
4

Space spinors

This chapter discusses a framework for spinors in which a further structure is

introduced – a so-called Hermitian inner product. The resulting formalism will be

referred to as space spinors or SU(2,C)-spinors. The space spinor formalism

can be used to describe the geometry of three-dimensional Riemannian manifolds

and, more generally, foliations of spacetime. Moreover, it can also be used to

provide a description of the hyperplanes associated to a congruence of timelike

curves.

The notion of space spinors was first introduced in Sommers (1980); see also

Sen (1981). It provides a systematic approach to the construction of evolution

equations which can be regarded as a spinorial version of the 1 + 3 formalism

for tensors. Space spinors are used in several other areas of relativity such

as quantum gravity (see e.g. Ashtekar (1991)), the construction of quasi-local

notions of energy (see e.g. Szabados (2009)) and global aspects of the geometry

of 3-manifolds (see e.g. Bäckdahl and Valiente Kroon (2010a); Beig and Szabados

(1997); Tod (1984)).

4.1 Hermitian inner products and 2-spinors

Let (M, g) denote a four-dimensional Lorentzian manifold. As in Chapter 3, it is

assumed that at each point p ∈ M one has a two-dimensional simplectic vector

space S|p(M) as given by Definition 3.1. One has the following definition:

Definition 4.1 (Hermitian inner product) A Hermitian inner product

on a simplectic two-dimensional vector space S is a function 〈〈·, ·〉〉 : S×S → C

which is:

(i) Hermitian; that is, given ξ, η ∈ S

〈〈ξ,η〉〉 = 〈〈η, ξ〉〉
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4.1 Hermitian inner products and 2-spinors 95

(ii) linear in the second entry; that is, given ξ, η, ζ ∈ S, z ∈ C

〈〈ξ,η + zζ〉〉 = 〈〈ξ,η〉〉+ z〈〈ξ, ζ〉〉

(iii) positive definite; that is, given ξ ∈ S

〈〈ξ, ξ〉〉 ≥ 0

and 〈〈ξ, ξ〉〉 = 0 if and only if ξ = 0.

From conditions (i) and (ii) it follows that a Hermitian inner product is

antilinear in the first entry; that is, given ξ, η, ζ ∈ S, z ∈ C, one has

〈〈ξ + zζ,η〉〉 = 〈〈ξ,η〉〉+ z̄〈〈ζ,η〉〉.

4.1.1 Hermitian conjugation

In what follows, given a spacetime (M, g), assume that for each point p ∈ M, the

vector space S|p(M) is endowed with a Hermitian inner product which changes

smoothly from point to point. The Hermitian inner product can be expressed in

terms of a Hermitian spinor �AA′ ∈ SAA′(M) such that

〈〈ξ,η〉〉 = �AA′ ξ̄A
′
ηA. (4.1)

It can be verified that the right-hand side of the above expression satisfies condi-

tions (i) and (ii) of Definition 4.1. Given a spinor basis {εAA}, the components

of �AA′ with respect to the basis are given by �AA′ ≡ �AA′εA
Aε̄A′A

′
. The

components �AA′ can be thought of as the entries of a (2× 2) matrix (�AA′).

The positivity condition (iii) of Definition 4.1 requires the above matrix to be

diagonalisable and to have positive eigenvalues. Thus, it is natural to consider

a (not necessarily normalised) basis {εAA} for which (�AA′) takes the diagonal

form

(�AA′) =

(
�00′ 0

0 �11′

)
.

The scaling of the basis {εAA} can be fixed, without loss of generality, so that

(�AA′) is the identity matrix. In the rest of the book, whenever a Hermitian

inner product is discussed, it will be assumed that a spin basis {εAA} has been

chosen so that

(�AA′) =

(
1 0

0 1

)
. (4.2)

A direct consequence of the above normalisation condition is that one can

write

�AA′ = oAōA′ + ιAῑA′ = ε1Aε̄
1′

A′ + ε0Aε̄
0′

A′ , (4.3a)
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96 Space spinors

�A
A′

= oAō
A′

+ ιAῑ
A′

= ε1Aε̄0′A
′ − ε0Aε̄1

A′
, (4.3b)

�AA′
= oAōA

′
+ ιAῑA

′
= ε0

Aε̄0′A
′
+ ε1

Aε̄1′A
′
. (4.3c)

From these expressions it follows that

�AA′�BA′
= oAι

B − ιAo
B = ε1Aε1

B + ε0Aε0
B .

Thus,

�AA′�A′B = δA
B . (4.4)

Notice, in particular, that �AA′�AA′
= 2.

The spinor �AA′ induces an operation of Hermitian conjugation + :

S•(M) → S•(M). Given μA ∈ S(M), we define its Hermitian conjugate μ+
A

via

μ+
A ≡ �A

A′
μ̄A′ . (4.5)

It follows then that one can write

〈〈ξ,η〉〉 = −ξ+Aη
A = ηAξ

+A.

Observe that as a consequence of the see-saw rule, Equations (3.4a) and (3.4b),

one has μ+A ≡ −�A
A′ μ̄A′

. The Hermitian conjugation is extended to higher

valence spinors by requiring

(μλ)+ = μ+λ+

for μ, λ ∈ S•(M). It is a consequence of the normalisation condition (4.2) that

μ++
A1···Ak

= (−1)kμA1···Ak
.

Furthermore, μ+AμA = 0 if and only if μA = 0, the latter as a result of condition

(iii) of Definition 3.1. Using the representation of �A
A′

given by (4.3b) one finds

that

o+A = ιA, ι+A = −oA, (4.6a)

o+A = ιA, ι+A = −oA. (4.6b)

Hence, the normalisation leading to (4.3a)–(4.3c) is equivalent to the normalisa-

tion condition

oAo
+A = 1,

for the spinor o. Notice also that, as a consequence of the previous discussion, a

non-zero spinor and its Hermitian conjugate are linearly independent. Finally, a

calculation using the expression of εAB in terms of oA and ιA, yields

ε+AB = �A
A′
�B

B′
εA′B′ = εAB .

https://doi.org/10.1017/9781009291347.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.006


4.2 The space spinor formalism 97

Remark. In the rest of the book, when working with spinor structures endowed

with a Hermitian product, it will always be assumed that a spin basis satisfying

relations (4.6a) and (4.6b) has been chosen.

4.2 The space spinor formalism

A consequence of the existence of an operation of Hermitian conjugation is that,

given a spinor ξ ∈ S•(M), its complex conjugate ξ̄ and its Hermitian conjugate

ξ+ contain the same information. This observation allows the introduction of

a spinorial formalism based entirely on spinors with unprimed indices by

contracting all the primed indices in the spinors with �A
A′
. Given ξA1···ApA′

1···A′
q
,

we define its space spinor counterpart ξA1···ApB1···Bq
as

ξA1···ApB1···Bq
≡ �B1

A′
1 · · ·�Bq

A′
qξA1···ApA′

1···A′
q
. (4.7)

The above expression can be inverted by recalling the normalisation condition

(4.4) to yield

ξA1···ApA′
1···A′

q
= (−1)q�B1

A′
1
· · ·�Bq

A′
q
ξA1···ApB1···Bq

.

Thus, the information contained in a spinor with primed indices and its space

spinor counterpart is equivalent.

4.2.1 The Hermitian product and three-dimensional vectors

The operation of Hermitian conjugation gives rise to a notion of reality for

spinors. More precisely, a spinor μA1B1···AkBk
with an even number of indices

will be said to be real if

μ+
A1B1···AkBk

= (−1)kμA1B1···AkBk
,

and imaginary if

μ+
A1B1···AkBk

= (−1)k+1μA1B1···AkBk
.

Consider now a symmetric valence-2 spinor vAB ∈ S•(M). Given a space

spinor basis {o, ι} such that ι ≡ o+, one can write

vAB = aoAoB + bιAιB + co(AιB), (4.8)

with a, b, c ∈ C. The Hermitian conjugate of vAB is given by

v+AB = āιAιB + b̄oAoB − c̄ι(AoB).

If vAB is real, that is, v+AB = −vAB , then b̄ = −a and c̄ = c. Thus, the real

spinor vAB has only three real components so that it describes a three-dimensional

vector vi. This argument can be extended to higher valence real space spinors

so that

ξA1B1···AkBk

C1D1···CmDm = ξ(A1B1)···(AkBk)
(C1D1)···(CmDm),
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if real, can be regarded as the space spinor counterpart of a three-dimensional

tensor ξi1···ik
j1···jm – every pair of symmetric spinor indices is associated to a

spatial tensor index. One can summarise the previous discussion in the following:

Lemma 4.1 (the distribution associated to a Hermitian product) A

Hermitian spinor �AA′ on S•(M) induces a three-dimensional distribution Π

on M.

Observation. The distribution Π may not possess integrable manifolds.

The consequences of Lemma 4.1 can be further elaborated by considering the

spinorial counterpart of the projector ha
b associated to the distribution Π. To

this end let

hAA′BB′ ≡ δA
BδA′B

′ − 1

2
�AA′�BB′

.

It can be readily verified that

hAA′BB′
hBB′CC′

= hAA′CC′
, hAA′BB′

�BB′ = 0.

Now, given vAA′ ∈ S•(M) denote by vAB its space spinor counterpart. A

calculation then shows that

v(AB) = �B
A′
hAA′CC′

vCC′ = �(A
A′
vB)A′ .

Thus, the spinor hAA′BB′
is the projector associated to the distribution induced

by �AA′ . The space spinor version of hAA′BB′
is given by hABCD ≡ �B

A′
�D

C′

hAA′CC′ . It can be readily verified that hABCD = h(AB)(CD). Using the Jacobi

identity (3.5) one can show that

hABCD ≡ −εA(CεD)B . (4.9)

It can also be verified that

hABPQh
PQCD = hAB

CD ≡ εA
(CεB

D), hABCDhABCD = hPQ
PQ = 3.

In addition, one has

h+
ABCD = hABCD,

so that hABCD is a real space spinor. Moreover, given vAB = v(AB) and uAB =

u(AB) one has that

vABhABCD = vCD, uABh
ABCD = uCD, uABhCD

AB = uCD.

Finally, it is observed that if the spinor vAB is real, then using the decomposition

of Equation (4.8) one readily finds that

hABCDvABvCD = vABv
AB = 2ab− 1

2
c2 = −2|b|2 − 1

2
c2 ≤ 0.
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4.2 The space spinor formalism 99

Thus, given p ∈ M, the spinor hABCD gives rise to a negative definite inner

product on Π|p ⊂ T |p(M). Accordingly, the vectors in Π are spatial with respect

to the metric g. As Π may not possess integrable submanifolds, hABCD is not

necessarily the spinorial counterpart of a (negative definite) three-dimensional

Riemannian metric of a spacelike submanifold of M.

4.2.2 Spatial Infeld-van der Waerden symbols

The relation between space spinors and three-dimensional vectors can be

formalised by means of suitable soldering objects. At each point p ∈ M consider a

g-orthonormal basis {ei} of Π|p and let {ωi} denote the associated cobasis. One

has then that g(ei, ej) = −δij . In addition, let {εAA} be a spin basis satisfying

ε+1
A = ε0

A; compare Equation (4.6b). Spatial Infeld-van der Waerden

symbols can be defined from the spacetime Infeld-van der Waerden symbols

σa
AA′

and σa
AA′ through the relations

σi
AB ≡ −�(A

A′σi
B)A′

, σi
AB ≡ �(A

A′
σi

B)A′ .

hABCD = −σi
ABσj

CDδij , σi
ABσj

AB = δi
j . (4.10)

The explicit expressions for the spatial Infeld-van der Waerden symbols are

given by

σ1
AB =

1√
2

(
−1 0

0 1

)
, σ2

AB =
1√
2

(
−i 0

0 −i

)
, σ3

AB =
1√
2

(
0 1

1 0

)
,

and

σ1
AB =

1√
2

(
−1 0

0 1

)
, σ2

AB =
1√
2

(
i 0

0 i

)
, σ3

AB =
1√
2

(
0 1

1 0

)
.

Given the above, the components of a three-dimensional vector v and a three-

dimensional covector ξ can be put in correspondence with symmetric valence-2

real spinors via the formulae

vi �→ vAB = viσi
AB, ξi �→ ξAB = ξiσ

i
AB,

or more explicitly

(v1, v2, v3) �→ 1√
2

(
−v1 − iv2 v3

v3 v1 − iv2

)
, (4.11a)

(ξ1, ξ2, ξ3) �→
1√
2

(
−ξ1 + iξ2 ξ3

ξ3 ξ1 + iξ2

)
. (4.11b)

It can be verified that

〈ξ,v〉 = ξiv
i = ξABvAB = −ξ1v

1 − ξ2v
2 − ξ3v

3.
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100 Space spinors

The above correspondence between space spinors and three-dimensional vectors

can be readily extended to higher rank tensors. For example, given the

components Tij
k of a tensor Tij

k one has the correspondence

Tij
k �→ TABCD

EF ≡ σi
ABσj

CDσk
EFTij

k.

Finally, it is observed that σi
AB and σi

AB can be used to define an alternative

set of basis and cobasis {eAB}, {ωAB} for Π|p through the relations

eAB ≡ σi
ABei, ωAB ≡ σi

ABωi. (4.12)

In terms of these definitions the symbols σi
AB are the components of the frame

{eAB} with respect to itself. It can be verified that

〈ωAB, eCD〉 = hCD
AB, g(eAB, eCD) = hABCD.

4.2.3 Changes of basis and SU(2,C) transformations

To characterise the class of transformations preserving the structure of the

Hermitian inner product it is convenient to consider a change of spin basis

ε̃A
A = OA

P εP
A, ε̃AA = OA

P εPA,

where (OA
P ) and (OA

P ) are SL(2,C) matrices such that

OA
POB

P = δA
B.

It follows that

�̃AA′ = �AA′ ε̃A
A¯̃εA′A

′

= �AA′
(
OA

P εP
A
) (

ŌA′P
′
ε̄P ′A

′
)
= �PP ′OA

P ŌA′P
′
.

Hence, if one requires OA
P to be such that both�AA′ and �̃AA′ are the identity

matrix – compare Equation (4.2) – then OA
P and ŌA′P

′
have to be inverses

of each other; that is, the transformation described by the matrix (OA
B) is

an SU(2,C) transformation. This property explains the alternative name of

SU(2,C) spinors used to describe spinorial structures endowed with a Hermitian

product; see, for example, Ashtekar (1991). It is a direct consequence of the

previous discussion that the notions of real and imaginary space spinors as

discussed in Section 4.2.1 are invariant under SU(2,C) transformations.

It can be readily verified that SU(2,C) transformations are related to

three-dimensional rotations, that is, O(3) transformations . As SU(2,C)

transformations are a special case of SL(2,C) transformations, it follows that

εAB = OA
COB

DεCD; that is, ε̃AB = εAB. From the latter one has that

hABCD = OA
EOB

FOC
GOD

HhEFGH .
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Contracting the above expression with spatial Infeld-van der Waerden symbols

one obtains

δij = Oi
kOj

lδkl,

where the matrix (Oi
k) with elements given by

Oi
k ≡ σi

ABσk
EFOA

EOB
F

is an O(3)-transformation, that is, a three-dimensional real matrix preserving

the identity matrix.

4.2.4 Spinors on three-dimensional manifolds

In this section it is assumed that the distribution Π associated to the Hermitian

spinor �AA′ has an integral manifold S. It follows that S is a spacelike

hypersurface of the spacetime manifoldM, and the restriction of Π to S coincides

with the tangent bundle T (S). Vectors and covectors in T (S) are associated to

symmetric valence-2 real spinors.

Under the assumptions of the previous paragraph, consistently with the

discussion of Section 4.2.1, one has that the spinor hABCD = −εA(CεD)B is the

spinorial counterpart of the three-dimensional (negative definite) Riemannian

metric h induced on S by g. One can write

h = −δijω
i ⊗ ωj = hABCDωAB ⊗ ωCD

with the coframe {ωAB} defined as in Equation (4.12). In a natural manner, the

spinor �AA′ can be identified with the normal to S.

An alternative point of view

The discussion of spinors on three-dimensional manifolds outlined in the previous

paragraphs assumes that S is a spacelike hypersurface of a spacetime (M, g).

A more intrinsic perspective can be obtained by postulating the existence of a

spinorial structure over S, to be denoted by S(S), endowed with an operation

of Hermitian conjugation + : S(S) → S(S) satisfying the properties discussed

in Section 4.1.1. This point of view leads one to consider conditions ensuring

the existence of this space spinor structure. An example of a sufficient

condition is that the vacuum Einstein constraint equations (see Chapter 11)

can be solved on S. If this is the case, the three-dimensional manifold can be

regarded as a spacelike hypersurface of a spacetime (M, g); see Chapter 14. The

spacetime (M, g) is globally hyperbolic and, thus, admits a spinor structure;

see Proposition 3.4. The g-normal to S in M induces the required operation of

Hermitian conjugation.

In what follows, the notational conventions of Section 3.1.4 are adopted, and

one writes S•(S), SA(S), SA(S), . . . to denote the various bundles associated

to S(S).
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Totally symmetric spinors

Spinors provide a simple representation of the operation of taking the symmetric

trace-free part of a three-dimensional tensor.

Proposition 4.1 (space spinor representation of trace-free three-

dimensional tensors) Let TA1B1···ApBp
denote the spinorial counterpart of a

three-dimensional real tensor Ti1···ip . One has that

TA1B1···ApBp
= T(A1B1···ApBp) if and only if Ti1···ip = T{i1···ip}.

Proof Any possible contraction of T(A1B1···ApBp) with hABCD must vanish so

that Ti1···ip must be trace free. Conversely, if Ti1···ip = T{i1···ip}, then one has

that

hA1B1A2B2TA1B1A2B2···ApBp
= TPQ

PQ···ApBp
= 0.

Using the decomposition (3.8) together with the symmetries of TA1B1A2B2···ApBp

in the indices A1B1A2B2
one concludes that

TA1B1A2B2···ApBp
= T(A1B1A2B2)···ApBp

.

Now, considering the contraction of the pair A2B2
with pairs outside the sym-

metrisation bracket and repeating the previous argument as many times as nec-

essary one concludes that TA1B1A2B2···ApBp
must be completely symmetric.

4.2.5 Timelike congruences and Hermitian products

Assume now that the spacetime (M, g) has some privileged future directed

timelike vector τ with parameter τ .1 The vector τ does not need to be

hypersurface orthogonal. Let τAA′
denote the spinorial counterpart of τ and

consider the normalisation g(τ , τ ) = 2. As discussed in Section 2.7.1, τ defines

a distribution on M. Let Sτ denote the hyperplanes generated by τ ; as τ is

not hypersurface orthogonal, the hyperplanes are not, in general, the tangent

bundles to the leaves of a foliation of M. The timelike spinor τAA′ induces a

Hermitian product 〈〈ξ,η〉〉 = τAA′ ξ̄A
′
ηA for ξA, ηA ∈ S(S). Indeed, as τAA′

is

the spinorial counterpart of a spacetime vector, it is a Hermitian spinor, so that

τAA′ ξ̄A′ηA = τAA′ η̄A
′
ξA.

Furthermore, given that τAA′
is timelike future directed and ξAξ̄A

′
describes a

future-directed null vector, it follows that τAA′ξAξ̄A
′ ≥ 0. Thus, formula (4.1)

1 It is possible to construct a “space spinor” formalism adapted to spacelike congruences with

tangent vector ρAA′
; see e.g. Szabados (1994). This requires adapting some of the formulae

given in the preceding sections. In particular, the associated Hermitian product needs to be

negative definite. Moreover, the analogue of Equation (4.13) is given by ρAA′ρBA′
= εBA so

that ρAA′ρAA′
= −2.
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and the various subsequent expressions in Section 4.1 can be used for the choice

�AA′ = τAA′ .

From the discussion in Section 4.1.1 it follows that there exists a spin basis

{εAA} such that

τAA′
= ε0

Aε0′A
′
+ ε1

Aε1′A
′
.

In particular, one has that

τAA′τBA′
= εA

B . (4.13)

Space spinor split of general spacetime spinors

The tensorial counterpart of a spinor μA1A′
1···AkA′

k
can be expanded in terms of

the spatial frame {eAB} if and only if it is spatial with respect to τ , that is, if

the k conditions

τA1A
′
1μA1A′

1···AkA′
k
= 0, · · · τAkA

′
kμA1A′

1···AkA′
k
= 0

hold. In this case, its space spinor counterpart is given by

μA1B1···AkBk
= τB1

A′
1 · · · τBk

A′
kμA1A′

1···AkA′
k
= μ(A1B1)···(AkBk).

To deal with the spinorial counterparts of tensors which are not spatial in the

sense described above, one makes use of the projector

hBB′
AA′ ≡ εA

BεA′B
′ − 1

2
τAA′τBB′

,

which takes a spinor ξA1A′
1···AkA′

k
onto the spatial spinor

ξA1A′
1···AkA′

k
hA1A

′
1
B1B′

1
· · ·hAkA

′
k
BkB′

k
.

The space spinor version of the above spatial spinor is obtained by contracting

the primed indices with τA
A′

as in formula (4.7). In particular, this procedure

applied to the projector hAA′BB′ yields hABCD. The non-spatial components of

ξA1A′
1···AkA′

k
can be obtained by a full contraction of a primed-unprimed pair of

indices with τAA′
.

An alternative way of looking at the projection procedure described in the

previous paragraphs is the following: given the spinorial counterpart ξA1A′
1···A1A′

k

of a (in principle non-spatial) tensor, define

ξA1B1···AkBk
≡ τB1

A′
1 · · · τBk

A′
kξA1A′

1···A1A′
k
.

Then ξ(A1B1)···(AkBk) encodes the spatial part of ξA1A′
1···A1A′

k
, while ξP1

P1 · · · Pk
Pk

corresponds to its pure time component. Mixed time-spatial components have

the form ξP
P
(A2B2)···(AkBk), and so on.
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As a particular example of the previous discussion one has that for a Hermitian

spinor vAA′ ∈ S•(M) it holds that

vAA′ =
1

2
τAA′v − τQA′v(QA)

where v ≡ vPP ′τPP ′
and vAB ≡ τB

A′
vAA′ . Observing that v = vQ

Q one can

write, alternatively, that

vAB =
1

2
εABv + v(AB).

The 1 + 3 split of frame and the metric

Given a g-orthonormal frame {eAA′} and its coframe {ωAA′}, the discussion of

the previous paragraphs implies that they can be written as

eAA′ =
1

2
τAA′e− τBA′eAB,

ωAA′
=

1

2
τAA′

ω + τC
A′

ωCA,

where the various vectors and covectors in the decomposition are given by

e ≡ τPP ′
ePP ′ , eAB ≡ τ(A

P ′
eB)P ′ ,

ω ≡ τPP ′ωPP ′
, ωAB ≡ −τ (AP ′ωB)P ′

.

Now, recalling that 〈ωAA′
, eBB′〉 = εB

AεB′A
′
, one obtains that

〈ω, e〉 = 2, 〈ω, eAB〉 = 0,

〈ωAB, e〉 = 0, 〈ωAB, eCD〉 = hAB
CD.

Using the above pairings together with expression (3.29) one obtains the

following 1 + 3 split of g:

g =
1

2
ω ⊗ ω + hABCDωAB ⊗ ωCD. (4.14)

In particular, one has that

hABCD ≡ g(eAB, eCD) = −εA(CεD)B.

If τ is hypersurface orthogonal, then the vectors {eAB} and the covectors

{ωAB} are intrinsic to the hypersurfaces Sτ orthogonal to τ ; thus, they can be

regarded as belonging to T (Sτ ) and T ∗(Sτ ), respectively. In addition,

h ≡ hABCDωAB ⊗ ωCD

corresponds to the (negative definite, Riemannian) metric induced by g on Sτ .

Let εijk denote the volume form of the three-dimensional metric h, and let
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4.3 Calculus of space spinors 105

εABCDEF be its spinorial counterpart. Using the antisymmetry properties of

εABCDEF it can be expressed in terms of εAB as

εABCDEF =
i√
2
(εACεBEεDF + εBDεAF εCE). (4.15)

Furthermore, it can be checked that

εABCDEF ε
ABCDEF = −6.

Alternatively, Equation (4.15) can be obtained from Equation (3.25), by suitable

contactions with τAA′
. More precisely, one has that

εCDEFGH =
1√
2
τAA′

τD
C′
τF

E′
τH

G′
εAA′CC′EE′GG′ .

4.3 Calculus of space spinors

This section discusses the notion of covariant derivative in the context of the

space spinor formalism. For simplicity of the presentation, it is assumed that

one has a situation as described in Section 4.2.5 where the spinor �AA′ is given

by the spinorial counterpart τAA′ of the tangent vector τ to a timelike congruence

in (M, g). Moreover, it is also assumed that ∇AA′ is the spinorial counterpart

of the Levi-Civita connection of the metric g.

4.3.1 The Sen connection

The spinor τAA′
can be used to obtain a space spinor version of the spacetime

spinorial covariant derivative ∇AA′ . More precisely, one can define

∇AB ≡ τB
A′∇AA′ .

The latter, in turn, can be written in terms of its irreducible components as

∇AB =
1

2
εABP +DAB , (4.16)

where

P ≡ τAA′∇AA′ , DAB ≡ τ(B
A′∇A)A′ .

The operator P is the directional derivative of the connection ∇ in the

direction of τ . The differential operator DAB is the so-called Sen connection

of ∇ relative to the vector field τ . In view of these definitions one can also write

∇AA′ =
1

2
τAA′P − τA′QDAQ.

The timelike vector τ is completely arbitrary; in particular, it is not assumed

to be hypersurface orthogonal. This has several consequences; most notably, the

Sen connection has, in general, a non-vanishing torsion which can be expressed in

terms of the covariant derivative of τAA′
. Furthermore, even in the case when τ is
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hypersurface orthogonal, DAB does not coincide with the Levi-Civita connection

D of the intrinsic 3-metric of the hypersurfaces Sτ orthogonal to τ . Finally,

it is pointed out that DAB is not a real differential operator in the sense that

D+
AB �= −DAB .

The derivative of τAA′

For future use, it is convenient to define

χABCD ≡ 1√
2
τD

C′∇ABτCC′ . (4.17)

Using the split (4.16) one obtains the decomposition

χABCD =
1

2
εABχCD + χ(AB)CD

where

χAB ≡ 1√
2
τB

A′PτAA′ , χ(AB)CD ≡ 1√
2
τD

C′DABτCC′ .

It can be verified that the above spinors satisfy the following symmetry and

reality properties:

χAB = χ(AB) = −χ+
AB , χ(AB)CD = χ(AB)(CD) = χ+

(AB)CD.

The spinor χAB corresponds to the acceleration vector of τ , while χ(AB)CD

is related to the Weingarten tensor of the distribution defined by τ . It can be

checked that the distribution is integrable if and only if χQ
(BC)Q = 0. In this case

τ is hypersurface orthogonal, and χABCD corresponds to the extrinsic curvature

of the orthogonal hypersurfaces Sτ .

The hypersurface orthogonal case

If τ is hypersurface orthogonal, given a spinor μC , the covariant derivative DAB

defined by

DABμC ≡ DABμC +
1√
2
χ(AB)C

QμQ (4.18)

can be verified to be torsion-free. As DABεCD = 0 and using that χABCD =

χAB(CD), one concludes that DABεCD = 0. Thus, DAB is metric and must coin-

cide with the (spinorial counterpart of the) Levi-Civita connection of the leaves

of the foliation defined by τ . It can be further verified from Equation (4.18) that(
DABμC

)+
= −DABμ

+
C ,

so that DAB is a real differential operator in the sense of Section 4.2.1.

Remark. The derivative DAB as defined in Equation (4.18) provides an explicit

example of the notion of space spinor covariant derivative to be introduced in

Section 4.3.3.
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4.3.2 Space spinor split of the spacetime connection coefficients

Following the notation of Section 3.2.2, let ΓAA′CD denote the spin connection

coefficients of a Levi-Civita connection ∇AA′ with respect to some spin basis

{εAA}. Its space spinor counterpart ΓABCD is defined by

ΓABCD ≡ τB
A′

ΓAA′CD.

The spin coefficients ΓABCD satisfy no specific reality conditions. However,

sometimes it is convenient to have a split of ΓABCD into real and imaginary

parts. One has that

τB
A′

(∇AA′τCC′)τD
C′

= −τB
A′

ΓAA′QCτQC′τD
C′ − τB

A′
Γ̄A′A

Q′
C′τCQ′τD

C′

= −ΓABCD + τB
A′

τC
Q′

τA′EτQ′F τC′GΓ+
EAFGτD

C′

= −ΓABCD − δB
EδC

F δD
GΓ+

EAFG

= −ΓABCD − Γ+
BACD,

where it has been used that eAA′(τCC′) = 0, the identity

Γ̄A′AB′C′ = −τA′EτB′F τC′GΓ+
EAFG,

and the identity (4.13). Hence, it follows that χABCD corresponds, essentially,

to the real part of ΓABCD; that is,

χABCD = − 1√
2
(ΓABCD + Γ+

ABCD).

The reality of the above expression follows from Γ++
ABCD = ΓABCD. The

imaginary part of ΓABCD is given by

ξABCD =
1√
2
(ΓABCD − Γ+

ABCD).

Inverting the definitions of χABCD and ξABCD it follows then that

ΓABCD =
1√
2
(ξABCD − χABCD),

=
1√
2
(ξABCD − χ(AB)CD)− 1

2
√
2
εABχCD.

Observe the symmetry conditions

χABCD = χAB(CD), ξABCD = ξ(AB)(CD).
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4.3.3 Intrinsic derivatives

When working with a three-dimensional Riemannian (S,h) it is convenient

to make use of an intrinsic notion of covariant derivative, a so-called space

spinor covariant derivative DAB , compatible with operation of Hermitian

conjugation, which is the spinorial counterpart of the Levi-Civita connection D

of the metric h. One regards DAB as a map

DAB : SC···D
E···F (S) → SC···D

ABE···F (S).

The properties of the operator DAB have to be consistent with those of the

operator defined in Equation (4.18). It is required to satisfy:

(i) Symmetry. Given ζC···D
E···F ∈ S•(S) one has

DABζ
C···D

E···F = D(AB)ζ
C···D

E···F .

(ii) Linearity. Given ζC···D
E···F , η

C···D
E···F ∈ S•(S) one has

DAB(ζ
C···D

E···F + ηC···D
E···F ) = DABζ

C···D
E···F +DABη

C···D
E···F .

(iii) Leibnitz rule. Given ζC···D
E···F , ξ

G···H
P ···Q ∈ S•(S) one has

DAB(ζ
C···D

E···F ξ
G···H

P ···Q) = ξG···H
P ···QDABζ

C···D
E···F

+ ζC···D
E···FDABζ

G···H
P ···Q.

(iv) Reality. Given ζC···D
E···F ∈ S•(S) one has

(
DABζ

C···D
E···F

)+
= −DABζ

+C···D
E···F

(v) Action on scalars. Given a scalar φ ∈ X(S), then DABφ is the spinorial

counterpart of Diφ.

(vi) Representation of derivations. Given a derivation D, there exists a

spinor ξAB ∈ S•(S) such that

DζC···D
E···F = ξPQDPQζ

C···D
E···F

for all ζC···D
E···F ∈ SC···D

E···F .

(vii) Compatibility with the ε-spinor. The operator DAB satisfies

DABεCD = 0 so that, in addition, DABhCDEF = 0.

(viii) No torsion. For φ ∈ X(S) one has that DABDCDφ = DCDDABφ.
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The space spinor spin coefficients

Let {ei} and {ωi} denote, respectively, an h-orthonormal basis and cobasis on S.
One defines the spatial connection coefficients γi

k
j via the equation

Diej = γi
k
jek. (4.19)

In what follows, it will be assumed that the connection D has spinorial

counterpart DAB satisfying conditions (i)–(viii) of the previous section. Let

{eAB} and {ωAB} denote, respectively, the vector basis and cobasis obtained

from {ei} and {ωi} through the correspondences in (4.12) and let DAB denote

the associated covariant directional derivative.

The spinorial counterpart of the spatial connection coefficients γAB
CD

EF

can be obtained by contraction of γi
k
j with the spatial Infeld-van der Waerden

symbols so that the reality condition

γ+
AB

CD
EF = −γAB

CD
EF (4.20)

holds. Now, defining the space spinor directional covariant derivative

DAB ≡ σi
ABDi, the spinorial counterpart of (4.19) can be written as

DABeEF = γAB
CD

EF eCD.

Hence, one has

γAB
CD

EF = 〈ωCD, DABeEF 〉,

so that γAB
CD

EF has the symmetries

γAB
CD

EF = γ(AB)
(CD)

(EF ).

Now, as DABhCDEF = 0, it follows then from

DABhCDEF = eAB(hCDEF )− γAB
PQ

CDhPQEF − γAB
PQ

EF hCDPQ,

that

γABCDEF = −γABEFCD.

This antisymmetry can be exploited to obtain the decomposition

γAB
CD

EF =
1

2
γAB

PD
PF δE

C +
1

2
γAB

CP
EP δF

D

= γAB
D

F δE
C + γAB

C
EδF

D,

where the space spinor spin coefficients, γAB
D

F = γ(AB)
D

F , have been

defined by

γAB
D

F ≡ 1

2
γAB

PD
PF . (4.21)

Observing the reality condition (4.20) and that ε+AB = εAB , it follows that

γ+
AB

C
D = −γAB

C
D;
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that is, the space spinor connection coefficients are imaginary. A computation

similar to the one performed in Section 3.2.2 to express the spacetime spin

coefficients in terms of derivatives of the spin basis shows that

γAB
C

D = εCQDABεD
Q = −εD

QDABεCQ.

From these expressions, it can be shown that given spinors κA and μA with

components κA and μA with respect to the space spinor basis {εAA}, one has

DABκC = eAB(κC)− γAB
Q

CκQ,

DABμC = eAB(μC) + γAB
C

QμQ,

where DABκC ≡ εC
QDABκQ and DABμC ≡ εCQDABμQ.

The three-dimensional curvature spinors

As D is being assumed to be the Levi-Civita connection of a three-dimensional

negative definite metric h, it follows that the spinorial counterpart rABCDEFGH

of the Riemann tensor rijkl of D satisfies the antisymmetry property

rABCDEFGH = −rCDABEFGH .

Hence, one has the decomposition

rABCDEFGH = −rACEFGHεBD − rBDEFGHεAC , (4.22)

with

rACEFGH ≡ 1

2
rAQC

Q
EFGH , rACEFGH = r(AC)EFGH .

Now, as rABCDEF = −rABEFCD one has further that

rABCDEF = rABCEεDF + rABDF εCE ,

with

rABCE =
1

2
rABCQE

Q, rABCE = rAB(CE).

As a consequence of the symmetry rABCDEFGH = rEFGHABCD, the spinor

rABCD inherits the symmetry rABCD = rCDAB . Taking into account all

these symmetries in the general decomposition for a general valence-4 spinor,

Equation (3.8), one concludes that

rABCD = r(ABCD) +
1

3
rPQ

PQhABCD.

In what follows let sABCD and r denote, respectively, the spinorial coun-

terpart of the trace-free Ricci tensor and the Ricci scalar of the

connection D. One has that

sABCD = r(ABCD), r = −4rPQ
PQ.
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Hence, one finds that rABCDEF can be written as

rABCDEF =

(
1

2
sABCE − 1

12
rhABCE

)
εDF +

(
1

2
sABDF − 1

12
rhABDF

)
εCE .

(4.23)

Using an argument similar to the one employed in Section 3.2.3 one finds that

the commutator of the covariant derivative DAB satisfies

(DABDCD −DCDDAB)μ
E = rEFABCDμF .

Finally, for completeness it is noticed that the three-dimensional second Bianchi

identity takes, in the present context, the form

DPQsPQAB =
1

6
DABr.

This last expression can be obtained from multiplying by εijk the tensorial

Bianchi identity

Dirjklm +Djrkilm +Dkrijlm = 0,

and considering its spinorial counterpart using Equations (4.22) and (4.23).

4.4 Further reading

The notions of space spinor and space spinor splits were originally introduced in

Sommers (1980); see also Sen (1981). A monograph on space spinors is Torres

del Castillo (2003). An alternative discussion, having applications in quantum

gravity in mind, is given in an appendix of Ashtekar (1991). The space spinor

formalism was first used in Friedrich (1988, 1991) to analyse the conformal field

equations. Further developments can be found in Friedrich (1995, 1998c), and a

slightly different perspective on these ideas is given in Frauendiener (1998a).
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