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DEFINITIZABLE OPERATORS ON A KREIN SPACE 

PETRZIZLER 

ABSTRACT. Let A be a bounded linear operator on a Hilbert space H. Assume that A 
is selfadjoint in the indefinite inner product defined by a selfadjoint, bounded, invertible 
linear operator G on H; [x,y] := (Gx,y). In the first part of the paper we define two 
orders of neutrality for the pair (G, A) and a connection is made with the "types" of 
numbers in the point and approximate point spectrum of A. The main results of the 
paper are in the second part and they deal with strong and uniform definitizability of a 
bounded selfadjoint operator on a Pontrjagin space. They state: 

A) Let A be a bounded strongly definitizable operator on a Pontrjagin space nK , 
then A is uniformly definitizable. 

B) A bounded selfadjoint operator A on a Pontrjagin space YlK is uniformly defini­
tizable if and only if all the eigenvalues of A are of definite type and all the nonisolated 
eigenvalues of A are of positive type. 

Some applications to the theory of linear selfadjoint operator pencils are given. 

1. Introduction and main results. This paper concerns characterizations and prop­
erties of definitizable operators on Krein spaces. We introduce these concepts by first 
considering a bounded, invertible selfadjoint operator G on a Hilbert space //; the inner 
product on H is denoted by (.,.). A new, generally indefinite inner product [.,.], is 
defined on H by letting [x,y] = (Gx,y) for all x,y £ H. When G is indefinite the pair 
(//, [.,.]) is a Krein space. 

A bounded linear operator^ on His G-selfadjoint if G A = A*G, (here A* is the Hilbert 
space adjoint of A). Such an operator is said to be definitizable if there exists a nonzero 
polynomial p such that Gp(A) > 0, (i.e. Gp(A) is a positive semidefinite operator on 
/ / ) , and strongly or uniformly definitizable if Gp(A) > 0 or Gp(A) >• 0, respectively. 
(The latter notation means that there is a 8 > 0 such that {Gp(A)x,x\ = \p(A)x,x] > 
8(x,x) fo ra l lxe / / . ) 

In the case of a finite dimensional Hilbert space //the notion of the order of neutrality 
of a G-selfadjoint operator^ was introduced in [6]. It was defined to be the dimension of 
a maximal yï-invariant G-neutral subspaces of H and denoted by 1(G,A). Furthermore, 
it was proven that 1(G,A) = 0 if and only if the spectrum of A is of definite type. The 
case of a G-selfadjoint bounded operator A on an infinite dimensional Hilbert space was 
studied in the work of [5]. 

Let A be a bounded G-selfadjoint operator on //. 

DEFINITION 1.1. Let A G VP(A). Then A is of positive (negative) type if (Gf,f) > 0 
(< 0) for every nonzero/ G ker(A — A). 
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DEFINITION 1.2. Let À G crap(A). Then À is of plus (minus) type if: for every 
normalized sequence {fn} such that ||(A — A)fn\\ - > 0 w e have that lim( G f„yf„) > 0 
(ï5ïï(G/„,/„) < 0). 

If A G (Tp(A) is of positive or negative type then we say that A is of definite type. 
Similarly if A G oap{A) is of plus or minus type then we say that A is of determinate 
type. It is clear that eigenvalues of definite type have to be real. Points of determinate 
type have to be real as well and we can see this by the following argument of Langer. 
Let {xn} be a normalized sequence such that ||(A — A)x„\\ —• 0 as n —* oo. Then we 
have that lim[jc„,x„1 > 0 or lim[xw,xw] < 0. We now observe that Im(—\[xn,xn]) = 
Im[(^ — X)xnixn] —• 0. Thus Im(A) = 0 and hence A G R. 

Let A G crp(A) then it is possible for A to be of definite type and not of determinate 
type. But however, if A G crp(A) is of determinate type then A has to be of definite type. 
(For more details see [5]). 

We define the order of neutrality for a G-selfadjoint bounded operator ,4 on an infinite 
dimensional Hilbert space H and we establish its connection with the type of the point 
spectrum of A (vp{A)) and the approximate point spectrum of A (<jap{À)). Two orders 
of neutrality, 1P(G,A) and 1(G,A) are defined in Section 2, and, in particular, it will be 
shown that: 

i) 1P(G,A) = 0 if and only if ap(A) is real and of definite type, 
ii) 1{G,A) = 0 if and only if a(A) is real and of determinate type, 

where l^G^A) is the point order of neutrality and 7(G,v4) is the order of neutrality 
associated with the pair (G,A) (two concepts that coincide on a finite dimensional 
Hilbert space). 

Strong and uniform definitizability of a bounded selfadjoint operator A on a Krein 
space is studied and the following result is obtained (generalization of Proposition 1 in 
[5] to operators with a A:-th power compact): 

iii) Let (//, [,.,]) be a Krein space. If there exists an operator ,4 such that A is uniformly 
definitizable and Ak is compact for some positive integer k, then (//, [,.,]) is a 
Pontrjagin space. 

The following are the main results of this paper. They are established in Sections 6—8 
and are independent of the results in Sections 2—5. 

A) Let A be a strongly definitizable bounded operator on a Pontrjagin space i%c, then 
A is uniformly definitizable. 

B) A bounded selfadjoint operator^ on a Pontrjagin space n^ is uniformly definiti­
zable if and only if all the eigenvalues of A are of definite type and all the nonisolated 
eigenvalues of A are of positive type. 

In Section 9 these results are interpreted in the context of selfadjoint operator pencils 
on//. 

The ideas of strong and uniform definitizability have arisen, and are being utilized 
in the perturbation theory and in a number of other significant applications (see [4], 
[5], [6], [7], [8], [9] for example). These ideas require a careful study of different 
characterizations of strong and uniform definitizability. The result A) states that these 
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two types of definitizability are equivalent for a bounded selfadjoint operator on a 
Pontrjagin space. Let A be a bounded selfadjoint operator on a Pontrjagin space. The 
result B) provides a nice and simple characterization of uniform definitizability of A just 
by understanding the eigenvalues of A. 

Moreover, the above results, when applied to the theory of linear operator pencils, 
give a new characterization of certain class of quasihyperbolic (QHP) operator pencils, 
(see [5]). 

All the linear operators considered in this paper will be bounded and G will denote a 
bounded selfadjoint invertible operator on Hilbert space H. 

2. Order of neutrality for a pair (G,A). Let A be a G-selfadjoint operator. We 
begin this section with the following observation. Let À G v(A) n R, then A G crap(A). 
To see this we invoke the Corollary VI.6.2 of [1] stating that a(A) Pi R C ac(A) U ap(A), 
where crc(A) denotes the continuous spectrum of A, (the set of all A G C such that 
ker(A7 — A) = 0 and range(A7 — 4̂) is dense in H). Clearly we have that ac U ap C aap 

and thus a(A) Pi R C crap(A). 
We need the following technical lemma in order to define the order of neutrality for 

the pair (G,A). 

LEMMA 2.1. A point A G crap(A) is of indeterminate type if and only if there exists a 
sequence {xn} such that \\xn\\ - 1, \\(A — A)x„|| —> 0 and(Gxnixn) —> 0. 

PROOF. Suppose A G (Jap{A) is of indeterminate type. Then the only nontrivial case 
to examine is the case when there exist normalized sequences {xn} and {yn} such that 
\\(A - X)xn\\ — 0, \\(A - X)yn\\ — 0 andHm(Gx„,x„) = «i > 0,H5(Gyn,jO = S2 < 0. 
Upon extracting subsequences and renaming them we have the existence of {xn}, {yn} 
such that \\xn\\ = 1, \\yn\\ = 1, \\(A - X)xn\\ -> 0, \\(A - X)yn\\ — 0, (Gx„x„) -> 6U 

(Gyn,yn) —• <$2 and (Gxw,xw) G (6\ - e,6\ + e); (C/yw,^) G (<52 - £,<$2 + e) for every « 
w i t h 0 < £ < ^ . 

Moreover we can assume that (xn,yn) G R for every n. To see this we choose 
6n G [0,27r) such that (xw, e ^ , , ) G R and consider the sequence {el6yn} instead of {yn}-
Let wf

n=yn- (yn,xn)xn. Note that w£ 7* 0 and w'n G spanR {*„,>>„}. Let wn = ^ and 
an(t) = (cos 0** + (sin t)wn. 

Now define a map: / :S —> R ; / : J C I—> (GX,X), where S is the unit sphere in the 
Hilbert space H. Consider/ o an: [0, f ) —> R. Note that: / o an(0) = (Gx„,x„) > 0 
a n d / o aw(f„) = (Gy„,yn) < 0, for some 0 < tn < f. By the intermediate value 
theorem there exists hn G (0, tn) such t h a t / o an(hn) = 0. Let z„ = ocn{hn) and the 
above states that (Gzn,zn) = 0. Since |(Gxrt,x„) — (Gy„,yn)\ > ^y^2-, we have that 
Ife?^)!2 < <r < 1 for every n with 0 < a < 1. We now have that rAq < -^ and 
H04 - X)zn\\ < (1 + T ^ ) ( | | ( ^ - AKII + ||04 - X)yn\\) for every n. This implies that 
{zn} C S, ||04 - A)z„|| —> 0 and (Gzn,zn) = 0 for every n. 

The converse direction of this lemma is immediate. • 
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Let us introduce the following Banach space of sequences in H (see [12]): 

/oo(//) = {JC = (x/) | xi G/ /V/GN and sup ||JC/|| < 00} 

with the norm ||JC|| = sup, ||x/||. Consider the subspace S C loo{H) given by E = {x G 
loo(H)\ lim, \\XJ\\ = 0}. We have that S is a closed subspace of loo{H). Hence we can 
form the quotient Banach space H = loo(H)/E. The Banach space H is equipped with 
the quotient norm ||jc|| = inf^slsup, ||JC/ — yi\\), where x = [(je,-)] G H and y = (y/). We 
observe that |jjc|| = limf-11JC/119 see [12] for example. Consider now the following map: 

À'.H—-> //given by A: x »—> [(A*/)], where x = [(*,•)]. 

Observe that this map is well defined and A is a bounded linear operator with the 
norm \\A\\ = ||^||. It is easy to see that the operator A is invertible if and only if A is 
invertible. This implies that a(A) = cr{A). It follows from the above construction that 
aap(A) = op(A). Let^ be a G-selfadjoint operator on//. The operators A and G determine 
bounded linear operators A and G on H. We make the following definition: 

DEFINITION 2.2. A subspace S C H is said to be G-neutral if lim/(G*/, JC,-) —* 0 for 
every x - [fa)] G S. 

This will allow us to define the order of neutrality for the pair (G, v4) in the following 
way: 

DEFINITION 2.3. Let 1(G,A) := sup$€Q dimS, where Q is the set of all ^-invariant, 
G-neutral, finite dimensional subspaces of H. 

We can now state: 

THEOREM 2.4. Let A be a selfadjoint operator on a Krein space. The order of 
neutrality of A with respect to G is zero if and only ifo{A) is of determinate type. 

PROOF. Suppose that 1{G,A) f 0, then there exists a finite dimensional subspace S 
of H which is ̂ [-invariant and G-neutral. Let À G ap(Â\S)md it is readily seen that A is 
of indeterminate type. Conversely, assume that l(G,A) = 0. It follows that if A G oap{A) 
then A is of determinate type. • 

To obtain the parallel result for the point spectrum we introduce the point order of 
neutrality. Recall that a subspace S C H is said to be G-neutral if (Gx, JC) = 0 for every 
xeS. 

DEFINITION 2.5. Let 1P(G, A) := sup5€Q dim 5, where Q is the set of all finite dimen­
sional ̂ -invariant G-neutral subspaces of H. 

We obtain the following characterization of the point spectrum of A. 

THEOREM 2.6. Let Abe a selfadjoint operator on a Krein space. The point order of 
neutrality of A with respect to G is zero if and only ifap(A) of definite type. 
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PROOF. Suppose 1P{G,A) f 0. Then there exists a nontrivial finite dimensional 
subspace S C //which is ̂ -invariant and G-neutral. Let À G ap(A\S). Observe that A is 
of indefinite type. Conversely, let A G ap(A) be of indefinite type and consider: 

CASE i) A ̂  R. Let S = span{x0}, where JC0 G ker(A - A) \ {0}. Clearly S G Q. 

CASE ii) A G R. If there exists xo G ker(A — A) \ {0} such that (Gx0, x0) = 0 then we 
are finished. Otherwise there exists xi G ker(A— ̂ ) \{0} such that (Gx\,x\) < Oand there 
exists x2 £ ker(A —A)\ {0} such that (Gx2,x2) > 0. By the intermediate value theorem 
we conclude that there is a nonzero xo such that (Gxo,xo) = 0 an(* xo ^ ker(A — A). Let 
S = span{xo}. Clearly S E Cl. m 

REMARK. We have the following inequality: 1{G,A) > lp(G,A). To see this, let S 
be a n -dimensional, ^4-invariant, G-neutral subspace of//. Let e\,..., en be a basis for 
S and let S be the subspace of H given by 5 = span{ei,. . . , en}, where et = [(e,-)] with 
1 < / < n. It is easily seen that S is a «-dimensional, ^[-invariant, G-neutral subspace of 
H. As the following examples will show, the strict inequality can be achieved. 

3. Examples. We shall illustrate some of the notions with two examples. 

EXAMPLE 3.1. Let H be a separable infinite dimensional Hilbert space. Let A and G 
be bounded linear operators on H given by 

^ = d i a g [ o , l , ^ , . . . ] , G = diag[-l , 1 , -1 ,1 , . . . ] 

It is seen immediately that A is G-selfadjoint and a(A) = {1, \, \,...} U {0} = ap(A). 
Let x = [{x,}], where x/ = (0,0 • • • 1,1,0,0) with the first " 1 " in the /-th position. Then 
||x|| = y/2 and Ax = 0. Moreover lim/(Gxz,x/) = 0. Thus span{x} G Q and 1{G,A) > 0. 
However 1P(G, A) = 0 since each eigenvalue of A is of definite type. 

EXAMPLE 3.2. Let S be the unilateral shift on a separable Hilbert space ([2]). 
S: (xi,x2 , . . .) H-> (0,xi,x2 , . . .)• We have that cr(S) = D; ap(S) = 0 and crap(S) = dD, 
where D is the unit disk in the complex plane C. Note that S*: (xi, x 2 , . . . ) "—> (x2,X3,...). 
As in [10] define the G-selfadjoint operator A on / / 0 / /by: 

A = 
S 0 
0 S* 

and G 
0 / 
/ 0 

Note that G A = A*G, a(A) = D, ap(A) = D and aap(A) = D = a(A). For n > 2 consider 
the sequence of subspaces of//defined by Cn = 0J^2 Q , where Ck = span{(0,x*)} and 
xk = (1, | , p , . . . ) . We note that dimCn = n — 1, C„ is ^-invariant and G -neutral for 
every «, and thus 7P(G, ̂ 4) = 00. Using the remark above we conclude that 7(G, A) = 00. 
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4. Order of neutrality and strong definitizability. Suppose H is a finite dimen­
sional Hilbert space. Then A is strongly definitizable with respect to G if and only if all 
the eigenvalues of A are of definite type (see [6]). HH is an infinite dimensional Hilbert 
space and A is strongly definitizable with respect to G, then we have that a(A) C R and 
all the eigenvalues of A are of definite type. To see that the spectrum of A has to be real, 
we invoke the result of Langer stating that a definitizable operator A on a Krein space 
has only a finite number of nonreal spectral points and these points are eigenvalues of 
A (see [10]). Moreover, it is not difficult to see that if A is strongly definitizable then all 
the eigenvalues of A have to be real and of definite type. Thus we can now conclude that 
a(A) CRandlp(G,A) = 0. 

However, it is not true that the assumptions 1P(G,A) = 0 and a(A) C R imply that A 
is strongly definitizable, even if we additionally assume that a(A) = ap(A). Let us return 
to the Example 3.1. 

Consider//, G,A as in Example 3.1. Recall that 1P{G,A) = 0. We will show that,4 is 
not definitizable. Supposed is definitizable and let/?(A) be a definitizing polynomial for 
A. Then we have 

Gp(A) = Gdiag[/?(0),/7(l),/?(i),...] = diag[- /K0), /Kl) , -p( i ) , . . . ] > 0 , 

which contradicts the fact that a polynomial has a finite number of zeros. 
Having lp(G,A) = 0 for a selfadjoint operator^ on a Pontrjagin space also does 

not imply that A is strongly definitizable either. A simple example for this is A = 
diag[0,1,^,...] and G = diag[— 1,1,1,...]. Note that we have cr(A) = ap(A) in this 
example as well. 

5. Algebraic operators. A bounded linear operator A on a Banach space X is said 
to be algebraic if p(A) = 0 for some nonzero polynomial p. The following results are 
natural generalizations of the results of [6] in finite dimensions. 

PROPOSITION 5.1. Let A be a G-selfadjoint operator on H and suppose that A is 
algebraic. Then the following are equivalent: 

a) A is strongly definitizable; 
b) -yp(G,A) = 0. 

PROOF. We have H = ker(A 1 - A)mi © • • • © ker(A^ - A)mk (see [11]). The result then 
follows from the results of [9] and observing that definite eigenvalues are semisimple. • 

Note that in this case 1P(G,A) can be calculated in the following way (see [6]). Let 
E 1 , . . . , E* be the spectral subspaces of A corresponding to either distinct real eigenvalues 
ofmixed type or a conjugate pair ofnonreal eigenvalues. Then 1P{G,A) = £*=1 lPj, where 
lpj = lp(Gj,Aj) with Gj = G\Ej and Aj =A\Ej. 

The results in the following sections deal with the notions of strong and uniform 
definitizability of a bounded selfadjoint operator on a Krein space and its applications 
to linear selfadjoint operator pencils. The notions of the order of neutrality developed in 
the previous sections are not used here. 
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6. Operators with a k-th power compact. The following lemma is a key step to 
generalization of Proposition 1 in [5] to operators with a A>power compact. 

LEMMA 6.1. Let A be an uniformly definitizable operator on H (with respect to G). 
Then for any positive integer k there exists a real polynomial p(X) = po + pk+\Xk+l + • • • 
such that Gp(A) > 0. 

PROOF. Let k G N+ be given. 

CASE i). Suppose that A is invertible. Let q(X) be a real uniformly definitizing 
polynomial for A (such a choice is possible, see [5]). Thus there exists a S > 0 such 
that (Gq(Ayj) > S\\f\\2 for every/ G H. Le t / G H and note that (Gq(A)A2{k+l)fj) = 

{Gq(A)AMf,AMf)>8\\AMf\\2^ 

and the lemma follows with/?(A) = g(A)A2(*+1). 

CASE ii). Suppose that A is not invertible. Let q(X) = q0 + q\ X + • • • + qt\
l be a real 

uniformly definitizing polynomial for A, hence there exists a £ > 0 so that (Gq{AY,f) > 
6Il/Il2 for every/ € //. Observe that qof§ since Gg(v4) is invertible. Suppose A: is odd. 
It is not difficult to see that we can choose a real polynomial r0 + • • • + rkX

k so that for 
every a G R the polynomial ra(X) = r0 + • • • + r*A* + aXk+l has the property that the 
coefficients of A, A 2 , . . . , A* in q(\)r%(\) are all zero and r0 = 1. Note that the deg(ra(A)) 
is even. Similarly, in the case of A: even we choose a real polynomial ro + • • • + rk+\ A*+1 

so that for every a G R the polynomial ra(X) = r0 + • • • + rkX
k + rk+]X

k+] + aXk+2 has the 
property that the coefficients of A, . . . , A* in q(X)rl(X) are all zero and r0 = 1. Note that 
the deg(ra(A)) is even. 

Since ro^O and the degree of ra(X) is even in both cases we can choose a G R (recall 
that a is an arbitrary real parameter in the above construction) so that ra(X) has no real 
zeros. To see this we consider the polynomial n(A) = 1 + • • • + r/_iA/_1 + A; (where 
/ = k + 1 if A: is odd and / = k + 2 if k is even). Note that r\(0) = 1 > 0. Clearly we can 
choose a G R large enough so that n(A) + (a — \)Xl = ra(X) has no real zeros. 

Since the spectrum of an uniformly definitizable operator is real, (see [5]), it fol­
lows that 0 £ a(ra(AJ) = ra(a(AJ). Let / G H and note that (Gq(A)r*(Ay,f) = 

(Gq(A)ra(AY,ra(Ay) > S\\ra(AY\\2 > ̂ KJ)rT\\f\\2- Thus Gq{A)rl(A) > 0 and the 
lemma now follows with p(X) = q(X)ra(X)2. • 

We remark thsdpk+\ or/?0 could be zero in the above lemma. 
We now state the generalization of Proposition 1 of [5] to operators with a &-power 

compact. 

PROPOSITION 6.2. Let (//, [,., ]) be a Krein space. If there exists an operator A on H 
such that A is uniformly definitizable andAk is compact for some positive integer k, then 
(//, [,.,]) is a Pontrjagin space. 

PROOF. Let/?(A) be a real uniformly definitizing polynomial for A such that/?(A) = 
Po + PkXk + • • • = po + Xkq(X) (see Lemma 6.1). Observe that Akq(A) is compact. The 
theorem now follows from Proposition 1 in [5]. • 
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7. Definitizability of algebraic operators. 

PROPOSITION 7.1. Let A be a strongly definitizable G-selfadjoint operator on H and 
assume that cr(A) = CTP{A). Suppose thatp(X) is a strongly definitizingpolynomial for A, 
then Gp(A) > 0. 

PROOF. Let p(X) be a strongly definitizing polynomial for A. We claim that 0 ^ 
a{p{A)y Suppose not, then there exists A G a(A) = ap(A) so that p(X) = 0. Pick a 
nonzero/ G ker(v4 — A). But then {Gp{A)f,f) = p(X)(Gf,f) = 0 and this contradicts the 
fact that Gp(A) > 0. Thusp(A) is invertible and hencep(X) is an uniformly definitizable 
polynomial for A. m 

This yields the following result for algebraic operators: 

THEOREM 7.2. Let A be an algebraic G-selfadjoint operator on H. Assume that A is 
strongly definitizable, then A is uniformly definitizable. 

PROOF. Note that ap(A) = a(A) and apply the previous proposition. • 

The following sections contains the main results of the paper and they are independent 
of our previous development. 

8. Definitizability on a Pontrjagin space. Let A be a selfadjoint operator on a 
Pontrjagin space n« whose inner product is generated by G. Assume without loss of 
generality that rank G_ = K < oo. It is a well known fact thatv4 is necessarily definitizable 
(see [1] or [10]). It is also known that, on such a space, strong and uniform definitizability 
are equivalent for compact operators, see [5] and [3]. Here, this result is generalized to 
include all selfadjoint operators on n«. 

THEOREM 8.1. Let A be a strongly definitizable operator on a Pontrjagin space TlK, 
then A is uniformly definitizable. 

PROOF. Let A be strongly definitizable. Note that a(A) = aap(A), since the spectrum 
of a strongly definitizable operator is real. Let A € a(A) and consider a sequence 
{fn} such that \\fn\\ = 1 and \\(A — \yn\\ —•» 0. By the Theorem of Pontrjagin (see 
Theorem IX.7.2 of [1]), there exists a nonpositive «-dimensional ^-invariant subspace 
L- of n^. Moreover, each eigenvalue of A is of definite type and hence L_ is a G-negative 
subspace. Then its G-orthogonal complement L+ is G-positive and hence uniformly 
positive (see Theorem V.6.3 of [1]). We have the following G-orthogonal decomposition 
of//: 

/ / = / ,_+/ ,+ 

withL+ also an ,4-invariant subspace. Consider/, =f~ +/^, where/," G L- andy^ G L+. 
Note that \\f~\\ = ||/>-/,|| < p for every «, where p > 0 and P_ is the projection on 
L- along L+. Thus {f~} is a bounded sequence in the finite dimensional space L_. 
Furthermore we have that \\(A - \)fr\\ = ||(^ - X)P-fn\\ = \\P-W ~ x¥n\\ ~* 0 and 
\\(A - AJCII = \\(A - X)P+fn\\ = \\P+(A - \yn\\ -> 0, where P+ is the projection on L+ 

along /,_. 
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Let A G ap(A\L-). Then there exists a nonzero go £ £ - such that (A — A)go = 0. 
Let p(X) be a strongly definitizing polynomial for A and consider (G/?(,4)go,go) = 

/?(A)(Ggo,go). This implies that/?(A) < 0 since (Gg0,go) < 0- We now have that 
\(Gp{Ay;Xn) -pQKGfi,fi)\ - 0 and since (Gp{A)TnXn) > 0 for every n and 
p(A) < 0, it follows that (Gfi,fi) -> 0. This implies that | |£ | | -> 0 and since |l/„|| = 1 
for every «, we have that \\f~\\ —> 1. It follows now that lin^G/J,,/,) = lim(Gf~,f~) < 0. 
In particular we have shown that if A G ap(A\LJ) then A is of minus type. 

Let A G a{A)\op(A\L-). We will show that A is of determinate type. Suppose not, then 
there exists a normalized sequence {fn} such that \\(A — X)fn\\ —> 0 and (Gf„,f„) —> 0. 
Consider/, -fc+fn a s above. Since {f~ } is a bounded sequence in the finite dimensional 
subspace L_ and A ^ ap(A\L-)9 it follows that there exists a subsequence {f~} —> 0. 
This implies that | |£J| -+ 1 and since (Gf»k,f„k) = ( G / ^ ) + ( ^ T ^ P w e o b t a i n t h a t 

(Gfnk,fnk) does not converge to zero. But this contradicts the fact that (Gfn,f„) —> 0. 
Thus A has to be of determinate type. Moreover, it is now easy to see that A has to be 
of plus type. All the spectral points of A are now of determinate type and the uniform 
deflnitizability of A follows from Theorem 1 of [5]. • 

The preceding proof reveals some structural properties of the spectrum of a strongly 
definitizable operator^ on a Pontrjagin space. All the spectral points of A are of plus 
type with the exception of a finite number of eigenvalues of minus type (the actual 
number does not exceed «). These eigenvalues are isolated since the distance between 
the points of plus and minus type must be positive (see [5]). Furthermore, A is d-uniformly 
definitizable and d < 2K + 1, (the operator^ is said to be d-uniformly definitizable if the 
least degree among all polynomials/? for which Gp{A) ^> 0 is d — 1, for reference see 
[5] and [9]). 

It was shown in Section 4 that lp{G,A) = 0 alone does not imply that A is strongly 
definitizable. The following result provides a necessary and sufficient condition on the 
type of the point spectrum so that A is strongly (hence uniformly) definitizable. 

THEOREM 8.2. Let A be a self adjoint operator on a Pontrjagin space. Then the 
following are equivalent: 

a) All the eigenvalues of A are of definite type and all the nonisolated eigenvalues of 
A are of positive type; 

b) A is uniformly definitizable. 

PROOF, b) =» a). The spectrum of an uniformly definitizable operator is real and 
hence a(A) - aap(A). It is immediate that all the eigenvalues of A are of definite type. It 
follows from the proof of the preceding theorem that all the nonisolated points in a(A) 
are of plus type, and hence all the nonisolated eigenvalues of A are of positive type. 

a) => b). Recall that A is definitizable. Using a well known result of Langer, see [10], 
the spectrum of A has only a finite number of nonreal points and furthermore these points 
are eigenvalues of A . It is clear that a nonreal eigenvalue of A can not be of definite 
type and hence we have that cr(A) C R and cr(A) = crap(A). Let L_, L+, P_, P+ be as 
in the preceding theorem. Consider an eigenvalue A of A of a negative type. It follows 
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that À G <TP(A\L-) and by the hypothesis of the theorem, À is an isolated spectral point 
of A. Consider the Riesz projector P\ = JrR^d^, where T is a sufficiently small circle 
centered at À and R^ is the resolvent of A. Note that P+ commutes with A and hence 
P+ commutes with P\. Moreover we have that lmP\ D ImP+ = 0. To see this consider 
S = lmP\ n ImP+. Note that S is a closed, ̂ -invariant subspace and &(A\S) = {A}. Now 
since L+ is uniformly positive we have that A\S is a selfadjoint operator on a Hilbert 
space. The spectral theorem for a selfadjoint operator on a Hilbert space implies that 
À G GP{A \S). Since A is of negative type we have that S = {0}. This implies that P+P\ = 0 
and since P_ + P+ = / we obtain that P_PA = Px. Now it follows that ImPA C ImP_ 
and hence A is an eigenvalue of finite type. Referring to the Remark 1 in [5] we conclude 
that A is of minus type. 

Suppose now that A is not an eigenvalue of negative type. It follows from the proof 
of the preceding theorem that A has to be of plus type. Every spectral point of A is now 
of determinate type and the result follows from Theorem 1 of [5]. • 

9. Selfadjoint linear pencils. Let L(X) - AG — A be a selfadjoint linear pencil with 
G and A both selfadjoint operators on a Hilbert space H. Furthermore assume that G is 
an invertible operator. The notion of quasihyperbolic selfadjoint operator polynomials 
(QHP) was introduced in the work of [5]. This was defined for monic selfadjoint operator 
polynomials. It is readily seen that this definition can be extended to selfadjoint operator 
polynomials with invertible leading coefficient and in particular to a selfadjoint linear 
pencil with invertible leading coefficient. 

DEFINITION 9.1. Let L(X) = AG - A be a selfadjoint linear pencil with G invert­
ible. The linear pencil L(X) is said to be quasihyperbolic if its spectrum is real and of 
determinate type. 

For the definition of spectral points of L(X) of determinate type and eigenvalues of 
definite type see the work of [5] and [6]. The selfadjoint linear pencil of the form XF—G 
where F is compact and G is invertible was studied in the work of [8]. The results of 
Section 8 give rise to the following theorem. 

THEOREM 9.2. Let L(X) = AG — A be a selfadjoint linear pencil with G invertible 
and rank G_ < oo. Then the following are equivalent: 

a) All the eigenvalues ofL(X) are of definite type and all the nonisolated eigenvalues 
ofL(X) are of positive type; 

b) L(X) is quasihyperbolic. 

PROOF. The result follows directly from Theorem 8.2 of the preceding section and 
Theorem 6 of [5]. • 
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