BILINEAR FORMS

Jonathan Wild
(received September 1, 1960)

The purpose of the present note is to help popularize a section of Artin's "Geometric Algebra" (chapter I, 4; Interscience, New York (1957)) by elaborating on its contents. The author will have succeeded when the reader discovers that his results are either presented more simply in Artin's book or that they are trivial corollaries of its theorems, in particular of theorem 1.11.

1. Let V be a finite dimensional vector space over an arbitrary field F. The letters V_{0}, V_{1}, \ldots denote subspaces of V . The dimension of V_{0} is denoted by $\operatorname{dim} \mathrm{V}_{0^{\circ}}$. The codimension of V_{0} is defined through

$$
\operatorname{codim} V_{0}=\operatorname{dim} V-\operatorname{dim} V_{0}
$$

Obviously

$$
\begin{equation*}
\mathrm{V}_{0}=\mathrm{V}_{1} \leftrightarrow \mathrm{~V}_{0} \subset \mathrm{~V}_{1} \text { and } \operatorname{dim} \mathrm{V}_{0}=\operatorname{dim} \mathrm{V}_{1} . \tag{1}
\end{equation*}
$$

The set $V_{0} \cap V_{1}$ of all the vectors which lie in both V_{0} and V_{1} is a subspace. The sum $V_{0}+V_{1}$ of V_{0} and V_{1} is the smallest subspace of V which contains both V_{0} and V_{1} It consists of all the vectors

$$
v_{2}=v_{0}+v_{1} \text { where } v_{0} \in v_{0}, v_{1} \in v_{1}
$$

If $V_{0} \cap V_{1}=0$, this decomposition of v_{2} is unique and the sum $\mathrm{V}_{0}+\mathrm{V}_{1}$ is said to be direct. We then write $\mathrm{V}_{0}+\mathrm{V}_{1}$.

It is well known that

(2) $\operatorname{dim}\left(\mathrm{V}_{0}+\mathrm{V}_{1}\right)+\operatorname{dim}\left(\mathrm{V}_{0} \cap \mathrm{~V}_{1}\right)=\operatorname{dim} \mathrm{V}_{0}+\operatorname{dim} \mathrm{V}_{1}$.

Canad. Math. Bull. vol. 4, no. 3, September 1961

Hence

(3) $\operatorname{codim}\left(\mathrm{V}_{0}+\mathrm{V}_{1}\right)+\operatorname{codim}\left(\mathrm{V}_{0} \cap \mathrm{~V}_{1}\right)=\operatorname{codim} \mathrm{V}_{0}+\operatorname{codim} \mathrm{V}_{1}$.
2. Let W be a second finite dimensional vector space over F with the subspaces W_{0}, W_{1}. The bilinear form $\mathrm{f}: \quad \mathrm{v}, \mathrm{w} \rightarrow(\mathrm{v}, \mathrm{w})$ maps all the pairs of vectors $v \in V, W \in W$ onto elements of F. If v or w is kept fixed, this mapping is required to be linear in w respectively v. Thuse.g.

$$
\left(v, \lambda_{1} w_{1}+\lambda_{2} w_{2}\right)=\lambda_{1}\left(v, w_{1}\right)+\lambda_{2}\left(v, w_{2}\right)
$$

for all $v \in V, w_{1} \in W, w_{2} \in W, \lambda_{1} \in F, \lambda_{2} \in F$. The vector spaces V and W are said to be paired.

Every subspace V_{0} of V now determines a new subspace $\mathrm{V}_{0}^{*} \subset \mathrm{~W}$ through

$$
\mathrm{v}_{0}^{*}=\left\{\mathrm{w} \mid\left(\mathrm{v}_{0}, \mathrm{w}\right)=0 \text { for all } \mathrm{v}_{0} \in \mathrm{v}_{0}\right\}
$$

Similarly define ${ }^{*} W_{0} \subset V$ through

$$
{ }^{*} W_{0}=\left\{v \mid\left(v, w_{0}\right)=0 \text { for all } w_{0} \in W_{0}\right) .
$$

We call

$$
V^{*}=\{w \mid(v, w)=0 \text { for all } v \in V\}
$$

the right kernel and

$$
{ }^{*} W=\{v \mid(v, w)=0 \text { for all } w \in W\}
$$

the left kernel of f.

Obviously

$$
\left\{\begin{array}{c}
\mathrm{v}_{0} \subset \mathrm{v}_{1} \text { implies } \mathrm{v}_{1}^{*} \subset \mathrm{v}_{0}^{*} \tag{4}\\
\mathrm{w}_{0} \subset \mathrm{w}_{1} \text { implies }{ }^{*} \mathrm{w}_{1} \subset{ }^{*} \mathrm{w}_{0}
\end{array}\right.
$$

In particular

$$
\begin{equation*}
\mathrm{V}^{*} \subset \mathrm{~V}_{0}^{*} \text { and }{ }^{*} \mathrm{~W} \subset^{*} \mathrm{~W}_{0} \text { for all } \mathrm{V}_{0}, \mathrm{~W}_{0} \tag{5}
\end{equation*}
$$

$$
\text { If } v \in V \text {, then }\left(v, v^{*}\right)=0 \text { for all } v^{*} \in V^{*} \text {. Thus } v \in{ }^{*}\left(V^{*}\right) \text {. }
$$

Hence $V \subset^{*}\left(\mathrm{~V}^{*}\right)$. Trivially ${ }^{*}\left(\mathrm{~V}^{*}\right) \subset \mathrm{V}$. Hence

$$
\begin{equation*}
\mathrm{V}={ }^{*}\left(\mathrm{~V}^{*}\right), \quad \mathrm{w}=\left({ }^{*} \mathrm{~W}\right)^{*} \tag{6}
\end{equation*}
$$

3. We wish to verify

$$
\begin{equation*}
\left(v_{0}+v_{1}\right)^{*}=v_{0}^{*} \cap v_{1}^{*}, \quad{ }^{*}\left(w_{0}+w_{1}\right)={ }^{*} w_{0} n^{*} w_{1} \tag{7}
\end{equation*}
$$

It suffices to discuss the first formula.

$$
\begin{gathered}
\text { Since } \mathrm{V}_{0} \subset \mathrm{~V}_{0}+\mathrm{V}_{1} \text { and } \mathrm{V}_{1} \subset \mathrm{~V}_{0}+\mathrm{V}_{1}, \text { (4) implies } \\
\left(\mathrm{V}_{0}+\mathrm{V}_{1}\right)^{*} \subset \mathrm{~V}_{0}^{*} \text { and }\left(\mathrm{V}_{0}+\mathrm{V}_{1}\right)^{*} \subset \mathrm{v}_{1}^{*}
\end{gathered}
$$

Thus

$$
\left(\mathrm{V}_{0}+\mathrm{V}_{1}\right)^{*} \subset \mathrm{~V}_{0}^{*} \cap \mathrm{~V}_{1}^{*} .
$$

Conversely let $w \in V_{0}^{*} \cap V_{1}^{*}, v \in V_{0}+V_{1}$. Then there are vectors $\mathrm{v}_{0} \in \mathrm{~V}_{0}, \mathrm{v}_{1} \in \mathrm{~V}_{1}$ such that $\mathrm{v}=\mathrm{v}_{0}+\mathrm{v}_{1}$. Since $\mathrm{w} \in \mathrm{V}_{0}^{*}$, we have $\left(\mathrm{v}_{0}, \mathrm{w}\right)=0$; also $\mathrm{w} \in \mathrm{V}_{1}^{*}$ implies $\left(\mathrm{v}_{1}, \mathrm{w}\right)=0$. Hence

$$
(v, w)=\left(v_{0}+v_{1}, w\right)=\left(v_{0}, w\right)+\left(v_{1}, w\right)=0+0=0 .
$$

This remains valid for every choice of v. Hence $w \in\left(V_{0}+V_{1}\right)^{*}$ or

$$
\mathrm{V}_{0}^{*} \cap \mathrm{~V}_{1}^{*} \subset\left(\mathrm{~V}_{0}+\mathrm{V}_{1}\right)^{*}
$$

This yields (7).

$$
\text { If we specialize in (7) } \mathrm{V}_{1}={ }^{*} \mathrm{~W} \text {, we obtain on account }
$$ of (6)

$$
\left.\left(\mathrm{V}_{0}+{ }^{*} \mathrm{~W}\right)^{*}=\mathrm{V}_{0}^{*} \mathrm{\gamma}^{*} \mathrm{~W}\right)^{*}=\mathrm{V}_{0}^{*} \cap \mathrm{~W}
$$

or

$$
\begin{equation*}
\left(\mathrm{V}_{0}+{ }^{*} \mathrm{~W}\right)^{*}=\mathrm{V}_{0}^{*} ; \text { symmetrically }{ }^{*}\left(\mathrm{~W}_{0}+\mathrm{V}^{*}\right)={ }^{*} \mathrm{~W}_{0} \tag{8}
\end{equation*}
$$

In the next three sections we determine $\operatorname{dim}{ }^{*} W_{0}$.
4. If Y_{0} is a proper subspace of the a rbitrary finite dimensional vector space Y, then there exists a linear form in Y which vanishes identically in Y_{0} but not in Y. This can
be restated as follows: Let Y_{0} be a subspace of Y. If every linear form which vanishes identically in Y_{0} also vanishes identically in Y, then $Y_{0}=Y$.

Apply this observation to the dual vector space X^{\prime} of the vector space X and to a subspace X_{0}^{\prime} of X^{\prime} (thus X^{\prime} consists of the linear forms in X). Since the space of all the linear forms in X^{\prime} may be identified with X, we obtain:

Let X_{0}^{\prime} be a subspace of the dual space X^{\prime} of the vector
space X. Suppose to each $x \in X, \quad \mathbf{x} \neq 0$ there exists an element of X_{0}^{\prime} which does not annihilate x. Then $X_{0}^{\prime}=X^{\prime}$.
5. We now return to our bilinear form f. Let

$$
W_{0} \cap v^{*}=0
$$

Map each vector $v \in V$ onto the linear form $\left(v, w_{0}\right)$ in W_{0}. Thus V is mapped homomorphically into the vector space W_{0}^{\prime} of all the linear forms in W_{0}. By our assumption, there exists to each $w_{0} a v$ such that $\left(v, w_{0}\right) \neq 0$. Hence by 4. the image of our homomorphism is the whole of W_{0}^{\prime}.

The image of the vector v, i.e. the linear form (v, w_{0}) vanishes identically in W_{0} if and only if $v \in{ }^{*} W_{0}$. Thus ${ }^{*} W_{0}$ is the kernel of this homomorphism and $\mathrm{V} /{ }^{*} \mathrm{~W}_{0}$ is isomorphic to W_{0}^{\prime}. In particular

$$
\operatorname{codim}{ }^{*} \mathrm{~W}_{0}=\operatorname{dim} \mathrm{V} /{ }^{*} \mathrm{~W}_{0}=\operatorname{dim} \mathrm{W}_{0}^{\prime} .
$$

Since a vector space and its dual have the same dimension, we therefore have

$$
\begin{equation*}
\operatorname{codim}{ }^{*} W_{0}=\operatorname{dim} W_{0} \text { if } W_{0} \cap V^{*}=0 \tag{9}
\end{equation*}
$$

6. If $\mathrm{V}^{*} \subset \mathrm{~W}_{0}$, then there is a W_{1} such that $\mathrm{W}_{0}=$ $W_{1} \ddagger \mathrm{~V}^{*}$; cf. 1. By (8)

$$
{ }^{*} W_{0}={ }^{*}\left(w_{1}+\mathrm{V}^{*}\right)={ }^{*} \mathrm{w}_{1}
$$

Hence by (9)

$$
\operatorname{codim}^{*} W_{0}=\operatorname{codim}^{*} W_{1}=\operatorname{dim} W_{1}
$$

or
(10) $\quad \operatorname{codim}{ }^{*} W_{0}=\operatorname{dim} W_{0}-\operatorname{dim} V^{*}$ if $V^{*} \subset W_{0}$. Symmetrically
(10') $\quad \operatorname{codim} V_{0}^{*}=\operatorname{dim} V_{0}-\operatorname{dim}^{*} W$ if ${ }^{*} W \subset V_{0}$.
Finally let W_{0} be any subspace of W. Consider the restriction of the form f to the pair of subspaces V, W_{0}. If $w_{0} \in W_{0}$ is given, then $\left(v, w_{0}\right)=0$ for all $v \in V$ if and only if $w_{0} \in V^{*} \cap W_{0}$. Hence (10) implies

$$
\begin{equation*}
\operatorname{codim}{ }^{*} W_{0}=\operatorname{dim} W_{0}-\operatorname{dim}\left(V^{*} \cap W_{0}\right) \tag{11}
\end{equation*}
$$

This formula contains (9) and (10).
The case $W_{0}=W$ of (11) yields
(12) $\quad \operatorname{codim}^{*} \mathrm{~W}=\operatorname{dim} \mathrm{W}-\operatorname{dim} \mathrm{V}^{*}=\operatorname{codim} \mathrm{V}^{*}$.

This number is called the rank of f.
7. If $\mathrm{w}_{0} \in \mathrm{~W}_{0}$, then $\left({ }^{*} \mathrm{w}_{0}, \mathrm{w}_{0}\right)=0$ for all ${ }^{*} \mathrm{w}_{0} \in{ }^{*} \mathrm{~W}_{0}$.

Hence $w_{0} \in\left({ }^{*} W_{0}\right)^{*}$ and therefore $W_{0} \subset\left({ }^{*} W_{0}\right)^{*}$. By (5), $\mathrm{V}^{*} \subset\left({ }^{*} \mathrm{~W}_{0}\right)^{*}$. This yields

$$
\mathrm{w}_{0}+\mathrm{v}^{*} \subset\left({ }^{*} \mathrm{w}_{0}\right)^{*}
$$

On the other hand, ${ }^{*} W \subset^{*} W_{0}$. Hence by (10'), (12), and (11)

$$
\begin{aligned}
\operatorname{codim}\left({ }^{*} W_{0}\right)^{*} & =\operatorname{dim}^{*} W_{0}-\operatorname{dim}^{*} W \\
& =\operatorname{codim}{ }^{*} W-\operatorname{codim}{ }^{*} W_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{codim} \mathrm{V}^{*}-\operatorname{dim} \mathrm{W}_{0}+\operatorname{dim}\left(\mathrm{V}^{*} \cap \mathrm{~W}_{0}\right) \\
& =\operatorname{codim} \mathrm{V}^{*}+\operatorname{codim} \mathrm{W}_{0}-\operatorname{codim}\left(\mathrm{V}^{*} \cap \mathrm{~W}_{0}\right) \\
& =\operatorname{codim}\left(\mathrm{V}^{*}+\mathrm{W}_{0}\right) .
\end{aligned}
$$

The principle (1) therefore implies
(13) $\left({ }^{*} \mathrm{~W}_{0}\right)^{*}=\mathrm{W}_{0}+\mathrm{V}^{*}$, symmetrically ${ }^{*}\left(\mathrm{~V}_{0}^{*}\right)=\mathrm{V}_{0}+{ }^{*} \mathrm{~W}$.
8. The equation

$$
\begin{equation*}
{ }^{*}\left(W_{0} \cap W_{1}\right)={ }^{*} W_{0}+{ }^{*} W_{1} \tag{14}
\end{equation*}
$$

need not be true.

Since $W_{0} \cap W_{1} \subset W_{0}$ and $W_{0} \cap W_{1} \subset W_{1}$, we always have

$$
{ }^{*} W_{0} \subset{ }^{*}\left(W_{0} \cap W_{1}\right) \text { and }{ }^{*} W_{1} \subset{ }^{*}\left(W_{0} \cap W_{1}\right)
$$

and hence

$$
\begin{equation*}
{ }^{*} w_{0}+{ }^{*} w_{1} \subset{ }^{*}\left(w_{0} \cap w_{1}\right) \tag{15}
\end{equation*}
$$

Thus by (1), (14) is equivalent to

$$
\begin{equation*}
\operatorname{codim}\left({ }^{*} W_{0}+{ }^{*} W_{1}\right)=\operatorname{codim}^{*}\left(W_{0} \cap W_{1}\right) \tag{16}
\end{equation*}
$$

By (3), (7), and (11)
$\operatorname{codim}\left({ }^{*} W_{0}+{ }^{*} W_{1}\right)-\operatorname{codim}^{*}\left(W_{0} \cap W_{1}\right)$
$=\operatorname{codim}{ }^{*} W_{0}+\operatorname{codim}{ }^{*} W_{1}-\operatorname{codim}\left({ }^{*} W_{0} \cap^{*} W_{1}\right)-\operatorname{codim}^{*}\left(W_{0} \cap W_{1}\right)$
$=\operatorname{codim}{ }^{*} W_{0}+\operatorname{codim}{ }^{*} W_{1}-\operatorname{codim}^{*}\left(W_{0}+W_{1}\right)-\operatorname{codim}{ }^{*}\left(W_{0} \cap W_{1}\right)$
$=\left\{\operatorname{dim} W_{0}+\operatorname{dim} W_{1}-\operatorname{dim}\left(W_{0}+W_{1}\right)-\operatorname{dim}\left(W_{0} \cap W_{1}\right)\right\}$
$-\left\{\operatorname{dim}\left(\mathrm{V}^{*} \cap \mathrm{~W}_{0}\right)+\operatorname{dim}\left(\mathrm{V}^{*} \cap \mathrm{~W}_{1}\right)-\operatorname{dim}\left(\mathrm{V}^{*} \cap\left(\mathrm{~W}_{0}+\mathrm{W}_{1}\right)\right)\right.$
$\left.-\operatorname{dim}\left(\mathrm{V}^{*} \cap \mathrm{~W}_{0} \cap \mathrm{~W}_{1}\right)\right\}$
$=0-\left\{\operatorname{dim}\left(\mathrm{V}^{*} \cap \mathrm{~W}_{0}+\mathrm{V}^{*} \cap \mathrm{~W}_{1}\right)=\operatorname{dim}\left(\mathrm{V}^{*} \cap\left(\mathrm{~W}_{0}+\mathrm{W}_{1}\right)\right)\right\}$.
Thus (16) is equivalent to

$$
\begin{equation*}
\operatorname{dim}\left(V^{*} \cap W_{0}+V^{*} \cap W_{1}\right)=\operatorname{dim}\left(V^{*} \cap\left(W_{0}+W_{1}\right)\right) \tag{17}
\end{equation*}
$$

Obviously

$$
\mathrm{V}^{*} \cap \mathrm{~W}_{0}+\mathrm{V}^{*} \cap \mathrm{~W}_{1} \subset \mathrm{~V}^{*} \cap\left(\mathrm{~W}_{0}+\mathrm{W}_{1}\right) .
$$

Hence (17) is equivalent to

$$
\begin{equation*}
\mathrm{V}^{*} \cap \mathrm{~W}_{0}+\mathrm{V}^{*} \cap \mathrm{~W}_{1}=\mathrm{V}^{*} \cap\left(\mathrm{w}_{0}+\mathrm{w}_{1}\right) \tag{18}
\end{equation*}
$$

This yields the result that (14) and (18) are equivalent.
If $V^{*} \subset W_{1}$, both sides of (18) are equal to V^{*}. Hence
(14) then holds true.

The reader will verify that

$$
{ }^{*}\left(\mathrm{~V}_{0}^{*} \cap \mathrm{~W}_{0}\right)=\mathrm{V}_{0}+{ }^{*} \mathrm{~W}_{0}
$$

and prove that

$$
\begin{equation*}
\mathrm{V}_{0}+{ }^{*} \mathrm{w}_{0}=\mathrm{V} \leftrightarrow \mathrm{~V}_{0}^{*} \cap \mathrm{w}_{0} \subset \mathrm{~V}^{*} \tag{19}
\end{equation*}
$$

9. We have $\mathrm{V}^{*}={ }^{*} \mathrm{~W}=0$ if and only if

$$
\operatorname{codim}^{*} \mathrm{~W}=\operatorname{dim} \mathrm{V}, \quad \operatorname{codim} \mathrm{~V}^{*}=\operatorname{dim} \mathrm{W} .
$$

The form f is then said to be regular. Formula (12) then implies

$$
\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{W}
$$

We call f regular in V_{0}, W_{0} if the restriction of f to $\mathrm{V}_{0}, \mathrm{~W}_{0}$ is regular. Since the restriction has the kernels ${ }^{*} W_{0} \cap V_{0}$ and $V_{0}^{*} \cap W_{0}$, we have

THEOREM 9.1. f is regular in V_{0}, W_{0} if and only if

$$
\mathrm{V}_{0}^{*} \cap \mathrm{~W}_{0}={ }^{*} \mathrm{~W}_{0} \cap \mathrm{~V}_{0}=0 .
$$

This regularity implies

$$
\begin{equation*}
\operatorname{dim} V_{0}=\operatorname{dim} W_{0^{\circ}} \tag{20}
\end{equation*}
$$

We readily deduce by means of (19)

COROLLARY 9.2. f is regular in $\mathrm{V}_{0}, \mathrm{~W}_{0}$ if and only if

$$
\begin{equation*}
v_{0} \dot{*} W_{0}=v, \quad W_{0} \dot{+} v_{0}^{*}=w \tag{21}
\end{equation*}
$$

Formulas (20) and (21) imply

COROLLARY 9.3. If f is regular in V_{0}, W_{0}, then

$$
\begin{gather*}
\operatorname{dim} \mathrm{V}_{0}=\operatorname{dim} \mathrm{W}_{0}=\operatorname{codim}{ }^{*} \mathrm{~W}_{0}=\operatorname{codim} \mathrm{V}_{0}^{*} \tag{22}\\
\leq \operatorname{codim}{ }^{*} \mathrm{~W}=\operatorname{codim} \mathrm{V}^{*}=\operatorname{rank} \mathrm{f}
\end{gather*}
$$

10. We call f maximally regular in V_{0}, W_{0} if is regular in $\mathrm{V}_{0}, \mathrm{~W}_{0}$ and if equality holds in (22). From

$$
\operatorname{codim}{ }^{*} \mathrm{~W}_{0}=\operatorname{codim}{ }^{*} \mathrm{~W}, \quad{ }^{*} \mathrm{~W} \subset^{*} \mathrm{~W}_{0}
$$

we then obtain

$$
\begin{equation*}
{ }^{*} \mathrm{~W}_{0}={ }^{*} \mathrm{~W} ; \quad \text { symmetrically } \quad \mathrm{V}_{0}^{*}=\mathrm{V}^{*} . \tag{23}
\end{equation*}
$$

Hence by (21),

$$
\begin{equation*}
v_{0} \dot{+} w=v, \quad w_{0} \dot{+} v^{*}=w \tag{24}
\end{equation*}
$$

Conversely, (24) yields on account of (11) and (12) that

$$
\begin{aligned}
\operatorname{codim}^{*} \mathrm{~W}_{0} & =\operatorname{dim} \mathrm{W}_{0}-\operatorname{dim}\left(\mathrm{V}^{*} \cap \mathrm{~W}_{0}\right) \\
& =\operatorname{dim} \mathrm{W}_{0}=\operatorname{codim} \mathrm{V}^{*}=\operatorname{codim}{ }^{*} \mathrm{~W}
\end{aligned}
$$

This implies (23) and (21). This proves

THEOREM 10.1. f is maximally regular in $\mathrm{V}_{0}, \mathrm{~W}_{0}$ if and only if (24) holds true.

COROLLARY 10.2. f is maximally regular in V_{0}, W_{0} if and only if (21) and one of the equations (23) hold true.

By means of (24) we can readily construct pairs V_{0}, W_{0} in which f is maximally regular. We only have to choose V_{0}, W_{0} independently of one another such that

$$
v_{0} \frown^{*} w=0, \quad \operatorname{dim} v_{0}=\operatorname{codim}^{*} W
$$

and

$$
\mathrm{W}_{0} \cap \mathrm{~V}^{*}=0, \quad \operatorname{dim} \mathrm{~W}_{0}=\operatorname{codim} \mathrm{V}^{*}
$$

Obviously, V_{0} and W_{0} are determined uniquely (mod * W) respectively $\left(\bmod \mathrm{V}^{*}\right)$.
11. We now assume that V and W are both equal to the same vector space E. We then obtain theorems on general bilinear forms f in E. On account of (12), the rank of f can be defined through

$$
\operatorname{rank} \mathrm{f}=\operatorname{codim}{ }^{*} \mathrm{E}=\operatorname{codim} E^{*}
$$

If $\operatorname{rank} f=\operatorname{dim} E, f$ may be called regular in E. By corollary 9.2, the restriction of f to the subspace E_{0} of E is regular if and only if

$$
\begin{equation*}
E_{0} \dot{+} E_{0}=E_{0} \dot{+} E_{0}^{*}=E . \tag{25}
\end{equation*}
$$

Suppose e.g.

$$
\begin{equation*}
E_{0} \dot{+} E_{0}^{*}=E \tag{26}
\end{equation*}
$$

Then $E_{0} \cap E_{0}^{*}=0$ and (19) implies $E_{0}+{ }^{*} E_{0}=E$. By (9) we have codim ${ }^{*} E_{0}=\operatorname{dim} E_{0}$. This yields $E_{0}+{ }^{*} E_{0}=E$. Hence,

THEOREM 11.1. Formula (26) implies the regula rity of the restriction of f to E_{0}.

We call f again maximally regular in E_{0} if (25) holds true and if $\operatorname{dim} E_{0}=\operatorname{rank} f ; c f$. (22). By theorem 10.1, f is maximally regular in E_{0} if and only if

$$
\begin{equation*}
E_{0} \dot{+}^{*} E=E_{0} \dot{+} E^{*}=E \tag{27}
\end{equation*}
$$

This readily yields

THEOREM 11.2. f is maximally regular in E_{0} if and only if

$$
\begin{gathered}
E_{0} \cap^{*} E=E_{0} \cap E^{*}=0 \\
\operatorname{dim} E_{0}=\operatorname{rank} f .
\end{gathered}
$$

Finally we show
THEOREM 11.3. There are subspaces E_{0} of E in which f is maximally regular.

Since $\operatorname{dim}^{*} E=\operatorname{dim} E^{*}$, this theorem is an immediate corollary of the observation that two subspaces of the same dimension have a common complement. For the sake of completeness we include a proof.

Let e_{1}, \ldots, e_{k} be a basis of ${ }^{*} E \cap E^{*}$. By means of the vectors

$$
{ }^{*} e_{1}, \ldots,{ }^{*} e_{h} \quad\left[e_{1}^{*}, \ldots, e_{h}^{*}\right]
$$

we complete it to a basis of ${ }^{*} E$ [of $\left.E^{*}\right]$. Thus the vectors

$$
\begin{equation*}
e_{1}, \ldots, e_{k},{ }^{*} e_{1}, \ldots .{ }^{*} e_{h}, e_{1}^{*}, \ldots, e_{h}^{*} \tag{28}
\end{equation*}
$$

form a basis of ${ }^{*} E+E^{*}$. We complete it to a basis
(29) $\bar{e}_{1}, \ldots, e_{k},{ }^{*} e_{1}, \ldots,{ }^{*} e_{h}, e_{1}^{*}, \ldots, e_{h}^{*}, e_{1}^{\prime}, \ldots, e_{m}^{\prime}$
of E. We wish to show that the vectors

$$
\begin{equation*}
{ }^{*} e_{1}+e_{1}^{*}, \ldots,{ }^{*} e_{h}+e_{h}^{*}, e_{1}^{\prime}, \ldots, e_{m}^{\prime} \tag{30}
\end{equation*}
$$

span a subspace E_{0} satisfying (27).

Suppose

$$
e=\Sigma \lambda^{i}\left({ }^{*} e_{i}+e_{i}^{*}\right)+\Sigma \mu^{j} e_{j}^{\prime} \in E_{0} \sim E^{*} .
$$

Then

$$
\Sigma \mu^{j} e_{j}^{\prime}=e-\Sigma \lambda^{i}\left({ }^{*} e_{i}+e_{i}^{*}\right) \epsilon{ }^{*} E+E^{*}
$$

Hence this vector is a linear combination of the vectors (28). Since its representation as a linear combination of the vectors (29) is unique, the μ^{j} must vanish and we have

$$
e=\Sigma \lambda^{i}\left({ }^{*} e_{i}+e_{i}^{*}\right) .
$$

This yields

$$
\Sigma \lambda^{i_{*}} e_{i}=e-\Sigma \lambda^{i} e_{i}^{*} \in{ }^{*} E \cap E^{*}
$$

Therefore $\Sigma \lambda^{i * e_{i}}=0$ and hence

$$
\lambda^{i}=\ldots=\lambda^{h}=0 ; \quad e=0
$$

Thus $E_{0} \cap E^{*}=0$ and the vectors (30) are linearly independent. Symmetrically $E_{0} \cap^{*} E=0$. Finally
$\operatorname{dim} E_{0}+\operatorname{dim}^{*} E=(h+m)+(k+h)=k+2 h+m=\operatorname{dim} E$.
This proves (27).

In concluding the author wishes to thank Dr. Wonenburger for her kind help in the preparation of this paper.

Collin's Bay, Ont.

