4

Space spinors

This chapter discusses a framework for spinors in which a further structure is
introduced — a so-called Hermitian inner product. The resulting formalism will be
referred to as space spinors or SU(2,C)-spinors. The space spinor formalism
can be used to describe the geometry of three-dimensional Riemannian manifolds
and, more generally, foliations of spacetime. Moreover, it can also be used to
provide a description of the hyperplanes associated to a congruence of timelike
curves.

The notion of space spinors was first introduced in Sommers (1980); see also
Sen (1981). It provides a systematic approach to the construction of evolution
equations which can be regarded as a spinorial version of the 1 + 3 formalism
for tensors. Space spinors are used in several other areas of relativity such
as quantum gravity (see e.g. Ashtekar (1991)), the construction of quasi-local
notions of energy (see e.g. Szabados (2009)) and global aspects of the geometry
of 3-manifolds (see e.g. Backdahl and Valiente Kroon (2010a); Beig and Szabados
(1997); Tod (1984)).

4.1 Hermitian inner products and 2-spinors

Let (M, g) denote a four-dimensional Lorentzian manifold. As in Chapter 3, it is
assumed that at each point p € M one has a two-dimensional simplectic vector
space 6|,(M) as given by Definition 3.1. One has the following definition:

Definition 4.1 (Hermitian inner product) A Hermitian inner product
on a simplectic two-dimensional vector space G is a function {{-,-)) : &x 6 = C
which is:

(i) Hermitian; that is, given €, 1 € &

(&m) =(n,§)
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4.1 Hermitian inner products and 2-spinors 95

(ii) linear in the second entry; that is, given €, 1, ( €&, z € C
(& +2€)) = ((&m) + 2((&,C))
(iii) positive definite; that is, given £ € &
((€.€) =0

and ((€,€)) =0 if and only if € = 0.

From conditions (i) and (ii) it follows that a Hermitian inner product is
antilinear in the first entry; that is, given &, 1, { € &, z € C, one has

((€+2¢,m) = ((&;m) + (¢ m)-

4.1.1 Hermaitian conjugation

In what follows, given a spacetime (M, g), assume that for each point p € M, the
vector space &|,(M) is endowed with a Hermitian inner product which changes
smoothly from point to point. The Hermitian inner product can be expressed in
terms of a Hermitian spinor waar € & 44/ (M) such that

(&) = wan € n™, (4.1)

It can be verified that the right-hand side of the above expression satisfies condi-
tions (i) and (ii) of Definition 4.1. Given a spinor basis {€4“}, the components
of wa 4 with respect to the basis are given by ways = wAA/eAAEA/A/. The
components wa 4 can be thought of as the entries of a (2 x 2) matrix (waa’).
The positivity condition (iii) of Definition 4.1 requires the above matrix to be
diagonalisable and to have positive eigenvalues. Thus, it is natural to consider
a (not necessarily normalised) basis {¢ 4} for which (w4 4/) takes the diagonal

(@an) = 70
AA) = 0w )

The scaling of the basis {¢44} can be fixed, without loss of generality, so that
(waa’) is the identity matrix. In the rest of the book, whenever a Hermitian
inner product is discussed, it will be assumed that a spin basis {ea} has been

form

chosen so that
1 0
(waar) = ( 01 > : (4.2)

A direct consequence of the above normalisation condition is that one can
write

’ ’
WAL = 04047 + LAl = €1A€1 A+ 60A64) Al (4.3&)

https://doi.org/10.1017/9781009291347.006 Published online by Cambridge University Press


https://doi.org/10.1017/9781009291347.006

96 Space spinors

’ ’ ! ’ !
’(DAA = OA5A + LAZA AT GOAE;lA R (4.3b)

’ ’ ’ ’ ’
A4 = OAEA + LAZA = E()AgO/A + €1AE1/A . (43C)

= EIAEO/

w

From these expressions it follows that

’

wAA/wBA = oA/,B — LAOB = elAelB + eeroB.

Thus,

WAA/’(DA/B = 5AB. (44)
Notice, in particular, that wAA/wAA/ = 2.
The spinor w4/ induces an operation of Hermitian conjugation T :
G*(M) — &°*(M). Given pus € S(M), we define its Hermitian conjugate p
via

ph=wa i (4.5)

It follows then that one can write

((&,m) = —ETan® = nagt .

Observe that as a consequence of the see-saw rule, Equations (3.4a) and (3.4b),
one has pt4 = —WAA//]A/. The Hermitian conjugation is extended to higher

valence spinors by requiring
(AT = pt A"
for p, A € &*(M). It is a consequence of the normalisation condition (4.2) that

k
pat A, = (=10 A,

Furthermore, 44 = 0 if and only if u4 = 0, the latter as a result of condition
(iii) of Definition 3.1. Using the representation of w4*" given by (4.3b) one finds
that

ol =14, U= —ou, (4.6a)
ot =14, A= ot (4.6b)

Hence, the normalisation leading to (4.3a)—(4.3c) is equivalent to the normalisa-
tion condition

o A0+A =1,
for the spinor o. Notice also that, as a consequence of the previous discussion, a
non-zero spinor and its Hermitian conjugate are linearly independent. Finally, a
calculation using the expression of € 45 in terms of 04 and 4, yields

+

Al B’
€'AB =wA” wWB" €A = €AB.
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Remark. In the rest of the book, when working with spinor structures endowed
with a Hermitian product, it will always be assumed that a spin basis satisfying
relations (4.6a) and (4.6b) has been chosen.

4.2 The space spinor formalism

A consequence of the existence of an operation of Hermitian conjugation is that,
given a spinor £ € &*(M), its complex conjugate £ and its Hermitian conjugate
€T contain the same information. This observation allows the introduction of
a spinorial formalism based entirely on spinors with unprimed indices by
contracting all the primed indices in the spinors with wa?'. Given §ay-A, A, AL
we define its space spinor counterpart EAy. A By B, 38

— Al Al
§ArAyB1By = @B, B, A4, AL AL (4.7)

The above expression can be inverted by recalling the normalisation condition
(4.4) to yield
EAl"'ApAi"'Afz = (—1)qw81 Al quA;§A1'"ApB1--'Bq'

Thus, the information contained in a spinor with primed indices and its space
spinor counterpart is equivalent.

4.2.1 The Hermitian product and three-dimensional vectors

The operation of Hermitian conjugation gives rise to a notion of reality for
spinors. More precisely, a spinor pa,p,...a, B, With an even number of indices
will be said to be real if

+ _ k
'uAlBl---AkBk - (71) uAlBl‘“AkBk7

and imaginary if

+ _ k41
HPA By ALB, = (=1)"" 14, By A, By -

Consider now a symmetric valence-2 spinor vA2 € &*(M). Given a space
spinor basis {0, ¢} such that ¢ = o™, one can write

A8 = ao?oP + 0P + oM P), (4.8)
with a, b, ¢ € C. The Hermitian conjugate of v4Z is given by

vTAB = @B + botof — aoP).

If vAB is real, that is, vt48 = —vAB then b = —a and & = ¢. Thus, the real
spinor vAL has only three real components so that it describes a three-dimensional
vector v'. This argument can be extended to higher valence real space spinors
so that

C1D1+-Cy Dy (CIDI)"'(CmDm)
)

§A\B, AL By = §(A1B1)-(ALBy)
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if real, can be regarded as the space spinor counterpart of a three-dimensional
tensor &;,...;, 7' /™ — every pair of symmetric spinor indices is associated to a
spatial tensor index. One can summarise the previous discussion in the following;:

Lemma 4.1 (the distribution associated to a Hermitian product) A
Hermitian spinor waa on &°(M) induces a three-dimensional distribution II

on M.

Observation. The distribution II may not possess integrable manifolds.

The consequences of Lemma 4.1 can be further elaborated by considering the
spinorial counterpart of the projector h,’ associated to the distribution II. To
this end let

’ ! 1 ’
hAA/BB = 6A36A/B — §WAA/ZUBB .

It can be readily verified that
hAA/BB’hBB,CC’ _ hAA’CC , hAA’BB wRR = 0.

Now, given vaa € S&°*(M) denote by vap its space spinor counterpart. A
calculation then shows that

A cc’ A
vap) = wB" haa " vccr = wa” vByAr-

Thus, the spinor haaBB' is the projector associated to the distribution induced
BB’ ig given by hapep = wp? wpC
haaccor. It can be readily verified that hapop = h(AB)(CD)~ Using the Jacobi

identity (3.5) one can show that

by waa/- The space spinor version of h 44/

hapcp = —€a(c€p)B- (4.9)
It can also be verified that

CD _ D
haspg =hapP = esCep?, hascp PQ * =

In addition, one has

+ _
hABC’D = hABCD7

AB

so that hapcp is a real space spinor. Moreover, given v°% = vAB) and uspg =

u(Ap) one has that

wsphABCD — ,CD

AB AB
v*Zhapcp = vep, ; uaphcp”™” =ucp.

Finally, it is observed that if the spinor v42

of Equation (4.8) one readily finds that

is real, then using the decomposition

1
ABYED — ypvB = 2ab — icz =

1
hapcpv —2|b|* - 502 <0.
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Thus, given p € M, the spinor hapcp gives rise to a negative definite inner
product on 11|, C T'|,(M). Accordingly, the vectors in II are spatial with respect
to the metric g. As II may not possess integrable submanifolds, hapcp is not
necessarily the spinorial counterpart of a (negative definite) three-dimensional
Riemannian metric of a spacelike submanifold of M.

4.2.2 Spatial Infeld-van der Waerden symbols

The relation between space spinors and three-dimensional vectors can be
formalised by means of suitable soldering objects. At each point p € M consider a
g-orthonormal basis {e;} of II|, and let {w®} denote the associated cobasis. One
has then that g(e;, e;) = —d;;. In addition, let {4} be a spin basis satisfying
61“4 = ¢o?; compare Equation (4.6b). Spatial Infeld-van der Waerden
symbols can be defined from the spacetime Infeld-van der Waerden symbols

’ .
0o and 0% 4 4 through the relations
AB _ A B)A’ i _ A 4
g; :—w( A'0; ) 5 O'ZAB:w'(A O'ZB)A/.
i j AB _j j
hasep = —0'aB0o? cpdij, 0707 ap = 647 (4.10)

The explicit expressions for the spatial Infeld-van der Waerden symbols are

given by

UlAB:i -1 0 J2AB:i -1 0 J3AB:i 0 1
200 1) 2\ 0 —i) 2 \1 0)°

and

1 1 /-1 0 2 1 /i 0 3 1 /0 1

0 "AB = —= y 0 AB = —#= -]y 0 AB= = :
V2o 1 V2 \0 i V2 \1 0

Given the above, the components of a three-dimensional vector v and a three-

dimensional covector £ can be put in correspondence with symmetric valence-2
real spinors via the formulae

AB AB

¢ =v'0; 77, &= &ap =&0"aB,

V= v

or more explicitly

1 -l —iv? v3
(v', 2%, 03) — 7% ( 3 1 9 > , (4.11a)

v vt —iv
1 [ =& +is &3
(§1a§27§3) — \/i ( 53 51_’_152 ) . (411b)
It can be verified that
(€ v) = &t = Eapv?P = —Go' — &0 — &P
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100 Space spinors

The above correspondence between space spinors and three-dimensional vectors
can be readily extended to higher rank tensors. For example, given the
components T,-jk of a tensor Tijk one has the correspondence

k EF _ i ' EFp k
Ti;" = Tapcp™ " =o0"aBo’cpor™ Tij".

Finally, it is observed that 0% 4 g and ;4B can be used to define an alternative

set of basis and cobasis {eap}, {wAB} for II|, through the relations
eaB =o' ape;, wAB = 5,48, (4.12)

In terms of these definitions the symbols o o g are the components of the frame
{eap} with respect to itself. It can be verified that

AB B

(w?B ecp) = hop™B, gleap,ecp) =hascp.

4.2.3 Changes of basis and SU(2,C) transformations

To characterise the class of transformations preserving the structure of the
Hermitian inner product it is convenient to consider a change of spin basis

éat = 0aFep?, &4 =0%peP 4,
where (OoF) and (O2p) are SL(2,C) matrices such that
0aT0Pp =54".
It follows that

— ’
WAA = WAA 6AAGA’ A

—_ / !’ —_ ’
= waa (0aFep™) (OA’P epr” ) =wpp 0404 "

Hence, if one requires O 4 ¥ to be such that both w4 4» and © 4 4+ are the identity
matrix — compare Equation (4.2) — then 0% and 0P have to be inverses
of each other; that is, the transformation described by the matrix (O4%B) is
an SU(2,C) transformation. This property explains the alternative name of
SU(2,C) spinors used to describe spinorial structures endowed with a Hermitian
product; see, for example, Ashtekar (1991). It is a direct consequence of the
previous discussion that the notions of real and imaginary space spinors as
discussed in Section 4.2.1 are invariant under SU(2,C) transformations.

It can be readily verified that SU(2,C) transformations are related to
three-dimensional rotations, that is, O(3) transformations. As SU(2,C)
transformations are a special case of SL(2,C) transformations, it follows that
eaB = 04€0BPecp; that is, éap = eap. From the latter one has that

hapcep = 0a®0¥0c°Op™ hgrcH.
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Contracting the above expression with spatial Infeld-van der Waerden symbols
one obtains

i = 0;%0;' 61,
where the matrix (O;*) with elements given by
Oik = O’iAB(TkEFOAEOBF

is an O(3)-transformation, that is, a three-dimensional real matrix preserving
the identity matrix.

4.2.4 Spinors on three-dimensional manifolds

In this section it is assumed that the distribution IT associated to the Hermitian
spinor wa4: has an integral manifold S. It follows that S is a spacelike
hypersurface of the spacetime manifold M, and the restriction of IT to S coincides
with the tangent bundle T'(S). Vectors and covectors in T'(S) are associated to
symmetric valence-2 real spinors.

Under the assumptions of the previous paragraph, consistently with the
discussion of Section 4.2.1, one has that the spinor hagcp = —€4(c€p)p is the
spinorial counterpart of the three-dimensional (negative definite) Riemannian
metric h induced on S by g. One can write

h = —51'3'(01 Qwl = hABCDwAB & w€P

with the coframe {wAB} defined as in Equation (4.12). In a natural manner, the
spinor w4+ can be identified with the normal to S.

An alternative point of view

The discussion of spinors on three-dimensional manifolds outlined in the previous
paragraphs assumes that S is a spacelike hypersurface of a spacetime (M, g).
A more intrinsic perspective can be obtained by postulating the existence of a
spinorial structure over S, to be denoted by &(S), endowed with an operation
of Hermitian conjugation ™ : &(S) — &(S) satisfying the properties discussed
in Section 4.1.1. This point of view leads one to consider conditions ensuring
the existence of this space spinor structure. An example of a sufficient
condition is that the vacuum Einstein constraint equations (see Chapter 11)
can be solved on S. If this is the case, the three-dimensional manifold can be
regarded as a spacelike hypersurface of a spacetime (M, g); see Chapter 14. The
spacetime (M, g) is globally hyperbolic and, thus, admits a spinor structure;
see Proposition 3.4. The g-normal to § in M induces the required operation of
Hermitian conjugation.

In what follows, the notational conventions of Section 3.1.4 are adopted, and
one writes &°(S), &4(S), &4(S),... to denote the various bundles associated
to &(S).
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Totally symmetric spinors

Spinors provide a simple representation of the operation of taking the symmetric
trace-free part of a three-dimensional tensor.

Proposition 4.1 (space spinor representation of trace-free three-
dimensional tensors) Let Ta,B,.--A,B, denote the spinorial counterpart of a
three-dimensional real tensor T;, ...;,. One has that

TA,By-A,B, = T(AlBl"'Apo) if and only if Tiyooi, = T{ilmz‘p}'

Proof ~Any possible contraction of T4, B,...4,B,) With hABCD must vanish so
that Tj,...;, must be trace free. Conversely, if T;,...;, = T(;,...;,}, then one has
that

A1B1A2B> _ mPQ _
h TA,B,AsBy-2,B, =T “pq..a,B, =0.

Using the decomposition (3.8) together with the symmetries of Ta, B, 4,B,.--4, B,
in the indices 4,B,4,B, One concludes that

TA,ByAByA,B, = 1(4,B1A:B5)-A,B,-

Now, considering the contraction of the pair 4,5, with pairs outside the sym-
metrisation bracket and repeating the previous argument as many times as nec-
essary one concludes that T4, 5, 4,B,--- A, B, must be completely symmetric. [

4.2.5 Timelike congruences and Hermitian products

Assume now that the spacetime (M,g) has some privileged future directed
timelike vector T with parameter 7.! The vector T does not need to be
hypersurface orthogonal. Let 744" denote the spinorial counterpart of 7 and
consider the normalisation g(7,7) = 2. As discussed in Section 2.7.1, T defines
a distribution on M. Let &, denote the hyperplanes generated by 7; as 7 is
not hypersurface orthogonal, the hyperplanes are not, in general, the tangent
bundles to the leaves of a foliation of M. The timelike spinor 744/ induces a
Hermitian product ((&,7n)) = Taa€nA for €4, 0t € S(S). Indeed, as A4 ig
the spinorial counterpart of a spacetime vector, it is a Hermitian spinor, so that

=i A A
Taa A NA = Taa™ €7

Furthermore, given that 744" is timelike future directed and §A§A/ describes a
future-directed null vector, it follows that 744644 > 0. Thus, formula (4.1)

1 Tt is possible to construct a “space spinor” formalism adapted to spacelike congruences with

tangent vector pAA,; see e.g. Szabados (1994). This requires adapting some of the formulae
given in the preceding sections. In particular, the associated Hermitian product needs to be

negative definite. Moreover, the analogue of Equation (4.13) is given by pAA/pBA/ =B

that pAA/pAA/ = —2.

A SO
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and the various subsequent expressions in Section 4.1 can be used for the choice
WAA = TAA-

From the discussion in Section 4.1.1 it follows that there exists a spin basis
{ea?} such that

’ !/ ’7
rAA = eero/A +€1A611A

In particular, one has that

TanTB4 = e B (4.13)

Space spinor split of general spacetime spinors

The tensorial counterpart of a spinor pia, az...4, A can be expanded in terms of
the spatial frame {eap} if and only if it is spatial with respect to 7, that is, if
the k£ conditions

’
7_A 7_A;cA

A/
pay g aar =0, Fpa, Ay Agal =0

hold. In this case, its space spinor counterpart is given by

Ar .

_ Al -
HA By AxBy, = TB1 " TB, FHA AL Ay A, = (A1 By) - (AkBy)-

To deal with the spinorial counterparts of tensors which are not spatial in the
sense described above, one makes use of the projector

B’ 1 BB’

!’
RBE g4 =esBea? — STAATT

which takes a spinor £4,4;..a,4, onto the spatial spinor

!’ ’
Eayapna, KM g gy AR

BB+
The space spinor version of the above spatial spinor is obtained by contracting
the primed indices with 744" as in formula (4.7). In particular, this procedure
applied to the projector hy 4 pp’ yields hapcp. The non-spatial components of
§a, A, A, A can be obtained by a full contraction of a primed-unprimed pair of
indices with 744",

An alternative way of looking at the projection procedure described in the
previous paragraphs is the following: given the spinorial counterpart {4, a;... 4, m
of a (in principle non-spatial) tensor, define

A A
§arByABy =TB, VT REA AL Ay AL
Then &4, B,)-..(A, B;,) €ncodes the spatial part OffAlA’l---AlA'ka while Ep, 1 -+ p, P
corresponds to its pure time component. Mixed time-spatial components have
the form €PP(A232)"‘(AkBk)7 and so on.
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As a particular example of the previous discussion one has that for a Hermitian
spinor vaar € 6°*(M) it holds that

VAA = STAAU = TO4v(Qa)

PP’

/ .
where v = vpp/T and vap = 78 vaar. Observing that v = vQQ one can

write, alternatively, that
1
UAB = 5€ABY +vaB)-

The 1+ 3 split of frame and the metric

Given a g-orthonormal frame {e4 -} and its coframe {wA4’}, the discussion of
the previous paragraphs implies that they can be written as

1
ean = 5Taae — B aeas,

’ 1 ’ ’
wAA _ 57_AA w + 1A WwCA,

where the various vectors and covectors in the decomposition are given by

’

_ PP _ P
e=7T epp/, €AB =T(A €B)P;
’ ’
w = Tpp/UJPP 5 wAB = —T(Ap/wB)P .
. ’ / .
Now, recalling that (wAA ,eBp’) = eg?ep® , one obtains that
(w,e) =2, (w,eap) =0,
AB AB AB
(w7, e) =0, (w™”,ecp) =h""cp.

Using the above pairings together with expression (3.29) one obtains the
following 1 + 3 split of g:

1
g = §w®w+hABCDwAB®wCD. (414)
In particular, one has that

haBcp = g(eaB,ecp) = —€A(c€D)B-

If 7 is hypersurface orthogonal, then the vectors {eap} and the covectors
{wAB} are intrinsic to the hypersurfaces S, orthogonal to T; thus, they can be
regarded as belonging to T'(S.) and T*(S.), respectively. In addition,

h = hapcpw™? @ w°P

corresponds to the (negative definite, Riemannian) metric induced by g on S.
Let €;j denote the volume form of the three-dimensional metric h, and let
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€ABcpEF be its spinorial counterpart. Using the antisymmetry properties of
€ApcpEF it can be expressed in terms of €45 as

i
€ABCDEF = E(GACGBEGDF + €BDEAFECE). (4.15)
Furthermore, it can be checked that

ABCDEF
€ABCDEFE€ = —6.

Alternatively, Equation (4.15) can be obtained from Equation (3.25), by suitable
contactions with 744", More precisely, one has that

1 ’ ’ ’ ’
AA C E G
€CDEFGH — \/§T ™D TF TH €AA'CC'EE'GG’-

4.3 Calculus of space spinors

This section discusses the notion of covariant derivative in the context of the
space spinor formalism. For simplicity of the presentation, it is assumed that
one has a situation as described in Section 4.2.5 where the spinor wg 4/ is given
by the spinorial counterpart 74 4/ of the tangent vector 7 to a timelike congruence
in (M, g). Moreover, it is also assumed that V 44/ is the spinorial counterpart
of the Levi-Civita connection of the metric g.

4.3.1 The Sen connection
The spinor 744" can be used to obtain a space spinor version of the spacetime

spinorial covariant derivative V 44/. More precisely, one can define
A
Vap=718" Vau.

The latter, in turn, can be written in terms of its irreducible components as

1
Vag = §€AB’P+’DAB, (4.16)

where
_ AN A
P=77"Vaa, Dap =7B" Vayar-

The operator P is the directional derivative of the connection V in the
direction of 7. The differential operator D4p is the so-called Sen connection
of V relative to the vector field 7. In view of these definitions one can also write

1
Vaa = iTAA’P — TA/QDAQ.

The timelike vector 7 is completely arbitrary; in particular, it is not assumed
to be hypersurface orthogonal. This has several consequences; most notably, the
Sen connection has, in general, a non-vanishing torsion which can be expressed in
terms of the covariant derivative of 744", Furthermore, even in the case when 7 is
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hypersurface orthogonal, D 4p does not coincide with the Levi-Civita connection
D of the intrinsic 3-metric of the hypersurfaces S, orthogonal to 7. Finally,
it is pointed out that Dap is not a real differential operator in the sense that

Dhp # —Dag.
The derivative of 744

For future use, it is convenient to define
xaBcp = —=m0% VagTcco. (4.17)
f
Using the split (4.16) one obtains the decomposition

1
XABCD = §€ABXCD + X(AB)CD

where
_ c’
XaB = —=782 Praa, XaBycp = —=Tp~ Daptccr.
\f (AB) V2

It can be verified that the above spinors satisfy the following symmetry and
reality properties:

XAB = X(AB) = —XXB, X(AB)CD = X(AB)(CD) = XTAB)CD-

The spinor xap corresponds to the acceleration vector of T, while x(apycp
is related to the Weingarten tensor of the distribution defined by 7. It can be
checked that the distribution is integrable if and only if XQ( Bcy@ = 0. In this case
T is hypersurface orthogonal, and x apcp corresponds to the extrinsic curvature
of the orthogonal hypersurfaces S;.

The hypersurface orthogonal case

If 7 is hypersurface orthogonal, given a spinor u¢, the covariant derivative D ap
defined by

1
D =D + — Q 4.18
ABMC ABMC \/§X(AB)C HQ ( )

can be verified to be torsion-free. As Dapecp = 0 and using that xapcp =
XAB(cD), one concludes that Dapecp = 0. Thus, Dap is metric and must coin-
cide with the (spinorial counterpart of the) Levi-Civita connection of the leaves
of the foliation defined by 7. It can be further verified from Equation (4.18) that

+
(Dapuc) ™ = —Dapug,
so that D ap is a real differential operator in the sense of Section 4.2.1.

Remark. The derivative D 4p as defined in Equation (4.18) provides an explicit
example of the notion of space spinor covariant derivative to be introduced in
Section 4.3.3.
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4.3.2 Space spinor split of the spacetime connection coefficients

Following the notation of Section 3.2.2, let I' 4 o'cp denote the spin connection
coefficients of a Levi-Civita connection V44, with respect to some spin basis
{ea”}. Its space spinor counterpart I' agcp is defined by

_ A
F'aBep =87 Taaco-

The spin coefficients ' ypcp satisfy no specific reality conditions. However,
sometimes it is convenient to have a split of 'apep into real and imaginary
parts. One has that

’ ! ! 4 !
A (Vaatoo)™C = 182 Tan® ©

AT
ctocpC — 84 Taa®

’ c
B c'TcQ'TD

’

! E F G+ C
QTAI TQ/ TC' FEAFGTD

A/
= -T'apcp +7B" 7C

Es Fs Gpt
=-—TaBcp — 0B 9c” 00" TR arc

= _PABCD - FEACD?
where it has been used that e 4’ (7cc’) = 0, the identity

= E__ F__ Gpr+
Farapc =—7a"m8" 7¢' TEarc

and the identity (4.13). Hence, it follows that xapcp corresponds, essentially,
to the real part of I' ggcp; that is,

1
XABCD = _%(FABCD +ThBcp)-
The reality of the above expression follows from I'iE~p = I'acp. The

imaginary part of ' aopcp is given by
1 +
{aBcD = E(FABCD —I'aBep)-

Inverting the definitions of xapcp and £aBcp it follows then that

1
FaBcp = E(SABC’D — XABCD);
(¢ )
= — - — ——€ .
/2 ABCD — X(AB)CD 2v2 ABXCD
Observe the symmetry conditions
XABCD = XAB(CD); §aBcD = §(AB)(CD)-
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4.3.3 Intrinsic derivatives

When working with a three-dimensional Riemannian (S,h) it is convenient
to make use of an intrinsic notion of covariant derivative, a so-called space
spinor covariant derivative D ,p, compatible with operation of Hermitian
conjugation, which is the spinorial counterpart of the Levi-Civita connection D
of the metric h. One regards Dap as a map

Dap: 69 Pp p(S) = 69 P 55 r(S).

The properties of the operator D4p have to be consistent with those of the
operator defined in Equation (4.18). It is required to satisfy:

(i) Symmetry. Given (“""Pg. r € &*(S) one has
DapC? Pp.p=DuapC” Pp.p.
(ii) Linearity. Given (" Pp. g, n Pg. r € &*(S) one has
Dap(C“ Pr.r+n"""Pp.r)=DapC? Pp.r+Dapn” Pp.r.
(iii) Leibnitz rule. Given (¢ Pg. p, €9 Hp o€ &*(S) one has

Dap(C¢ Pr. ptC Hp 0)=¢9"Hp oDap(“ Pp.p

+¢9 P e pDARCE T .
(iv) Reality. Given (¢ Pp. p € &*(S) one has
(DABCCWDEMF)J’_ =Dt Pp.p

(v) Action on scalars. Given a scalar ¢ € X(S), then D 4p¢ is the spinorial
counterpart of D;ep.

(vi) Representation of derivations. Given a derivation D, there exists a
spinor ¢48 € G*(S) such that

DCC“'DEMF _ é—PQDPQCC»..DEmF
for all CC”'DE...F S GC'“DE...F.
(vii) Compatibility with the e-spinor. The operator Dup satisfies

Dapecp = 0 so that, in addition, Daghcper = 0.
(viii) No torsion. For ¢ € X(S) one has that DagDcp¢ = DepDagpg.
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The space spinor spin coefficients

Let {e;} and {w?®} denote, respectively, an h-orthonormal basis and cobasis on S.
One defines the spatial connection coefficients %_ch via the equation

Die; = vi*jes. (4.19)

In what follows, it will be assumed that the connection D has spinorial
counterpart D4p satisfying conditions (i)—(viii) of the previous section. Let
{eap} and {w?B} denote, respectively, the vector basis and cobasis obtained
from {e;} and {w?} through the correspondences in (4.12) and let D op denote

the associated covariant directional derivative.

The spinorial counterpart of the spatial connection coefficients 'yABCD EF

can be obtained by contraction of %-kj with the spatial Infeld-van der Waerden
symbols so that the reality condition

Yag“Per = 748" EF (4.20)
holds. Now, defining the space spinor directional covariant derivative
Dag = ¢ apD;, the spinorial counterpart of (4.19) can be written as

Dapegr =va“PEreco.

Hence, one has

cD cD
vaB " EF = (W"",DaBegEr),

D

so that ’yABC EF has the symmetries

’YABCDEF = ’Y(AB)(CD)(EF)-
Now, as Dahcper = 0, it follows then from

PQ

Daphcper = eas(hcper) — vaBT cphpoer — vaBY CErhcprg,

that
YABCDEF — —"YABEFCD-
This antisymmetry can be exploited to obtain the decomposition

1 1
Y4B P Er = §7ABPDPF5EC + §7ABCPEP5FD
=v4BP F0EC + vaC EorP,

where the space spinor spin coefficients, yap”r = vap)” F, have been
defined by

1
vaB"F = §7ABPDPF~ (4.21)
Observing the reality condition (4.20) and that €} 5 = eap, it follows that

+ Cc_ _ Cc .
YaB D = —7YAB D;
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that is, the space spinor connection coefficients are imaginary. A computation
similar to the one performed in Section 3.2.2 to express the spacetime spin
coeflicients in terms of derivatives of the spin basis shows that

748D = ¢“QDagep? = —ep“Dapey.

From these expressions, it can be shown that given spinors k4 and p“ with
components 4 and pu? with respect to the space spinor basis {¢4“}, one has

Daprc = eap(kc) — vaB® ckq,
Dapp© = eap(p®) +vaqu?,

where Dagrkc = GCQDABKJQ and DAByC = eCQDABuQ.

The three-dimensional curvature spinors

As D is being assumed to be the Levi-Civita connection of a three-dimensional
negative definite metric h, it follows that the spinorial counterpart rapcprran
of the Riemann tensor 7,5 of D satisfies the antisymmetry property

TABCDEFGH — —TCDABEFGH -

Hence, one has the decomposition

TABCDEFGH = —TACEFGHEBD — TBDEFGHEAC (4.22)

with

_1 Q

TACEFGH = irAQC EFGH> TACEFGH = T(AC)EFGH-

Now, as rapcpEF = —TaBeFcD one has further that

TABCDEF = TABCE€DF + TABDFE€CE,
with

1 Q
TABCE = §TABCQE ) TABCE = TAB(CE)-

As a consequence of the symmetry ragcpercy = TEFGHABCD, the spinor
rapcp inherits the symmetry rapcp = repap. Taking into account all

these symmetries in the general decomposition for a general valence-4 spinor,
Equation (3.8), one concludes that

1

rABCD = T(ABCD) t grPQPQhABCD~

In what follows let spapcp and r denote, respectively, the spinorial coun-
terpart of the trace-free Ricci tensor and the Ricci scalar of the
connection D. One has that

P
SABCD = T(ABCD)s r=—drpg"9.
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Hence, one finds that r 4pcprr can be written as

= Lo (L Lo
r = —8 — T € =S - T € .
ABCDEF 9 ABCE 12 ABCE DF 2 ABDF 12 ABDF CE
(4.23)

Using an argument similar to the one employed in Section 3.2.3 one finds that
the commutator of the covariant derivative D 4p satisfies

(DapDep — DepDag)p” =P papepp”.
Finally, for completeness it is noticed that the three-dimensional second Bianchi

identity takes, in the present context, the form

1
DPQSPQAB = 6DABT‘.

This last expression can be obtained from multiplying by €“* the tensorial
Bianchi identity

Dirjkim + DjTkitm + DiTijim = 0,

and considering its spinorial counterpart using Equations (4.22) and (4.23).

4.4 Further reading

The notions of space spinor and space spinor splits were originally introduced in
Sommers (1980); see also Sen (1981). A monograph on space spinors is Torres
del Castillo (2003). An alternative discussion, having applications in quantum
gravity in mind, is given in an appendix of Ashtekar (1991). The space spinor
formalism was first used in Friedrich (1988, 1991) to analyse the conformal field
equations. Further developments can be found in Friedrich (1995, 1998¢), and a
slightly different perspective on these ideas is given in Frauendiener (1998a).
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