and the composite internal Froude number, G2

D, downstream of the jump (figure 5). The
free jumps in Exps. 5 and 6 are weaker than the drowned and transitional jumps (Exps.
2–4), because the composite Froude number downstream of the jump is higher.

In all of the Series A experiments, dye injected at the interface upstream of the sill was
entrained into the jump, irrespective of the position of the jump. The jump consists of
interfacial fluid mixed with lower layer fluid. No interfacial fluid made its way into the
upper layer, nor did it enter the lower portion of the lower layer.
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W = 12 mm, Y = 58.0 cm 1.0

0.5z′

0
1.0

0.5z′

0
1.0

0.5z′

0
1.0

0.5z′

0

ρ – ρ1 (kg m–3), u (cm s–1)

10 20

10 20

10 20

10 20

W = 16 mm, Y = 48.8 cm

W = 18 mm, Y = 44.4 cm

W = 22 mm, Y = 39.0 cm

1 m

(b)

(a)

(c)

(d )

Figure 6. (a–d) Photographs of Exps. 6–9 showing the effect of varying the total depth on the position of the
jump, and the velocity and density profiles 5.5 m downstream of the crest of the sill. All the experiments were
performed on the same day with the same flow rates and densities (see table 1). The conductivity probe and
micro-propeller meter are visible just above the interface in (a).

3.2. Series of experiments to investigate impact of jump position on entrainment and
mixing (Exps. 6–9)

Series B was performed with hm = 8.0 cm, q1 = 217, q2 = 145 cm2 s−1 and g′ ≈
20 cm s−2. The width of the downstream contraction was set at 1.2 cm for Exp. 6 and
increased to 1.6, 1.8 and 2.2 cm for Exps. 7–9, respectively. In Series B, r = 0.40, whereas
in Series A, r = 0.33. Otherwise, the primary difference is that in Series B velocity
and density profiles were measured downstream of the jump (figure 6a–d) to quantify
modifications to the flow caused by internal hydraulic jumps. The velocity profiles were
not continuous, they were obtained by holding the propellor meter fixed for a period of
40 s at a series of vertical positions.

In Exp. 6 a drowned jump formed just downstream of the crest of the obstacle (figure 6a),
as expected since ME < Mf . The density profile confirms the visual observation of
entrainment of upper layer fluid into upper portion of the lower layer (figure 6a). The
velocity profile is almost uniform, although a velocity deficit (wake), due to the stationary
jump and the divergence of the upper layer over the lee face of the sill, is still evident 5.4 m
downstream of the nose of the jump. This wake is likely to be less pronounced, but still
present, in the downstream contraction which starts 7.7 m downstream of the nose of the
jump. Similar wakes were observed in Exps. 7–9 (figure 6b–d).

As in the Series A experiments, when the downstream contraction was opened the water
level dropped, and the jump moved progressively further downstream (figure 6a–d). In
each case a different downstream density profile resulted. In the experiments with drowned
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Figure 7. Value of Mf − ME plotted as a function of the normalised position of our internal hydraulic jumps,
xj/LS, where xj is the distance from the sill crest to the nose of the jump, and LS is the half-width of the
sill. The square symbols represent flows with r = 0.33; the circular symbols represent flows with r = 0.4; the
solid symbols represent drowned jumps; the grey symbol represents a transitional jump; and the open symbols
represent free jumps.

jumps (Exps. 6–8, figure 6a–c) the only deviation from a two-layer downstream density
profile was an approximately linear reduction in density in the upper portion of the lower
layer. The reduction in density across this linear region increased as the jump moved
downstream, consistent with the hypothesis that as the jump moves downstream more
upper layer fluid is entrained into it. The density profile downstream of the free jump
(Exp. 9, figure 6d) had a different form; it was broader and more symmetric, more like
the hyperbolic tangent profiles characteristic of mixing layers. This suggests that most of
the mixing occurs in the shear layer upstream of the free jump. These observations are
consistent with those of Wilkinson & Wood (1971), where the amount of entrainment and
mixing was strongly impacted by jump position.

In all of the Series A and Series B experiments the jump location is consistent with
the predictions of (2.22): i.e. when ME < Mf , a drowned jump forms; when ME > Mf a
free jump forms; and when ME ≈ Mf a transitional jump forms near the end of the sill
(figure 7). The sensitivity of the jump location to the value of ME − Mf is greater for free
jumps than for drowned jumps as anticipated.

4. Mixing in internal hydraulic jumps

While the flows discussed above did not focus on mixing between the layers, they provide
ample evidence of it. In figure 3(a) the lower layer (dyed red) and the upper layer (dyed
blue) are distinct upstream of the obstacle, with a thin zone of mixed (purple) fluid at
the interface. Downstream of the obstacle this zone of mixed fluid expands, particularly
in the jump. Similarly, in Exps. 1–8 (figures 5 and 6a–c) a thin filament of dye injected at
the interface at the upstream end of the channel expands to occupy most of the lower layer
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Figure 8. (a) Photographs of Exp. 10 showing the growth of Kelvin–Helmholtz instabilities on the interface
as the lower layer accelerates down the lee slope of the obstacle. The flow was illuminated with a sheet of
laser light aligned with the centre of the flume. The laser light causes sodium fluorescein dissolved in the
lower layer to fluoresce. (b) The longitudinal variation in the interfacial Richardson number (RiI) based on an
estimated upstream vorticity thickness of 0.6 cm and density interface thickness of 0.3 cm. Downstream of the
crest the lower layer accelerates, RiI drops below 0.25, and the interface becomes unstable to Kelvin–Helmholtz
instabilities.

downstream of the jump. The density profiles taken downstream of the jump in Exps. 6–9
(figure 6) show a reduction in the density of the upper portion of the lower layer. Finally,
in several of the experiments (e.g. Exps. 1, 3, 6 and 7) Kelvin–Helmholtz billows are
distinctly visible over the lee face of the sill.

4.1. Shear instabilities
Experiments 10 and 11 were performed to visualise the growth and fate of shear
instabilities, and the turbulence and mixing associated with them, see figures 8 and 9. The
parameters of Exp. 10 (r = 0.33, G2

0 = 0.39 and βm = 0.21) were intermediate between
those of Exps. 3 and 4 (closer to Exp. 3), and a free jump formed downstream of the
end of the sill. The parameters of Exp. 11 (r = 0.40,G2

0 = 0.36 and βm = 0.19) were
intermediate between those of Exps. 8 and 9 (closer to Exp. 8), and a drowned jump
formed near the end of the sill.

The laser imaging of Exp. 10 shows the growth of Kelvin–Helmholtz instabilities on
the interface as the lower layer accelerates down the lee slope of the obstacle (figure 8a).
Wavelike disturbances precede the appearance of two isolated billows and two billows in
the process of pairing (figure 8a). These observations are consistent with the theory of
the hydrodynamic stability of stratified shear flows. In this experiment, the velocity shear
is centred about the density interface, so the gradient Richardson number at the density
interface is given by

RiI = g′δ2
V

(�u)2 δρ
, (4.1)

where the vorticity thickness, δV = �U/(∂u/∂z)I , the density interface thickness, δρ =
−�ρ/(∂ρ/∂z)I , where �u = u2 − u1 and �ρ = ρ2 − ρ1. The longitudinal variation of
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Figure 9. (a–c) Photographs of Exp. 11 demonstrating the formation and fate of Kelvin–Helmholtz billows.
The flow was illuminated with a sheet of laser light aligned along the centreline of the flume. The laser light
causes a dye dissolved in the lower layer to fluoresce. The region outlined in (a) is expanded in (b,c), which are
successive photographs, taken 0.29 seconds apart. The growth and advection of a series of Kelvin–Helmholtz
billows originating on the density interface in the supercritical flow upstream of the jump (denoted 1–4) is
shown. These billows entrain fluid from the upper layer into the lower layer as they are advected beneath the
jump. Billows (2) and (3) are in the process of pairing. An additional, weaker series of billows forms on the
interface between the jump face and the upper layer (inside red box). Features in the red box are compared with
(d), which is a radar image of the upper portion of an atmospheric internal hydraulic jump in the lee of the
Sierra Nevada mountain range. Shear instabilities that form on the jump face, grow, pair and collapse as they
are advected downstream. Adapted from Armi & Mayr (2011).
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Stationary internal hydraulic jumps

RiI is plotted in figure 8(b), using δV = 0.6 and δρ = 0.3 cm, which are the values obtained
from upstream velocity and density profiles. The variation of �U is calculated using the
observed layer thicknesses and measured flow rates. Upstream of the obstacle RiI > 0.25
and the interface is stable, as predicted (Miles 1961; Corcos & Sherman 1976). As the flow
passes over the obstacle�U initially decreases, until close to the crest both layers have the
same flow speed, and RiI → ∞. On the lee face of the obstacle the lower layer accelerates
and RiI decreases until at about x = 0.25 m, RiI drops below 0.25. From this point, until
the end of the sill, the flow becomes increasingly unstable and Kelvin–Helmholtz billows
begin to grow. By the end of the sill, RiI is sufficiently low for the billows to pair (Koop &
Browand 1979). An example of leapfrog pairing (Pawlak & Armi 1998; Thorpe 2007) is
visible at x ≈ 0.5 m in figure 8(a). After pairing, RiI increases to approximately 0.25 and
further pairing is not observed.

4.2. Structure of internal hydraulic jumps
In Exp. 11 a drowned jump formed near the end of the sill (figure 9a), and the interaction
of the flow upstream of the jump with the jump is captured in two photographs taken 0.29
s apart (figure 9b,c). In figure 9(b), billow ‘1’ is located just upstream of the nose of the
jump. Immediately, downstream of this billow is a parcel of upper layer fluid that has been
drawn underneath the nose of the jump by the strain field of the previous billow ‘0’. As
billow ‘1’ advects beneath the nose of the jump, the parcel of upper layer fluid between
‘0’ and ‘1’ is fully entrained beneath the jump (figure 9c). Subsequently, this entrained
fluid mixes with the jump fluid sitting above it. Similarly, we see that the parcel of upper
layer fluid between billows ‘1’ and ‘2’ is drawn into the jump (figure 9c). Billows ‘2’ and
‘3’ grow between figures 9(b) and 9(c) and are in the process of pairing. Billow ‘4’ is just
starting to form in figure 9(b), but 0.29 seconds later, in figure 9(c), it is clearly visible.
Billow ‘5’ is starting to form in figure 9(c). Thus, there is a continuous train of billows that
results in the entrainment of successive pulses of upper layer fluid into the jump. This is
the primary source of entrainment and mixing associated with the jump.

Another potential source of mixing is a second set of billows that forms on the interface
between the jump and the upper layer – the jump face, starting at the ruler in figure 9(b,c).
These billows are subject to much less shear than the billows advecting beneath the jump,
and do not cause as much entrainment and mixing. An atmospheric analogue of these
billows has been observed on the face of the jump that forms in the lee of the Sierra
Nevada mountain range shown in figure 9(d) (Armi & Mayr 2011). Although the shear
Reynolds number, Re∗ ≡ �uδV/ν ≈ 1100, is relatively high for a laboratory experiment,
it dwarfs in comparison with the estimate of O

(
109), for the case shown in figure 9(d).

The observations are remarkably similar; in each case the billows grow, pair and collapse
as they are advected downstream.

The unprecedented detail in figure 9(d) was captured by the University of Wyoming
King Air research aircraft flying at 3.1 km with the radar looking upward beneath the
internal hydraulic jump. Upstream is to the left, and the start of the cloud on the jump face
is only visible when the streamlines rise to the lifted condensation level. The distance scale
is centred in the valley at the town of Independence, California (x = 0 km). At the start of
the jump face (x ≈ −2.7 km), Ri < 0.25 and the flow is subject to instabilities that grow
into vortices. The vortex at x ≈ −1.5 km has entrained high-reflectivity (4 dBZ) moist air
from below and wrapped it around its core. The next core centred at x ≈ −0.5 km is less
distinct, but the vortex centred at x ≈ 0.5 km east has a clear mass of high reflectivity
(5 dBZ) mixed throughout its core. The next two vortices downstream at x ≈ 1.5 and
x ≈ 2.5 km east appear to be pairing, a process first clearly identified for unstratified
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flows by Winant & Browand (1974) and Brown & Roshko (1974), as the mechanism for
growth of a shear layer. Note that in stratified flows the pairing doubles the Richardson
number, as recognised by Koop & Browand (1979). When the Ri � 0.25 pairing is no
longer possible and the coherent structures collapse, as can be seen in figure 9(b–d). The
above observations are also consistent with data obtained from a balloon sounding that
was launched from the ground at Independence and crossed the shear region at an altitude
of 4.9 km (blue line in figure 9d). The Richardson number computed from the sounding
was Ri ≈ 0.5, therefore, downstream of the sounding no further growth of the shear layer
is possible and the coherent structures collapse.

Experiments 12 and 13 were performed to further illustrate the dynamics of internal
hydraulic jumps. In these experiments a higher flow rate ratio, r = 0.50, and a larger sill,
hm = 15 cm, were used to generate bigger jumps that could be measured in more detail. In
Exp. 12 (r = 0.50, G2

0 = 0.31 and βm = 0.37), a drowned internal hydraulic jump formed
approximately mid-way down the lee face of the sill (figure 10a). A series of vertical
conductivity profiles were taken at x = −1.0, 1.0 and 3.0 m (figure 10b–d). The upstream
profile shows the strongly two-layered upstream flow, where the density interface is about
3 mm thick (figure 10b). The profile at x = 1.0 m (just beyond the end of the sill) illustrates
the vertical structure of the jump (figure 10c). For the purpose of discussion we identify
five regions at this location, descending from the free surface:

(A) The upper layer in which the density remains constant at ρ1.
(B) The shear layer on the jump face.
(C) The internal hydraulic jump, characterised by small amplitude fluctuations of

variable frequency. This portion of the jump is buffeted by the shear layers above
and below it.

(D) The shear layer at the base of the jump, consisting of a series of billows that were
initiated upstream of the jump and advected beneath it. At x = 1 m this shear layer
exhibits rapid and large fluctuations in conductivity, reflective of the passage of
Kelvin–Helmholtz billows that have begun to break down. Here, the conductivity
fluctuations are larger than those seen in the shear layer on the jump face (Region
B), since the velocity shear and resultant instabilities are stronger.

(E) An undisturbed region of the lower layer into which shear instabilities do not
penetrate. In this region the density remains constant at ρ2.

Downstream of the jump, at x = 3.0 m, the flow has returned to being almost two-layered
(figure 10d). The upper layer and the lower portion of the lower layer remain undisturbed.
The billows on the jump face have broken down and collapsed leaving a sharp density
interface approximately 1 cm thick. The shear layer at the base of the jump has merged
with the jump to form a region of almost linear density gradient (figure 10d), and almost
constant shear (not shown, but similar to figure 6b); we shall refer to this region as the
jump wake. The average gradient Richardson number in this linearly stratified region is
approximately 1.0, and there is no longer any shear instability, or active mixing. There are,
however, still small density fluctuations that reflect incomplete mixing in the jump.

4.3. Quantitative analysis of entrainment into internal hydraulic jumps
In Exp. 13 (r = 0.50, G2

0 = 0.45 and βm = 0.32) a drowned jump formed near the
end of the sill (x = 0.9 m). In this experiment we collected times series of conductivity
(converted to density) at 23 vertical elevations at x = 1.5 m; 0.6 m downstream of the
nose of the jump. Each time series consisted of 1024 measurements taken at 25 Hz.

936 A25-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.74


Stationary internal hydraulic jumps

–1 0

x = –1 m x = 1 m

z′

A. Upper layer

C. Internal
hydraulic

jump

D. Lower
shear layer

E. Lower layer

B. Upper
shear layer

x = 3 m
1

11 10

1

0

1

0

x (m)

1 2 3

ρ′ ρ′
ρ′

(b)

(a)

(c) (d )

Figure 10. (a) Photograph of Exp. 12, (b) density profile at x = −1 m, (c) density profile at x = 1 m, (d)
density profile at x = 3 m. Each profile took approximately 60 s to complete.

The non-dimensional density

ρ′(z′) = ρ(z′)− ρ1

�ρ
, (4.2)

where z′ = z/Y0, is plotted as a function of elevation in figure 11(b) for each of the 23 time
series. This plot illustrates both the mean vertical density profile and the fluctuations about
it. Five time series, representative of each of the five regions, are presented in figure 11(a).
In the upper layer (Region A, e.g. z′ = 0.60) the density is constant, except for instrumental
noise, and equal to the density of the inflowing fresh water, ρ′ = 0. In the upper shear layer
(Region B, e.g. z′ = 0.48), the density fluctuates in the range 0 ≤ ρ′ ≤ 0.32 due to the
passage of pulses of entrained fluid that have been partially mixed into the shear layer. At
this location billows are in the process of merging and this is reflected in the variable time
scales of the density fluctuations. In the internal hydraulic jump (Region C, e.g. z′ = 0.42),
the density fluctuates slowly in the range 0.32 ≤ ρ′ ≤ 0.64: the passage of billows in both
the upper and lower shear layers forcing the jump fluid up and down. In the lower shear
layer (Region D, e.g. z′ = 0.22) the density fluctuates in the range 0.64 ≤ ρ′ ≤ 1: these
fluctuations are larger, and fluctuate more rapidly, than those in the upper shear layer,
reflecting the more active mixing in the lower shear layer. In the lower layer (Region E, e.g.
z′ = 0.06) the density is constant, except for instrumental noise, and equal to the density
of the inflowing saline water, ρ′ = 1.

The density profiles presented in figure 10 show that the sharp two-layer flow observed
upstream of the sill is substantially modified as it passes over the sill and through the
jump. However, these profiles alone do not allow us to make quantitative estimates of the
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Figure 11. (a) Time series of density in Exp. 13 at z = 0.06, 0.22, 0.42, 0.48 and 0.60. (b) Compilations of
density measurements at each location. Each time series consists of 1024 measurements taken at 25 Hz.

amount of entrainment and mixing that has occurred, because the velocity profiles have
also changed. Both the velocity and density profiles need to be taken into account, and
the appropriate way to do so is to compare normalised profiles of density as a function of
streamfunction,

ψ(z′) =
{∫ z′

0
u dz′

}
Y0

q
. (4.3)

Here, we examine the profiles of ρ′ vs ψ for experiments 6–9, see figure 12. The
upstream (x = −1.5 m) profile for Exp. 6 is indistinguishable from the upstream profiles
for Exps. 7–9 (not shown), demonstrating the two-layer nature of the upstream flow. For
each experiment, profiles were taken sufficiently far downstream of the jump (x = 4.5 m)
for active mixing to have ceased. The gradient Richardson number in the wake of the jump
is of O(1) in each case.

The density-streamfunction profiles highlight the differences between free jumps and
drowned jumps with respect to entrainment and mixing. In the drowned jumps (Exps. 6–8),
a considerable amount of upper layer fluid is entrained and mixed into the lower layer, but
almost no fluid from the lower layer is mixed into the upper layer (figure 12a). In the free
jump (Exp. 9), mixing occurs almost symmetrically about the interface (figure 12b). To
quantify entrainment rates we define the flux of upper layer fluid entrained into the lower
layer as

q12 =
∫ ψINT

0

(
1 − ρ′) dψ, (4.4)

and the flux of lower layer fluid entrained into the upper layer as

q21 =
∫ 1

ψINT

ρ′dψ, (4.5)

where we define ψINT is the value of the streamfunction when ρ′ = r. The net entrainment
flux

qENT = q12 − q21. (4.6)
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Figure 12. (a) Profile of ρ′ vs ψ upstream (x = −1.5 m) of the sill in Exp. 6 (red), and profiles of ρ ′ vs ψ
downstream (x = 4.5 m) of the drowned jumps in Exps. 6–8 (black). (b) Profile of ρ ′ vs ψ upstream (x =
−1.5 m) of the sill in Exp. 9 (red), and profiles of ρ′ vs ψ downstream (x = 4.5 m) of the free jump in Exps. 9
(black).

Note that combining (4.4) and (4.5), and recognising that
∫ 1

0 ρ
′ dψ = r, gives

qENT = ψINT − r. (4.7)

The values of q12, q21, qENT and ψINT for each of the profiles are given in table 2.
The profile obtained at x = −1.5 m in Exp. 6, is typical of the upstream profile in

all experiments, and shows an almost perfectly two-layered flow (figure 12a): very little
fluid has been entrained across the interface in either direction, see table 2. The lack of
entrainment reflects the care taken to minimise mixing upstream: in the channel upstream
of the sill the interfacial Richardson number, RiI = O(0.5), see figure 8(b). The distinctly
two-layer flow upstream of the sill allows us to focus on the mixing and entrainment
associated with the jump, and their impact on the downstream flow. We discuss the
experiments with drowned jumps first (Exps. 6–8), and then the experiment with a free
jump (Exp. 9).

In the case of drowned jumps (Exps. 6–8), far more fluid is entrained from the upper
layer into the lower layer, than vice versa, i.e. q12 � q21 (table 2). In fact, within the
accuracy of our experiments, q21 = 0.004 is the same as it was upstream of the sill,
indicating that there is a negligible amount of mixing caused by the upper shear layer
in drowned jumps, consistent with figure 6(a–c). The amount of fluid entrained and mixed
by the lower shear layer increases as a drowned jump moves down the lee face of the
sill, see figure 13 and table 2. The further downstream that a jump forms, the greater the
length of the shear layer that is exposed upstream of the jump, and the more entrainment
into the jump. This increasing entrainment is reflected in the increasing density deficit
downstream of the jump (figure 12a). Beneath the jump the shear layer is subject to pairing,
and continues to grow until it occupies the full depth of the wake of the jump. Downstream
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Figure 13. Entrainment fluxes downstream (x = 4.5 m) of the jump in Exps. 6–9 plotted against the
normalised jump location, xj/LS. The open triangles represent, q12, the flux of fresh fluid in the lower layer;
the open squares represent, −q21, and the closed circles represent the net entrainment flux, qENT = q12 − q21.
The grey symbols are from measurements taken upstream (x = −1.5 m) of the sill.

(x = 4.5 m) of a drowned jump there is an almost linear decrease in ρ′ with increasing ψ
in the wake of the jump (figure 12a). The interface between the upper layer and the lower
layer downstream of the jump remains sharp, confirming that the shear instabilities on
the upper face of the jump do not result in a significant amount of mixing. Even though
the lower shear layer is relatively strong, it is not strong enough to penetrate the bottom
boundary layer, and the lower portion of the lower layer remains undisturbed.

In Exp. 9, in which a free jump forms far downstream of the sill, the behaviour
is quite different. Immediately downstream of the sill Ri � 0.25 and billows pair:
further downstream Ri � 0.25, and they collapse and breakdown due to secondary
three-dimensional instabilities. In the resulting mixed layer, the velocity and density
profiles vary relatively smoothly. The jump that forms downstream of this mixed layer
is more of a gradual expansion with no roller region (see figures 2(a), 5 and 6(d)), in
contrast with the drowned jumps described above. Downstream of the free jump the ψ(ρ′)
plot is almost symmetric about the interface, see figure 12(b). Thus, there is a dramatic
difference between drowned jumps and free jumps, both in the structure of the jump and
the entrainment and mixing associated with it.

In developing the theory presented in § 2 we assumed that the change in r due to
entrainment into the jump was small. This assumption is satisfied in our experiments
where the maximum value of qENT ≈ 0.031 (Exp. 8), which is indeed small compared with
r = 0.4. To achieve much greater entrainment, the velocity shear between the two layers
upstream of the jump would have had to have been much greater, but this is not achievable
in two-layer flow over a sill, where the driving force is the pressure difference due to a
higher interface level upstream of the sill than downstream.
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Stationary internal hydraulic jumps

However, much higher velocity shears can be achieved in flows of the type studied by
Wilkinson & Wood (1971), where the upstream flow was a strong boundary jet injected
through a small (1 cm high) duct under high pressure. In the strong internal jumps of
Wilkinson & Wood (1971), the shear internal Froude number (see Appendix A) at location
E, F2

�E = 50–270; and the flux of ambient fluid entrained into the jet was up to 200 % of
the initial jet flux.

While Wilkinson and Wood achieved high shear internal Froude numbers by discharging
under pressure, consistent with engineering applications, the Froude numbers achieved
in our experiments were limited by the difference in interface height upstream and
downstream of the sill, as is also the case in geophysical flows (e.g. Mayr & Armi 2008). In
our experiments F2

2E = 2.9–4.0, see table 1. Even though the density and velocity profiles
were modified upstream and downstream of the jump, a sharp density interface persisted
downstream of the jump. In Exp. 9 the flux of upper layer fluid entrained into the lower
layer, q12 = 0.04 (table 2) was 10 % of the initial lower layer flux; i.e. q12/r = 0.1, see
table 2. This value, the highest achieved in our experiments, is more than an order of
magnitude less than the entrainment rates of Wilkinson & Wood (1971).

5. Summary and conclusions

Our laboratory experiments were conducted to investigate the hydraulics of, and mixing
associated with, stationary internal hydraulic jumps in high Reynolds number two-layer
flows. In these experiments a layer of fresh water overlying a layer of salt water flowed
through a long rectangular channel with a horizontal bed. An underwater sill was
installed approximately midway along the channel to generate internally supercritical
flow downstream of its crest. A contraction, of adjustable width, was installed at the
downstream end of the channel. This contraction ensured internally subcritical flow
with approximately equal velocity in each layer at its entrance. It also controlled the
total depth of flow within the flume. The transition from internally supercritical flows
to internally sub-critical downstream flows was achieved via internal hydraulic jumps.
Our experimental set-up is unique in that it models stationary internal hydraulic jumps
in barotropically driven two-layer flows over a fixed obstacle, as might occur in tidally
driven flows over underwater sills, or flows over mountains driven by large-scale pressure
gradients.

Our analysis of internal hydraulic jumps closely follows that of free-surface hydraulic
jumps. A two-layer momentum function for two-layer flows is derived specifically for our
experimental configuration. For flow with an internal hydraulic jump at the end of the sill
(transitional jump), the momentum at the end of the sill, ME, is equal to Mf , the frictional
momentum loss between the end of the sill and the start of the downstream contraction. If
ME < Mf , a jump will form over the lee face of the sill (drowned jump), and if ME > Mf ,
a jump will form downstream of the sill (free jump). Our experimental observations are
consistent with these predictions.

The primary source of mixing in our experiments is a train of Kelvin–Helmholtz billows
that forms on the interface between the two layers and grows as the lower layer accelerates
down the lee face of the sill. Upper layer fluid is entrained into these billows, and is
advected downstream with them. The subsequent evolution of the flow depends upon
the location of the jump. In the case of drowned jumps over the lee face of the sill, the
billows are still growing, and possibly pairing, as they approach the jump. As each billow
is advected beneath the nose of the internal hydraulic jump, the upper layer fluid entrained
into the billow is also advected into the jump. Thus, periodic pulses of entrained upper
layer fluid enter the jump. Once within the jump, this entrained fluid mixes with the jump
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fluid sitting above it. Downstream of the jump, the upper layer remains homogeneous
and a sharp density step at the interface persists. As a result of entrainment into, and
mixing within, the jump, the upper portion of the lower layer is approximately linearly
stratified and the lower portion remains undisturbed. A second, upper shear layer, between
the undisturbed upper layer and the top of the internal hydraulic jump, has minimal impact
on the downstream density profile.

If a free jump forms sufficiently far downstream of the sill, the flow evolves differently.
The lower layer will stop accelerating once it reaches the end of the sill. Initially the
billows will continue to grow, but as the Richardson number increases, these billows will
collapse and breakdown due to secondary, three-dimensional instabilities. In the resulting
mixed layer the velocity and density profiles vary relatively smoothly. The jump that forms
downstream of this mixed layer is more of a gradual expansion with no roller region, and
downstream of the jump a broad density interface persists.

Thus, the amount of entrainment and mixing associated with an internal hydraulic jump,
and shape of the density profile downstream of it, are strongly dependent on the location
of the jump relative to the sill: the length of the shear layer upstream of the jump governs
the evolution of the flow.
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Appendix A. Appropriate downstream geometry for study of internal hydraulic
jumps

Here, we examine the suitability of two simple downstream geometries, an underwater sill
and a contraction, for the study of internal hydraulic jumps in the laboratory. Immediately
downstream of an internal hydraulic jump the flow is both internally and, of course,
externally subcritical. Before exiting the channel this flow is subject to two controls: the
first controlling the interface elevation, where the internal Froude number

F2
I = (u1y2 + u2y1)

2

g′Yy1y2
(
1 − F2

Δ

) = 1, (A1)

see Lawrence (1990); and the second, located further downstream, controlling the free
surface height, where the external Froude number

F2
E = u2

gY
= 1, (A2)

and u = q/Y . In many studies of internal hydraulics, the composite Froude number

G2 = F2
1 + F2

2 + εF2
1F2

2, (A3)

see Armi (1986), is invoked to specify the criticality of two-layer flows. This approach is
valid since

1 − G2 = (1 − F2
I )(1 − F2

E)(1 − F2
Δ), (A4)
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Stationary internal hydraulic jumps

see Lawrence (1990). Note that the results presented here are only valid if Long’s (1956)
criterion, F2

Δ < 1, is satisfied, which is the case in all of our experiments.

A.1. Flow over an underwater sill
For steady two-layer flow over an underwater sill at the end of a horizontal channel of
constant width, the streamwise variation in free surface elevation

dY
dx

= εF2
1F2

2
1 − G2

dh
dx
, (A5)

see Armi (1986). Therefore, from (A4) and (A5), if the sill is sufficiently high, an external
control, F2

E = 1, occurs at the crest of the sill, where dh/dx = 0. The streamwise variation
in the interface elevation, yINT = y2 + h, is given by

dyINT

dx
= −F2

2
(
1 − εF2

1
)

1 − G2
dh
dx
, (A6)

see Armi (1986). There are two alternative scenarios. In the first scenario, there is no
internal hydraulic control and the flow is internally supercritical, both as it approaches
the sill and as it flows over it; there can be no internal hydraulic jump. In the second
scenario, an internal hydraulic control, known as an approach control (Lawrence 1993), is
located at the start of the sill, where dh/dx = 0. An internal hydraulic jump is theoretically
possible in this scenario, but it would have to form far upstream of the downstream sill to
allow frictional effects enough distance to transform the flow from the conjugate internally
subcritical state downstream of the jump to the internally critical flow at the start of the
sill. Unfortunately, the channel would need to be prohibitively long to achieve this second
scenario, and an underwater sill at the end of the channel is not suitable for studying
internal hydraulic jumps.

A.2. Flow through a contraction
For steady two-layer flow through a contraction at the end of a horizontal channel of
constant width, see figure 4, the streamwise variation in the thickness of the layers passing
through the contraction is given by

dy1

dx
=
[

G2 − (1 + y2/y1)F2
2

1 − G2

]
y1

w
dw
dx
, (A7a)

dy2

dx
=
[

G2 − (1 + ry1/y2)F2
1

1 − G2

]
y2

w
dw
dx
, (A7b)

where w is the width of the channel (Armi 1986). These equations are fundamentally
different from those for flow over a sill in that hydraulic controls do not have to occur at a
topographic constraint (dw/dx = 0). They can also occur when

1 −
(

1 + y2

y1

)
F2

2 = 0 and 1 −
(

1 + ry1

y2

)
F2

1 = 0 (A8a,b)

which requires, that for ε � 1:
u2

1 = u2
2. (A9)

Wood (1968) called such controls ‘virtual’ controls. His analysis applies to two-layer
flows entering a contraction; as the contraction narrows these flows accelerate, first passing
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through an internal ‘virtual’ control within the contraction, and then through an external
control at the end of the channel. The flow upstream of the entrance to the contraction
can be sufficiently internally subcritical that, an internal hydraulic jump can form a short
distance upstream of it.

A downstream contraction in combination with an upstream underwater sill is shown in
figure 4. An internally supercritical flow can form downstream of the crest of the sill, and
an approximately uniform internally subcritical flow forms upstream of the contraction.
The flow transitions between these two regimes via an internal hydraulic jump, with an
approximately uniform downstream velocity profile, which is the desired scenario for the
present study.
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