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Abstract

Background. 3q29 deletion syndrome (3q29del) is a rare (∼1:30 000) genomic disorder asso-
ciated with a wide array of neurodevelopmental and psychiatric phenotypes. Prior work by
our team identified clinically significant executive function (EF) deficits in 47% of individuals
with 3q29del; however, the nuances of EF in this population have not been described.
Methods. We used the Behavior Rating Inventory of Executive Function (BRIEF) to perform
the first in-depth assessment of real-world EF in a cohort of 32 individuals with 3q29del
(62.5% male, mean age = 14.5 ± 8.3 years). All participants were also evaluated with gold-
standard neuropsychiatric and cognitive assessments. High-resolution structural magnetic res-
onance imaging was performed on a subset of participants (n = 24).
Results. We found global deficits in EF; individuals with 3q29del scored higher than the
population mean on the BRIEF global executive composite (GEC) and all subscales. In
total, 81.3% of study subjects (n = 26) scored in the clinical range on at least one BRIEF sub-
scale. BRIEF GEC T scores were higher among 3q29del participants with a diagnosis of atten-
tion deficit/hyperactivity disorder (ADHD), and BRIEF GEC T scores were associated with
schizophrenia spectrum symptoms as measured by the Structured Interview for Psychosis-
Risk Syndromes. BRIEF GEC T scores were not associated with cognitive ability. The
BRIEF-2 ADHD form accurately (sensitivity = 86.7%) classified individuals with 3q29del
based on ADHD diagnosis status. BRIEF GEC T scores were correlated with cerebellar
white matter and subregional cerebellar cortex volumes.
Conclusions. Together, these data expand our understanding of the phenotypic spectrum of
3q29del and identify EF as a core feature linked to both psychiatric and neuroanatomical fea-
tures of the syndrome.

Introduction

3q29 deletion syndrome (3q29del) is a rare (1:30 000) (Kendall et al., 2017; Stefansson et al.,
2014) genomic disorder caused by the 1.6Mb recurrent, typically de novo 3q29 deletion
(hg19, chr3:195725000–197350000) (Ballif et al., 2008; Glassford, Rosenfeld, Freedman,
Zwick, & Mulle, 2016; Willatt et al., 2005). The clinical phenotype of 3q29del is heterogeneous,
ranging from mild to moderate intellectual disability (ID) (Ballif et al., 2008; Cox & Butler, 2015;
Glassford et al., 2016; Klaiman et al., 2022; Sanchez Russo et al., 2021; Willatt et al., 2005) to a
19-fold increased risk for autism spectrum disorder (ASD) (Itsara et al., 2009; Pollak et al., 2019;
Sanders et al., 2015) and a greater than 40-fold increased risk for schizophrenia spectrum
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disorders (SZ) (Kirov et al., 2012; Marshall et al., 2017; Mulle, 2015;
Mulle et al., 2010; Szatkiewicz et al., 2014). Recent work by our
team has uncovered additional phenotypes associated with
3q29del, including attention deficit/hyperactivity disorder
(ADHD) and graphomotor weakness (Klaiman et al., 2022;
Pollak et al., 2023b; Sanchez Russo et al., 2021). Further, 47% of
study participants were found to have clinically significant execu-
tive function (EF) deficits (Klaiman et al., 2022; Sanchez Russo
et al., 2021). However, our understanding of the nuances of these
phenotypes, including EF, is still evolving.

EF refers to the constellation of higher-order cognitive processes
that control and coordinate purposeful goal-directed behaviors
(Baggetta & Alexander, 2016; Best & Miller, 2010; Miller & Wallis,
2009). It is generally agreed that EF is comprised of three core com-
ponents: inhibitory control, working memory, and cognitive flexibil-
ity (Baggetta & Alexander, 2016; Best & Miller, 2010; Miller &
Wallis, 2009). These foundational functions are moderately inter-
correlated yet separable, they can be differentially affected in differ-
ent patient populations, and they serve as the basis for more complex
cognitive constructs, such as planning, problem solving, and abstract
reasoning (Diamond, 2013; Miyake et al., 2000). EF allows an indi-
vidual to integrate information about their goals with sensory input
to guide actions in an adaptive and dynamic manner, in accordance
with the demands of the present context. EF deficits can have an
adverse impact on academic and occupational achievement, mood
regulation, and social function (Baggetta & Alexander, 2016; Best
& Miller, 2010; Miller & Wallis, 2009). Studies have identified EF
deficits in individuals with ADHD (Biederman et al., 2004;
Brown, 2009; Marije Boonstra, Oosterlaan, Sergeant, & Buitelaar,
2005; Martel, Nikolas, & Nigg, 2007) and SZ (Kraepelin, 1913;
Lysaker et al., 2008; Orellana & Slachevsky, 2013; Pickup, 2008;
Velligan & Bow-Thomas, 1999; Wobrock et al., 2009), as well as gen-
omic disorders with phenotypic similarities to 3q29del, including
22q11.2 deletion syndrome (Albert, Abu-Ramadan, Kates,
Fremont, & Antshel, 2018; Everaert et al., 2023; Gur et al., 2023;
O’Hora et al., 2023). Notably, EF ability has been shown to associate
with later-onset phenotypes in children with 22q11.2 deletion syn-
drome (Albert et al., 2018), highlighting the importance of under-
standing EF and its links to neurodevelopmental and psychiatric
phenotypes, as well as its potential as an early treatment target
with promising benefits for both childhood and adult outcomes.

The prefrontal cortex has canonically been associated with EF;
however, it is now clear that these processes rely on distributed
neural networks and emerging evidence points to a pivotal role
for the cerebellum. Convergent evidence from neuropsychological
testing, neuroimaging, humans with focal brain damage, and non-
human animal studies have identified the cerebellum as a critical
brain region for higher-order cognitive processing, including EF
(Bellebaum & Daum, 2007; Deverett, Koay, Oostland, & Wang,
2018; Koziol, Budding, & Chidekel, 2012; Schmahmann, 2019;
Schmahmann & Sherman, 1998). Notably, neuroimaging studies
by our team have identified a particularly high frequency of struc-
tural anomalies in the posterior fossa of individuals with 3q29del,
surpassing the combined occurrence of radiological anomalies
found in all other brain regions; for example, more than 60% of
3q29del study participants have cerebellar hypoplasia and/or cystic
or cyst-like malformations around the cerebellum, and both cere-
bellar cortex and white matter show significant volumetric differ-
ences compared to typically developing controls (Sanchez Russo
et al., 2021; Sefik et al., 2024). These cerebellar abnormalities,
coupled with the increased rate of EF deficits identified in indivi-
duals with 3q29del, highlight the importance of understanding

this complex cognitive phenotype and its relationship with neuro-
developmental and psychiatric morbidity in 3q29del.

The present study is the first detailed description of EF abilities
assessed in individuals with 3q29del. We define the profile of EF
and we explore the relationship between EF and general cognitive
ability, neurodevelopmental and psychiatric phenotypes, and
cerebellar volume. This study is an important contribution to
our evolving understanding of 3q29del; EF sits at the nexus of
multiple neurodevelopmental and psychiatric phenotypes asso-
ciated with 3q29del and may help to explain some of the under-
lying mechanisms contributing to the substantial psychiatric
multimorbidity experienced by this population. The results from
this study will help to guide future research to further explore
EF in this population, as well as targeted interventions to improve
EF abilities in individuals with 3q29del.

Methods

See online Supplementary information for detailed methods.

Study participants

Individuals with 3q29del were recruited from the online 3q29 regis-
try (3q29deletion.org) for 2 days of in-person deep phenotyping, as
previously described (Klaiman et al., 2022; Murphy et al., 2018;
Sanchez Russo et al., 2021). Informed consent was provided by
all participants over 18 years of age; for participants under 18
years of age, a parent or guardian provided informed consent
and the study participant provided informed assent. In total, 32
individuals with 3q29del (62.5% male) were included in the present
study. Study participants ranged in age from 4.85 to 39.12 years
(mean = 14.5 ± 8.3 years). See Table 1 for a description of the
study sample. This study was approved by Emory University’s
Institutional Review Board (IRB00064133) and Rutgers
University’s Institutional Review Board (PRO2021001360).

Measures

The measures used in this study were as previously described
(Klaiman et al., 2022; Murphy et al., 2018; Sanchez Russo et al.,

Table 1. Demographic information for study participants with 3q29del (n = 32)

Mean ± S.D. Range

Age (years) 14.50 ± 8.26 4.85–39.12

Composite IQ 73.03 ± 14.18 40–99

N %

Sex

Male 20 62.50

Female 12 37.50

Race

White 29 90.63

More than one race 3 9.37

Ethnicity

Hispanic/Latino 1 3.13

Not Hispanic/Latino 31 96.87
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2021). Briefly, EF was assessed using the Behavior Rating
Inventory of Executive Function, Second Edition (BRIEF-2), for
participants 18 years of age and younger (n = 26) or the
Behavior Rating Inventory of Executive Function for Adults
(BRIEF-A) for participants over 18 years of age (n = 6) (Gioia,
Isquith, Guy, & Kenworthy, 2015; Roth & Gioia, 2005). General
cognitive ability was evaluated using the Differential Ability
Scales, Second Edition (Elliott, Murray, & Pearson, 1990), for
individuals under 18 years of age (n = 24) or the Wechsler
Abbreviated Scale of Intelligence, Second Edition (Wechsler,
1999), for individuals 18 years of age and older (n = 8).
Adaptive behavior was assessed using the Vineland Adaptive
Behavior Scales, Third Edition, Comprehensive Parent/Caregiver
Form (Vineland-3) (Sparrow, Cicchetti, & Saulnier, 2016).
Psychosis symptoms were assessed using the Structured
Interview for Psychosis-Risk Syndromes (SIPS) by trained person-
nel for individuals 8 years of age and older (n = 23) (Miller et al.,
2003). Individual SIPS items are grouped within major symptom
domains (positive, negative, and disorganization), and each item
is rated on a scale from 0 (Absent) to 6 (Severe and Psychotic for
positive symptoms, Extreme for others), with a rating of 3
(Moderate) indicating clinical significance. Item ratings were
summed to produce a total score for each domain. Individuals
exhibiting clinically significant attenuated positive symptoms
(i.e. at least one positive symptom rated ⩾3) were considered to
meet criteria for psychosis prodrome. Graphomotor abilities
were assessed using the Beery-Buktenica Developmental Test of
Visual-Motor Integration (VMI-6) (Beery & Beery, 2010).
Clinically significant graphomotor weakness was defined as a
standard score >2 S.D. below the expected mean. Diagnoses of
neurodevelopmental and psychiatric phenotypes, including SZ
and other psychotic disorders, were reached using gold-standard
evaluations and clinician best estimate diagnosis (American
Psychiatric Association & American Psychiatric Association,
2013). Our prior investigations of 3q29del have revealed only
minor morbidity associated with somatic conditions; the majority
of disability in this population is due to neurodevelopmental and
psychiatric illness (Sanchez Russo et al., 2021). We have previ-
ously defined a set of neurodevelopmental and psychiatric condi-
tions with increased prevalence in 3q29del (online Supplementary
Table S1). Multimorbidity was therefore defined as the total num-
ber of these neurodevelopmental and psychiatric conditions, with
a current diagnosis as established by our expert clinicians at the
time of the study visit.

Neuroimaging

High-resolution structural magnetic resonance imaging (MRI)
data were collected and processed as previously described
(Sanchez Russo et al., 2021; Sefik et al., 2024).

Analysis

All analyses were performed in R version 4.0.4 (R Core Team,
2008). Due to the small sample size, most analyses were consid-
ered exploratory and unadjusted p values were reported.
Statistical analysis was performed using simple linear models
and one-sided, one-sample Student’s t-tests implemented using
the stats R package (R Core Team, 2008). p Values for simple lin-
ear models were calculated using robust standard errors via the
sandwich and lmtest R packages (Hothorn et al., 2015; Zeileis,
Lumley, Berger, Graham, & Zeileis, 2019). All models were

adjusted for age and sex. For neuroimaging data, multiple linear
regression models were constructed adjusting for age and sex;
for models where there was a significant relationship with the
absolute brain region volume, models were re-run adjusting for
age, sex, and estimated total intracranial volume (eICV) to test
for regional specificity beyond the influence of global variability
in head size. Receiver operating characteristic (ROC) curves
were constructed using the ROCit R package (Khan &
Brandenburger, 2020). Data visualization was performed using
the plotly R package (Sievert et al., 2017).

Results

Global EF deficits in 3q29del

Higher scores on the BRIEF indicate worse EF; a T score of 70 or
higher indicates a clinically significant deficit. To account for
developmentally appropriate changes in EF abilities over the life-
span (Anderson, 2002), BRIEF T scores are age-normed. On aver-
age, study participants with 3q29del scored nominally higher than
the population mean T score of 50 on the Global Executive
Composite (GEC) (mean = 67.8 ± 10.7, p < 0.001) and across all
subscales (all p < 0.001, Fig. 1a, online Supplementary Table S3).
There were no differences between males and females with
3q29del across all domains of the BRIEF (online Supplementary
Fig. S1). In total, 15 study participants with 3q29del (46.9%)
scored above the clinical threshold of 70 on the GEC, indicating
clinically significant EF deficits. Of the nine subscales, study par-
ticipants with 3q29del showed the most impairment on the Shift
subscale (mean = 69.2 ± 12.5), and the least impairment on the
Organization of Materials subscale (mean = 60.1 ± 11.6, Fig. 1a,
online Supplementary Table S3). Study participants with
3q29del demonstrated a range of impairments across BRIEF sub-
scales; six participants (18.8%) did not score above the clinical
threshold on any subscales, while two participants (6.3%) scored
above the clinical threshold on all nine subscales (Fig. 1b). A
majority of study participants with 3q29del (n = 22, 68.8%) scored
above the clinical threshold on two or more subscales and 81.3%
of study participants with 3q29del (n = 26) scored above the clin-
ical threshold on at least one subscale (Fig. 1b), further emphasiz-
ing the substantial burden of executive dysfunction in this
population. Together, these data demonstrate significant adverse
impacts to EF abilities in individuals with 3q29del.

EF is orthogonal to cognitive ability in 3q29del

The 3q29 deletion is commonly associated with mild-to-moderate
ID (Ballif et al., 2008; Cox & Butler, 2015; Glassford et al., 2016;
Willatt et al., 2005); in the present study, the mean composite IQ
in study participants with 3q29del was 73.03 ± 14.18, as previously
reported (Klaiman et al., 2022; Sanchez Russo et al., 2021).
However, there was substantial variability in IQ across study parti-
cipants, ranging from moderate ID to normal cognitive ability
(range = 40–99) (Klaiman et al., 2022; Sanchez Russo et al.,
2021). We sought to determine whether variation in EF is corre-
lated with variability in cognitive ability in our study participants.
There was no relationship between BRIEF GEC T scores and com-
posite (r2 =−0.01, p = 0.4), non-verbal (r2 = 0.04, p = 0.15), or ver-
bal IQ (r2 =−0.03, p = 0.9; Fig. 2a–c). Together, these data
demonstrate that EF is orthogonal to cognitive ability in individuals
with 3q29del, and that poor performance on the BRIEF is not an
artifact of diminished cognitive ability in our study population.
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EF is correlated with psychosis spectrum symptoms

The 3q29 deletion is the largest known genetic risk factor for SZ
(Mulle, 2015; Mulle et al., 2010; Singh et al., 2022); EF deficits
have a well-established association with SZ (Kraepelin, 1913;
Lysaker et al., 2008; Orellana & Slachevsky, 2013; Pickup, 2008;
Velligan & Bow-Thomas, 1999; Wobrock et al., 2009). We sought
to define the relationship between EF and psychosis spectrum
symptoms in our study population. We found nominally signifi-
cant positive correlations between the BRIEF GEC and positive
and disorganization symptoms endorsed on the SIPS
(Fig. 2d–f), indicating that individuals with 3q29del and poorer
EF experience more severe psychosis spectrum symptoms on
average. The strongest correlation was between the BRIEF GEC
and the SIPS disorganization symptom dimension (r2 = 0.18,

p = 0.02; Fig. 2f). There was a weak relationship between
the BRIEF GEC and the SIPS positive symptom dimension
(r2 = 0.06, p = 0.03; Fig. 2d). There was no relationship between
the BRIEF GEC and the SIPS negative symptom dimension
(r2 =−0.008, p = 0.4; Fig. 2e). These data show that EF deficits
are nominally significantly associated with the severity of two
major dimensions of psychosis spectrum symptoms in individuals
with 3q29del.

Psychiatric and neurodevelopmental multimorbidity is
associated with EF deficits

Individuals with 3q29del are at increased liability for a wide range
of neurodevelopmental and psychiatric phenotypes, including

Figure 1. (a) Distribution of T scores on the BRIEF GEC and BRIEF subscales for study participants with 3q29del (n = 32). The black dashed line indicates the popu-
lation mean; the red dashed line indicates the clinical cutoff. Subscales are ordered left to right by decreasing mean severity. (b) Pie chart showing the proportion
of study participants with 3q29del (n = 32) scoring in the clinical range (T scores ⩾ 70) on one or more BRIEF scales, expanded to show the proportion of parti-
cipants scoring in the clinical range on 1 to 9 BRIEF scales. 3q29del, 3q29 deletion syndrome; BRIEF, Behavior Rating Inventory of Executive Function; GEC, global
executive composite.
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ASD, anxiety disorder, ADHD, and SZ (Ballif et al., 2008; Cox &
Butler, 2015; Glassford et al., 2016; Itsara et al., 2009; Kirov et al.,
2012; Klaiman et al., 2022; Marshall et al., 2017; Mulle, 2015;
Mulle et al., 2010; Pollak et al., 2019; Sanchez Russo et al.,
2021; Sanders et al., 2015; Szatkiewicz et al., 2014; Willatt et al.,
2005). In the general population, ADHD and SZ are both asso-
ciated with poorer EF (Biederman et al., 2004; Brown, 2009;
Kraepelin, 1913; Lysaker et al., 2008; Marije Boonstra et al.,
2005; Martel et al., 2007; Orellana & Slachevsky, 2013; Pickup,
2008; Velligan & Bow-Thomas, 1999; Wobrock et al., 2009). To
determine whether any individual neurodevelopmental or psychi-
atric diagnosis was associated with EF in our study population, we
compared the BRIEF GEC T scores for individuals with 3q29del
with and without ASD, SZ prodrome/psychosis, ADHD, anxiety
disorders, graphomotor weakness, ID, and enuresis (Fig. 3a).
We found that individuals with 3q29del and a diagnosis of
ADHD have nominally significantly worse EF relative to indivi-
duals with 3q29del without ADHD (ADHD mean = 72.8 ± 8.06,
no ADHD mean = 59.5 ± 9.4, p = 3.08 × 10−8; Fig. 3a); there
were no other relationships. These data demonstrate that the rela-
tionship between EF and ADHD phenotypes is present in indivi-
duals with 3q29del.

Prior work by our team has identified neurodevelopmental
and psychiatric multimorbidity as a hallmark feature of 3q29del
(Pollak et al., 2023a; Sanchez Russo et al., 2021); we found that
increasing degrees of multimorbidity, rather than individual neu-
rodevelopmental or psychiatric diagnoses, is significantly asso-
ciated with poorer adaptive function in this population (Pollak
et al., 2023a). We sought to determine whether there is a similar
relationship between EF and multimorbidity in our study popula-
tion. We found that BRIEF GEC T scores are correlated with
multimorbidity, where increasing multimorbidity is nominally

significantly associated with poorer EF ( p = 0.04; Fig. 3b).
Together, these data emphasize the central nature of neurodeve-
lopmental and psychiatric multimorbidity to the 3q29del pheno-
type, and show that multimorbidity, rather than individual
neurodevelopmental or psychiatric diagnoses, has a stronger rela-
tionship with EF in individuals with 3q29del.

BRIEF-2 is an accurate screener for ADHD in individuals with
3q29del

Screening tools are valuable instruments that can be used to pri-
oritize individuals for diagnostic evaluations or to identify sub-
populations for future studies. In the case of 3q29del, identifying
effective screening tools for specific neurodevelopmental or psy-
chiatric phenotypes will help to ensure that the highest-risk indi-
viduals will receive critical diagnostic evaluations as early as
possible, while simultaneously reducing the burden of multi-
disorder diagnostic batteries on caregivers and the healthcare sys-
tem. Our team has identified ADHD as one of the most common
psychiatric diagnoses in individuals with 3q29del, with 63% of
individuals with 3q29del qualifying for a diagnosis of ADHD in
a recent study (Sanchez Russo et al., 2021). ADHD is intimately
linked to EF (Biederman et al., 2004; Brown, 2009; Marije
Boonstra et al., 2005; Martel et al., 2007); here, we sought to deter-
mine whether the BRIEF-2 ADHD form is an accurate screening
tool for ADHD in children with 3q29del (n = 26). We found that
the BRIEF-2 ADHD form had a sensitivity rate of 86.7%, indicat-
ing that 13.3% of individuals with ADHD did not screen positive
on the ADHD form (n = 2), and a specificity rate of 60.0%, indi-
cating that 40.0% of individuals that screened positive did not
have an ADHD diagnosis (n = 4) (Fig. 3c). The BRIEF-2
ADHD form is a more sensitive screener for ADHD in

Figure 2. (a) Correlation between BRIEF GEC T scores and composite IQ for study participants with 3q29del (n = 32). (b) Correlation between BRIEF GEC T scores and
non-verbal IQ for study participants with 3q29del (n = 32). (c) Correlation between BRIEF GEC T scores and verbal IQ for study participants with 3q29del (n = 32). (d)
Correlation between BRIEF GEC T scores and SIPS Positive Symptom Ratings for study participants with 3q29del (n = 23). (e) Correlation between BRIEF GEC T
scores and SIPS Negative Symptom Ratings for study participants with 3q29del (n = 23). (f) Correlation between BRIEF GEC T scores and SIPS Disorganization
Symptom Ratings for study participants with 3q29del (n = 23). 3q29del, 3q29 deletion syndrome; BRIEF, Behavior Rating Inventory of Executive Function; GEC, glo-
bal executive composite; SIPS, Structured Interview for Psychosis-Risk Syndromes.
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individuals with 3q29del than the Achenbach Child Behavior
Checklist DSM-keyed Attention-deficit/hyperactivity problems
scale (Pollak, Mortillo, Murphy, & Mulle, 2024), which had a sen-
sitivity of 72.2% and a specificity of 81.8%. Together, these data
show that the BRIEF-2 ADHD form can be a useful screening
tool for ADHD in children with 3q29del.

EF ability is associated with cerebellar volumetric changes

While the prefrontal cortex has long been considered the locus of
EF, emerging evidence highlights the cerebellum’s contribution to
higher-order cognition (Bellebaum & Daum, 2007; Koziol et al.,
2012; Schmahmann, 2019; Schmahmann & Sherman, 1998).
Work by our team has identified significant cerebellar abnormal-
ities associated with 3q29del; for example, over 60% of 3q29del
individuals show cerebellar hypoplasia (Sanchez Russo et al.,
2021; Sefik et al., 2024). We sought to determine whether cerebel-
lar anomalies are associated with EF abilities in individuals with
3q29del. There was no relationship between BRIEF GEC T scores
and total cerebellar volume (r2 =−0.05, p = 0.82; Fig. 4b). There

was a nominally significant relationship between BRIEF GEC
T scores and cerebellar white matter volume, where worse EF
is associated with increased cerebellar white matter volume
(r2 = 0.35, p = 8.11 × 10−4; Fig. 4c); this relationship persisted
after adjusting for eICV (r2 = 0.35, p = 7.72 × 10−4). There was a
nominally significant relationship between BRIEF GEC T scores
and cerebellar cortical volume, where worse EF is associated
with decreased cerebellar cortical volume (r2 = 0.05, p = 0.04;
Fig. 4d); however, this relationship did not persist after adjusting
for eICV (r2 = 0.02, p = 0.1). In a prior study our team identified
an increased prevalence of posterior fossa arachnoid cysts and
mega cisterna magna (PFAC/MCM) in individuals with 3q29del
(Sanchez Russo et al., 2021; Sefik et al., 2024); however, BRIEF
GEC T scores were not significantly different between individuals
with 3q29del with and without PFAC/MCM (PFAC/MCM
mean = 66.23 ± 9.19, no PFAC/MCM mean = 67.09 ± 11.77,
p = 0.65; online Supplementary Fig. S2A).

To further explore the putative relationship between EF and
cerebellar cortical volume in study subjects with 3q29del, we ana-
lyzed the relationship between BRIEF GEC T scores and cerebellar

Figure 3. (a) Distribution of BRIEF GEC T scores for study participants with 3q29del (n = 32) with and without specific neurodevelopmental or psychiatric diagnoses.
(b) Distribution of BRIEF GEC T scores for study participants with 3q29del (n = 32) with an increasing number of multimorbid neurodevelopmental and psychiatric
diagnoses. (c) Receiver operating characteristic curve showing the ability of the BRIEF-2 ADHD form to correctly classify study participants with 3q29del (n = 26) with
and without a diagnosis of ADHD. 3q29del, 3q29 deletion syndrome; BRIEF, Behavior Rating Inventory of Executive Function; GEC, global executive composite;
ADHD, attention-deficit/hyperactivity disorder.
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cortex subregional volumes (online Supplementary Fig. S2B–R).
There were no significant relationships between BRIEF GEC T
scores and any subregions of the anterior lobe of the cerebellar
cortex (online Supplementary Fig. S2C and D). Within the ver-
mis, posterior lobe, and flocculonodular lobe of the cerebellar cor-
tex, specific subregions were nominally significantly associated
with BRIEF GEC T scores. In general, increased volume of the
subregion was associated with worse EF. The following regions
showed nominally significant relationships with BRIEF GEC T
scores that persisted after adjusting for eICV: left cerebellar hemi-
sphere lobule VI volume (unadjusted r2 = 0.072, p = 0.037;
adjusted r2 = 0.13, p = 0.04; online Supplementary Fig. S2F);
right cerebellar hemisphere lobule VIII volume (unadjusted
r2 = 0.13, p = 0.04; adjusted r2 = 0.15, p = 0.04; online
Supplementary Fig. S2N); and left cerebellar hemisphere lobule
IX volume (unadjusted r2 = 0.12, p = 0.03; adjusted r2 = 0.15,
p = 0.03; online Supplementary Fig. S2O). There were two regions
that had a nominally significant relationship with BRIEF GEC T
scores that did not persist after adjusting for eICV: cerebellar
vermis VI–VII volume (unadjusted r2 = 0.12, p = 0.05; adjusted
r2 = 0.15, p = 0.06; online Supplementary Fig. S2E); and right
cerebellar hemisphere lobule X volume (unadjusted r2 = 0.17,

p = 0.05; adjusted r2 = 0.19, p = 0.06; online Supplementary
Fig. S2R). Together, these data demonstrate a relationship
between EF and cerebellar white matter volume in individuals
with 3q29del and reveal subregion-specific relationships between
EF and cerebellar cortical volume localized mostly to the
posterior lobe of the cerebellar cortex, consistent with the
presence of a functional topography within the cerebellum
(Stoodley & Schmahmann, 2010; Stoodley, Desmond, Guell, &
Schmahmann, 2020).

Discussion

The present study is the first detailed description of EF abilities in
individuals with 3q29del. We identified global deficits in EF, with
elevated mean scores on the BRIEF GEC as well as across all nine
BRIEF subscales. The Shift subscale, a measure of cognitive flexi-
bility, showed the highest mean impairment in 3q29del.
Individuals with 3q29del and a diagnosis of ADHD had substan-
tially poorer EF relative to individuals with 3q29del without
ADHD; poorer EF was also associated with more severe SZ spec-
trum symptoms as measured by the SIPS. Additionally, the
BRIEF-2 ADHD form accurately discriminated between

Figure 4. (a) Diagram illustrating the cerebellum with a representative coronal image from a T1-weighted MRI showing cerebellar white matter and cerebellar cor-
tex. (b) Correlation between BRIEF GEC T scores and total cerebellar volume for study participants with 3q29del (n = 23). (c) Correlation between BRIEF GEC T scores
and cerebellar white matter volume for study participants with 3q29del (n = 23). (d) Correlation between BRIEF GEC T scores and cerebellar cortical (grey matter)
volume for study participants with 3q29del (n = 23). 3q29del, 3q29 deletion syndrome; BRIEF, Behavior Rating Inventory of Executive Function; GEC, global executive
composite.
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individuals with 3q29del with and without a diagnosis of ADHD,
highlighting its potential role as a time-efficient screening tool in
this population. Neurodevelopmental and psychiatric multimor-
bidity was associated with EF, with an increasing number of diag-
noses corresponding to poorer EF. Furthermore, BRIEF GEC
scores showed no correlation with cognitive ability, indicating
that mechanisms underlying cognitive ability and everyday EF
may be orthogonal in 3q29del, while both factors contribute to
adaptive behavior as reported previously (Pollak et al., 2023a).
Finally, EF was correlated with volumetric measures of the cere-
bellum, potentially identifying neuroanatomical changes contrib-
uting to EF deficits in this population.

While this is the first description of EF in 3q29del, deficits in
EF in this population are not without precedent. Genomic disor-
ders with phenotypic similarities to 3q29del, including 22q11.2
deletion syndrome (Albert et al., 2018; Everaert et al., 2023; Gur
et al., 2023; O’Hora et al., 2023), have documented evidence of
significant EF deficits. There is a large body of literature sur-
rounding EF abilities in 22q11.2 deletion syndrome specifically;
EF deficits in this population have been identified across the life-
span, from preschool-aged children to adults (Albert et al., 2018;
Everaert et al., 2023; Gur et al., 2023; O’Hora et al., 2023).
Worsening EF is associated with psychosis spectrum symptoms
in children with 22q11.2 deletion syndrome (Gur et al., 2023),
and measures of childhood EF can predict young adult outcomes
in this population, including symptoms of psychosis (Albert et al.,
2018). These data are similar to our findings in the present study
of individuals with 3q29del and suggest that EF may be a core fea-
ture central to understanding the wide neurodevelopmental and
psychiatric phenotypic spectrum associated with the 3q29 dele-
tion, including the substantial risk for conversion to psychosis.

In addition to the links between EF and genomic disorders
phenotypically similar to 3q29del, EF deficits have also been
long associated with idiopathic SZ and ADHD. Indeed, concepts
related to EF have been associated with the SZ phenotype since
the early 20th century (Kraepelin, 1913); EF deficits are the
most common cognitive phenotype in individuals with SZ
(Orellana & Slachevsky, 2013; Velligan & Bow-Thomas, 1999;
Wobrock et al., 2009). EF deficits are also a core feature of
ADHD (Brown, 2009; Silverstein et al., 2020) and are present
across the lifespan (Biederman et al., 2004; Marije Boonstra
et al., 2005; Martel et al., 2007). Previous research indicates that
behavioral scales like the BRIEF can more accurately predict
ADHD status and assess different components of EF than
performance-based measures (Mahone & Hoffman, 2007; Tan,
Delgaty, Steward, & Bunner, 2018; Toplak, Bucciarelli, Jain, &
Tannock, 2008). It is important to recognize that both the
BRIEF and the diagnostic assessment of ADHD rely on caregiver
reports of everyday behaviors, which may lead to overlapping eva-
luations that could inflate their correlation. However, while there
is an intersection between the constructs assessed by the BRIEF
and ADHD diagnosis, EF weaknesses are neither necessary nor
sufficient to reach a DSM-5 diagnosis in the clinic. Additional
performance-based assessments or reports from other sources
will be used in the future to provide further evaluation of the rela-
tionship between EF difficulties and clinical diagnoses in larger
cohorts. We identified a relationship between EF and diagnoses
of ADHD, as well as SZ spectrum symptom severity, in our
study sample of individuals with 3q29del. EF was nominally sig-
nificantly associated with both Positive and Disorganized SZ spec-
trum symptom severity. Some items included in the Disorganized
domain of the SIPS are similar to features assessed by the BRIEF,

including Trouble with Focus and Attention, and this similarity
may be contributing to the nominal association between the
BRIEF and the SIPS Disorganized symptom domain. Other
Disorganized symptom domain items like Odd Behavior or
Appearance and Bizarre Thinking are less entangled with the
BRIEF. All items were rated based on their presence and severity
and without regard to other comorbidities. Notably, the distinct
features measured by the BRIEF and the SIPS Positive symptom
domain indicate that the nominal association between the
BRIEF and SZ spectrum symptom severity in individuals with
3q29del is not merely due to confounding. The concordance
between our findings and results from studies of idiopathic
cases of SZ and ADHD suggest that understanding EF deficits
in the context of the 3q29 deletion may provide generalizable
insights to the study of SZ and ADHD at large.

Cognitive ability, specifically composite IQ, has canonically
been used as a proxy for an individual’s level of everyday func-
tioning. The results of the present study, notably the astonishingly
high rate of clinically significant EF deficits alongside the lack of a
relationship between cognitive ability and EF, suggest that IQ
alone may not be a sufficient measure to understand real-world
function for individuals with 3q29del. Traditional cognitive test-
ing may overlook impairments in crucial aspects of higher-order
cognitive functioning that are relevant to everyday behaviors in
this population. This finding is aligned with prior reports that
have shown that certain EFs, including cognitive flexibility, are
either uncorrelated with or are relatively weakly related to IQ
(Ardila, Pineda, & Rosselli, 2000; Friedman et al., 2006), suggest-
ing that traditional intelligence tests are insufficient in gauging the
full spectrum of fundamental executive control abilities essential
for various behaviors. This is of particular concern for individuals
with 3q29del who have IQ scores well within the normal range
alongside compromised EF; IQ scores in the normal range may
create a perception of academic ability that is not accurate,
given the co-occurring EF deficits. Together, these data suggest
that individuals with 3q29del should be clinically evaluated
using measures of both cognitive ability and EF as a standard of
care. Furthermore, plans for treatment, management, and educa-
tional and occupational support should explicitly address and
support EF deficits.

We identified a nominally significant relationship between
cerebellar volumetric measures and EF in the present study.
There is emerging evidence linking the cerebellum to a range of
cognitive processes, including EF (Bellebaum & Daum, 2007;
Koziol et al., 2012; Schmahmann, 2019; Schmahmann &
Sherman, 1998). Changes in cerebellar structure and function
have been identified in children with ADHD (Bechtel et al.,
2009; Tomasi & Volkow, 2012), suggesting that cerebellar anom-
alies may contribute to the pathogenesis of ADHD. The cerebel-
lum is also thought to have a role in SZ, due to its role in cognitive
processes and the increased incidence of cerebellar anomalies in
individuals with SZ (Andreasen & Pierson, 2008; Picard,
Amado, Mouchet-Mages, Olié, & Krebs, 2008; Yeganeh-Doost,
Gruber, Falkai, & Schmitt, 2011). Consistent with the findings
of the present study, increased cerebellar white matter volume
has been reported in idiopathic SZ, possibly indicating abnormal
cerebellar connectivity (Lee et al., 2007). Our findings suggest that
this is another point of convergence between 3q29del and idio-
pathic SZ; further exploration of cerebellar connectivity and EF
in 3q29del may shed light on the neuroanatomical underpinnings
of these complex phenotypes. In an exploratory analysis, we also
identified nominally significant relationships between EF and
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cerebellar cortical subregional volumes, where increased sub-
regional volume was associated with poorer EF. Future studies
are required to replicate these exciting preliminary findings and
may yield additional insight into altered cerebellar connectivity
in 3q29del.

The genes affected by the 3q29 deletion may provide some
insight into the mechanisms contributing to EF deficits in this
population. The multi-domain scaffolding protein DLG1 and
the serine/threonine kinase PAK2, encoded by two genes in the
3q29 interval, are important in synapse maintenance, cytoskeletal
dynamics, long-term potentiation, and synaptic transmission
(Howard, Elias, Elias, Swat, & Nicoll, 2010; Kreis & Barnier,
2009; Nakagawa et al., 2004; Wang et al., 2018). Another 3q29
interval gene, UBXN7, participates in the ubiquitin–proteasome
system, which is increasingly recognized as a crucial regulator of
synaptic development and learning-dependent synaptic plasticity
(Patrick, Omar, Werner, Mitra, & Jarome, 2023). UBXN7 is the
only gene in the interval that is implicated as a ‘hub gene’, with
a large number of predicted connections to other genes expressed
in human cortex (Sefik, Purcell, Walker, Bassell, & Mulle, 2021).
Studies have demonstrated the importance of synaptic strength,
synaptic remodeling, and brain connectivity for the development
of EF abilities (Fiske & Holmboe, 2019), and members of the DLG
gene family are intimately associated with the development of
complex cognitive processes, including EF (Nithianantharajah
et al., 2013). Studies have linked variation in SZ risk genes to spe-
cific, predictable changes in EF based on gene expression and
functional connectivity measures (Eisenberg & Berman, 2010).
Together, these data suggest that synaptic dysfunction, potentially
mediated by DLG1, PAK2, and UBXN7, may contribute to the EF
deficits in individuals with 3q29del. Other interval genes may also
play a role in these deficits through various mechanisms yet to be
fully understood.

EF deficits can have a major impact on day-to-day function,
but there are techniques and interventions that can improve an
individual’s EF abilities. Targeted interventions to improve EF
can be applied across the lifespan; studies have shown efficacy
in improving EF in children as young as 3–4 years of age
(Dowsett & Livesey, 2000; Rueda, Rothbart, McCandliss,
Saccomanno, & Posner, 2005; Tang, Yang, Leve, & Harold,
2012) through adulthood (Franklin & Franklin, 2012; Goudreau
& Knight, 2018; Kramer, Larish, & Strayer, 1995; Parker &
Boutelle, 2009). Specific interventions have also been designed
for clinical populations, such as the Unstuck and On Target
Program for children on the autism spectrum (Kenworthy et al.,
2014) and training programs for children and adults with
ADHD (Klingberg et al., 2005; White & Shah, 2006). Together,
these studies emphasize the malleable nature of EF, and suggest
that individuals with 3q29del would benefit from targeted EF
interventions from an early age.

While the present study is the first detailed description of EF
in individuals with 3q29del, it is not without limitations. The
average age of our study subjects is young (mean = 14.50 ± 8.26
years); as such, a majority of individuals have not reached the
age at onset for SZ and psychotic disorders. Longitudinal follow
up of study participants is needed to determine if EF abilities pre-
dict later-onset phenotypes. Additionally, the small sample size of
the present study rendered our analyses exploratory, and we were
likely underpowered for some comparisons, particularly in the
neuroimaging analysis. Ongoing work by our team includes EF
measurements in a larger sample of individuals with 3q29del;
we will aim to replicate the results of the present study in that

cohort. Finally, we were unable to assess the relative effect of
race and ethnicity on EF in the current study, as our sample
was overwhelmingly white and non-Hispanic. Current and future
recruitment efforts will aim to include more underrepresented
minorities so that future studies ideally have a more representative
study sample.

The present study is the first to describe details of EF in indivi-
duals with 3q29del. We identified global deficits in EF, which were
consistent between males and females. We found that EF was not
correlated with IQ, but was associated with SZ spectrum symptom
severity, ADHD diagnosis, and neuropsychiatric and neurodevelop-
mental multimorbidity; the BRIEF-2 ADHD form accurately discri-
minated between individuals with 3q29del with and without
ADHD. This study, coupled with previous work by our team,
emphasizes the central nature of EF to the 3q29del phenotype
beyond general intellectual ability, and highlights the need for EF
evaluation and interventions for all individuals with 3q29del. The
malleable nature of EF means that early intervention in this popu-
lation will likely yield substantial gains in abilities and improve-
ments in long-term outcomes and ability to function independently.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291724002320.
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