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Abstract

For two given graphs G1 and G2, the Ramsey number R(G1,G2) is the smallest integer N such that, for any
graph G of order N, either G contains G1 as a subgraph or the complement of G contains G2 as a subgraph.
A fan Fl is l triangles sharing exactly one vertex. In this note, it is shown that R(Fn, Fm) = 4n + 1 for
n ≥ max{m2 − m/2, 11m/2 − 4}.

2010 Mathematics subject classification: primary 05D10; secondary 05C70.

Keywords and phrases: Ramsey number, fan, goodness.

1. Introduction

In this note we deal with finite simple graphs only. Let G = (V(G), E(G)) be a
graph. For S ⊆ V(G), we use NS (v) to denote the set of the neighbours of a vertex
v that are contained in S , NS [v] = NS (v) ∪ {v} and dS (v) = |NS (v)|. If S = V(G), we
write N(v) = NG(v), N[v] = N(v) ∪ {v} and d(v) = dG(v). The maximum and minimum
degrees of a graph G are denoted by ∆(G) and δ(G), respectively. Denote by G[S ]
and G − S the subgraphs induced by S and V(G) − S , respectively. For two vertex-
disjoint graphs G1 and G2, G1 ∪G2 denotes their disjoint union and G1 + G2 is the
graph obtained from G1 ∪G2 by joining every vertex of G1 to every vertex of G2. We
use mG to denote the union of m vertex-disjoint copies of G. A complete graph of
order m is denoted by Km. A star S n is K1 + (n − 1)K1 and a fan Fn is K1 + nK2.

Given two graphs G1 and G2, the Ramsey number R(G1,G2) is the smallest integer
N such that, for any graph G of order N, either G contains G1 as a subgraph or G
contains G2 as a subgraph, where G is the complement of G. Chvátal and Harary [2]
constructed a general lower bound which often yields the exact values of R(G1,G2).
That is, R(G1,G2) ≥ (|V(G1)| − 1)( χ(G2) − 1) + 1, where G1 is a connected graph and
χ(G2) is the chromatic number of G2. Burr [1] generalised this lower bound by using
another parameter s(G2), called the chromatic surplus of G2, which is defined as the
minimum number of vertices in some colour class under all proper vertex colourings
of G2 by χ(G2) colours.
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Theorem 1.1 [1]. R(G1,G2) ≥ (|V(G1)| − 1)(χ(G2) − 1) + s(G2) for any connected
graph G1 with |V(G1)| ≥ s(G2).

Burr defined G1 to be G2-good if the equality holds in Theorem 1.1. Based on
this definition, one may ask, for a given graph G, which graphs F are G-good? This
generated many questions in Ramsey theory and results were established for some
special graphs G such as a tree, a cycle, a complete graph and so on. When G is a fan,
Li and Rousseau showed that Fn is F1-good for n ≥ 2 and obtained lower and upper
bounds for R(Fn, Fm) in terms of n and m.

Theorem 1.2 [4]. R(Fn,F1) = 4n + 1 for n ≥ 2; and 4n + 1 ≤ R(Fn,Fm) ≤ 4n + 4m − 2.

Recently, Lin and Li proved that Fn is F2-good for n ≥ 2 and improved the upper
bound for R(Fn, Fm) in Theorem 1.2.

Theorem 1.3 [5]. R(Fn,F2) = 4n + 1 for n ≥ 2; and R(Fn,Fm) ≤ 4n + 2m for n ≥ m ≥ 2.

Theorems 1.2 and 1.3 say that any Fn with n ≥ 2 is both F1-good and F2-good.
For a given m ≥ 3, can we decide when Fn is Fm-good? Lin et al. established an
approximate result by using the Erdős–Simonovits theorem.

Theorem 1.4 [6]. R(Fn, Fm) = 4n + 1 for sufficiently large n.

It is not difficult to see that Fn is not always Fm-good for n ≥ m ≥ 2. In fact, we
can prove that R(Fn, Fm) ≥ 4n + 2 for m ≤ n < m(m − 1)/2. Since m(m − 1)/2 > m,
we must have m ≥ 4 here. There exist positive integers p, q such that 2n + 1 = pm + q
and 1 ≤ q ≤ m. Let H = pS m ∪ S q if q , 1, and H = (p − 1)S m ∪ S m−1 ∪ S 2 if q = 1.
Since n < m(m − 1)/2, 2n + 1 ≤ m(m − 1) and p ≤ m − 2. It is easy to check that
H is a graph of order 2n + 1 with δ(H) ≥ 1, and that H contains neither S m+1 nor
mK2. Let H′ = K2n ∪ H. Then H′ contains no Fn and H′ contains no Fm. Thus, if
m ≤ n < m(m − 1)/2, then R(Fn, Fm) ≥ 4n + 2.

In this note, our main goal is to determine a range of n with respect to m such that
Fn is Fm-good for a given m ≥ 3. Our main result is as follows.

Theorem 1.5. R(Fn, Fm) = 4n + 1 for n ≥ max{m2 − m/2, 11m/2 − 4}.

Remark 1.6. Since Fn is not Fm-good for m ≤ n < m(m − 1)/2, we wonder whether
Fn is Fm-good for n ≥ m(m − 1)/2. If this is true, then we can see that the range
n ≥ m(m − 1)/2 is best possible.

2. Proof of Theorem 1.5

In order to prove Theorem 1.5, we need the following two lemmas.

Lemma 2.1 [5]. R(Ft, sK2) = max{s, t} + s + t.

Lemma 2.2 [3]. A bipartite graph G = (X,Y) has a matching which covers every vertex
in X if and only if |N(S )| ≥ |S | for all S ⊆ X, where N(S ) =

⋃
v∈S NY (v).
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Proof of Theorem 1.5. The lower bound R(Fn, Fm) ≥ 4n + 1 is implied by the fact
that 2K2n contains no Fn and its complement contains no triangle and hence no Fm. It
remains to prove that R(Fn, Fm) ≤ 4n + 1 for n ≥ max{m2 − m/2, 11m/2 − 4}.

Let G be a graph of order 4n + 1 with n ≥ max{m2 − m/2, 11m/2 − 4}, and suppose
to the contrary that G does not contain an Fn and G does not contain an Fm. If
∆(G) ≥ 2n + m, let x be a vertex with d(x) = ∆(G) and H = G[N(x)]. By Lemma 2.1,
either H contains nK2, which, together with x, forms an Fn, or H contains an Fm, which
is also a contradiction. Thus, we have ∆(G) ≤ 2n + m − 1 and δ(G) ≥ 2n − m + 1.

Claim 1. For any vertex v of V(G), G − NG[v] contains a subgraph Hv which satisfies
one of the following conditions:

(1) Hv = K2n−2m+2;
(2) Hv = K3 ∪ (2n − 2m)K1;
(3) Hv is a graph of order 2n − m − l + 1 and at most 3m − 2l − 3 vertices in Hv are

of positive degree, where 0 ≤ l ≤ m − 3.

Moreover, there exists Xv ⊆ V(Hv) such that G[Xv] = K2n−3m+3 and dXv (u) ≥ 2n − 3m +

2 for any u ∈ V(Hv).

Proof. Since δ(G) ≥ 2n − m + 1, we have |V(G) − NG[v]| ≥ 2n − m + 1. Let H1 be
an induced subgraph of G − NG[v] on 2n − m + 1 vertices and M = {x1y1, . . . , xtyt}

a maximum matching of H1 and H2 = H1 − V(M). We deduce that t ≤ m − 1, since
otherwise M together with v forms an Fm in G, which is a contradiction. Since M
is a maximum matching in H1, H2 = K2n−m+1−2t. By the maximality of M, we can
see that if |NG(xi) ∩ V(H2)| ≥ 2, then |NG(yi) ∩ V(H2)| = 0 and vice versa. Assume
without loss of generality that x1, x2, . . . , xs are all the vertices of V(M) such that
|NG(xi) ∩ V(H2)| ≥ 2, where s ≤ t. If ypyq ∈ E(G) for 1 ≤ p < q ≤ s, then, since
|NG(xp) ∩ V(H2)| ≥ 2 and |NG(xq) ∩ V(H2)| ≥ 2, we can find an M-augmenting path in
H1, which contradicts the maximality of M. Thus, ypyq ∈ E(G) for all 1 ≤ p < q ≤ s.

Set H3 = H1 − {x1, x2, . . . , xs}. We first show that H3 contains an Hv, as required.
By the assumption, |NG(yi) ∩ V(H2)| = 0 for all 1 ≤ i ≤ s. Noting that ypyq ∈ E(G) for
all 1 ≤ p < q ≤ s, we can see that G[V(H2) ∪ {y1, y2, . . . , ys}] = K2n−m+1+s−2t.

If s = m − 1, then t = m − 1 and so H3 = G[V(H2) ∪ {y1, y2, . . . , ys}] = K2n−2m+2. Let
Hv = H3; then Hv is the subgraph, as required.

If s = m − 2 and t = m − 2, then H3 = G[V(H2) ∪ {y1, y2, . . . , ys}] = K2n−2m+3 and
hence H3 contains a subgraph Hv = K2n−2m+2. If s = m − 2 and t = m − 1, then
G[V(H2) ∪ {y1, y2, . . . , ys}] = K2n−2m+1. If V(H2) ⊆ NG(xm−1) or V(H2) ⊆ NG(ym−1),
then clearly H3 contains an Hv = K2n−2m+2. If not, then, by the maximality of M, we
have NG(xm−1) ∩ V(H2) = NG(ym−1) ∩ V(H2) and |NG(xm−1) ∩ V(H2)| = |NG(ym−1) ∩
V(H2)| = 1, which implies that H3 = K2n−2m+3 − {xm−1ym−1, xm−1u, ym−1u} for some
u ∈ V(H2). Taking Hv = H3, Hv is the subgraph, as required.

If s ≤ m − 3, we let l = s and Hv = H3. Obviously, |Hv| = 2n − m − l + 1. By
the assumption, |NG(xi) ∩ V(H2)| ≤ 1 and |NG(yi) ∩ V(H2)| ≤ 1 for s + 1 ≤ i ≤ t. By
the maximality of M, we have |(NG(xi) ∪ NG(yi)) ∩ V(H2)| ≤ 1 for s + 1 ≤ i ≤ t.
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Thus, Hv contains at most l + 3(t − l) ≤ 3m − 2l − 3 vertices of positive degree in Hv,
where 0 ≤ l ≤ m − 3.

Since |V(H2)| = 2n − m + 1 − 2t ≥ 2n − 3m + 3, we may let Xv ⊆ V(H2) with |Xv| =

2n − 3m + 3. Because H2 is a complete graph, we have G[Xv] = K2n−3m+3. Noting that
each vertex of V(Hv) − V(H2) has at most one nonadjacent vertex in V(H2), we have
dXv (u) ≥ 2n − 3m + 2 for any u ∈ V(Hv). �

Let v ∈ V(G) be given. By Claim 1, there exist Hv and Xv attached to v. Since n ≥
max{m2 −m/2,11m/2 − 4}, we have 2n − 2m ≥ 1 and 2n −m − l + 1 − (3m − 2l − 3) ≥
1; it follows that V(Hv) contains a vertex u such that V(Hv) ⊆ NG[u]. By Claim 1, there
exist Hu and Xu attached to u. Noting that V(Hv) ⊆ NG[u] and V(Hu) ⊆ V(G) − NG[u],
we have V(Hv) ∩ V(Hu) = ∅.

Set V1 = {w | |Xw ∩ Xu| ≥ 2n − 7m + 6 and Xw ∩ Xv = ∅} and V2 = {w | |Xw ∩ Xv| ≥

2n − 7m + 6 and Xw ∩ Xu = ∅}.

Claim 2. (V1,V2) is a partition of V(G) with V(Hv) ⊆ V1 and V(Hu) ⊆ V2.

Proof. For any vertex w of V(G), if Xw ∩ Xu = Xw ∩ Xv = ∅, then 4n + 1 ≥ |Xu| +

|Xv| + |Xw| ≥ 3(2n − 3m + 3) and hence n ≤ 9m/2 − 4, which is a contradiction. Thus,
either Xw ∩ Xu , ∅ or Xw ∩ Xv , ∅. If Xw ∩ Xu , ∅, then, since both G[Xw] and G[Xu]
are complete graphs, we have d(z) ≥ |Xw| + |Xu| − |Xw ∩ Xu| − 1 for any vertex z in
Xw ∩ Xu. Because d(z) ≤ ∆(G) ≤ 2n + m − 1, we obtain |Xw ∩ Xu| ≥ |Xw| + |Xu| − 2n −
m = 2n − 7m + 6. Similarly, if Xw ∩ Xv , ∅, then |Xw ∩ Xv| ≥ 2n − 7m + 6. If both
Xw ∩ Xu , ∅ and Xw ∩ Xv , ∅, then |Xw| ≥ |Xw ∩ Xu| + |Xw ∩ Xv| ≥ 2(2n − 7m + 6) and
hence n ≤ (11m − 9)/2, which contradicts n ≥ (11m − 8)/2. Therefore, for any vertex
w of V(G), either w ∈ V1 or w ∈ V2, but not in both, that is, (V1,V2) is a partition of
V(G).

By Claim 1, for any w ∈ V(Hv), w is nonadjacent to at most one vertex of Xv, and
Xw ⊆ V(G) − NG[w]; hence |Xw ∩ Xv| ≤ 1. Thus, w ∈ V1 and V(Hv) ⊆ V1. By symmetry,
V(Hu) ⊆ V2. �

Claim 3. For any two vertices w1,w2 ∈ Vi, i = 1, 2, we have |Xw1 ∩ Xw2 | ≥ 4m − 2.

Proof. By symmetry, it is sufficient to assume that w1,w2 ∈ V1. Since |Xw j ∩ Xu| ≥

2n − 7m + 6 for j = 1, 2, we see that |Xw1 ∩ Xw2 | ≥ |Xw1 ∩ Xu| + |Xw2 ∩ Xu| − |Xu| ≥ 1.
Since both G[Xw1 ] and G[Xw2 ] are complete graphs, we have d(z) ≥ |Xw1 | + |Xw2 | −

|Xw1 ∩ Xw2 | − 1 for any vertex z in Xw1 ∩ Xw2 . Noting that ∆(G) ≤ 2n + m − 1 and
n ≥ 11m/2 − 4, we have |Xw1 ∩ Xw2 | ≥ 4m − 2. �

Assume that |V1| ≥ |V2|. By Claim 2, |V1| ≥ d(4n + 1)/2e ≥ 2n + 1. For any vertex z
of V1, if dV1 (z) ≥ m in G, we choose m nonadjacent vertices of z from V1, denoted by
z1, . . . , zm. By Claim 3, for 1 ≤ i ≤ m, zi and z have at least 4m − 2 common nonadjacent
vertices, and then zi has at least 3m − 1 nonadjacent vertices in Xz − {z1, . . . , zm}. Thus,
we may find a matching of m edges in G[NG(z)] by Lemma 2.2, which, together with
z, forms an Fm in G, which is a contradiction. Therefore, for any vertex z of V1, we
have dV1 (z) ≤ m − 1 in G. Moreover, we may assume that m ≥ 2, otherwise G[V1]
is a complete graph which contains Fn, which is a contradiction. Since V(Hv) ⊆ V1
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and |Hv| ≤ 2n − 2m + 3 by Claim 1, we let V ′1 ⊆ V1 be such that V(Hv) ⊆ V ′1 and
|V ′1| = 2n + 1.

Now we prove that there exists some z0 ∈ V ′1 such that dV ′1 (z0) = 2n. By Claim 1,
Hv = K2n−2m+2; or Hv = K3 ∪ (2n − 2m)K1; or Hv is a graph of order 2n − m − l + 1
and at most 3m − 2l − 3 vertices in Hv are of positive degree, where 0 ≤ l ≤ m − 3.
Since each vertex of V ′1 − V(Hv) is of degree at most m − 1 in G[V ′1], then at most
q = max{(2m − 1)m, (2m − 2)m + 3, (m + l)m + (3m − 2l − 3)} vertices are of positive
degree in G[V ′1]. Because n ≥ max{m2 − m/2, 11m/2 − 4}, m ≥ 2 and l ≤ m − 3, it is
easy to check that q ≤ 2n. Thus, there is a vertex z0 ∈ V ′1 such that dV ′1 (z0) = 2n. Since
G[Xv − {z0}] is a complete graph of order at least 2n − 3m + 2, and every vertex of
V ′1 − Xv has at least 2n − 3m + 2 − (m − 1) ≥ n adjacent vertices in Xv, we can always
find a perfect matching in G[V ′1 − {z0}], which, together with z0, forms an Fn, which is
a contradiction. This completes the proof. �
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