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When a fluid enters a rotating circular pipe, an angular momentum or swirl boundary
layer appears at the wall and interacts with the axial momentum boundary layer. In
the centre of the pipe, the fluid is free of swirl and is accelerated due to boundary
layer growth. Below a critical flow number, defined as the ratio of average axial
velocity to circumferential velocity of the pipe, there is flow separation, known in
the turbomachinery context as part load recirculation. To describe this phenomenon
analytically, we extended boundary layer theory to a swirl boundary layer interacting
with the axial momentum boundary layer. The solution of the resulting generalized
von Kármán momentum equation takes into account the influence of the Reynolds
number and flow number. We show the impact of swirl on the axial boundary layer
and conduct experiments in which we vary Reynolds number, flow number and
surface roughness to validate the analytical results. The extended boundary layer
theory predicts a critical flow number which is analytically derived and validated.
Below this critical flow number, separation is expected.

Key words: boundary layer separation, boundary integral methods, pipe flow boundary layer

1. Introduction

Turbomachines often operate at part load due to the claim of flexibility and not at
the design point where the efficiency reaches its maximum. At part load for small flow
numbers ϕ := Ũ/R̃Ω̃ , with the average axial velocity Ũ and circumferential velocity
of the pipe R̃Ω̃ , losses causing flow phenomena such as cavitation, rotating stall, part
load recirculation and so on appear. These flow phenomena reduce the efficiency of
a turbomachine compared to the efficiency at the design point.

This paper investigates the evolution of the swirl, the interdependence of centrifugal
force and axial moment to predict part load recirculation, e.g. flow separation at the
critical flow number ϕc, by a generic model. The generic model is a rotating pipe with
radius R̃ as appears for example in a shrouded turbomachine or the secondary air flow
in gas turbines. In the following, all symbols marked with a tilde ‘∼’ are dimensional
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FIGURE 1. Inlet of a rotating pipe.

quantities, whereas all symbols without a tilde are dimensionless. Thus, this paper non-
dimensionalizes length with the pipe radius R̃, velocities with the pipe circumferential
velocity R̃Ω̃ , the typical velocity in rotating machinery, and stresses with the dynamic
pressure ρ̃R̃2Ω̃2. Hence, the Reynolds number is Re := 2R̃2Ω̃/ν̃ with the kinematic
viscosity ν̃. The axial Reynolds number is Reax := 2R̃Ũ/ν̃ = ϕRe.

The incoming axial flow is constant over the cross-section U(0) = U = ϕ and
swirl-free; see figure 1. Following the idea of Ludwig Prandtl, a thin region close to
a boundary, where viscous effects are significant, evolves, the boundary layer having
a thickness of δ. Outside the boundary layer, the flow is irrotational; thus, the axial
flow velocity U is independent of the radial coordinate for y> δ and only a function
of the axial coordinate U = U(z); see figure 1. The swirl near the rotating wall is
produced by viscosity in a similar manner to the axial momentum boundary layer.
Hence, close to the wall there is a region with a circumferential velocity component.
We call this region the swirl boundary layer, having a thickness of δS. Outside the
swirl boundary layer the flow is swirl-free; see figure 1. The centrifugal force takes
effect within the swirl boundary layer and interacts with the axial moment; thus δ
and δS have an influence on each other due to the radial pressure distribution. The
evolution of the boundary layers depends on flow number, Reynolds number and
relative surface roughness Rz = R̃z/R̃. This paper derives a generalization of the von
Kármán momentum equation taking into account the evolution and interdependence
of the axial and swirl boundary layer in the developing inlet. Employing this integral
method, this paper provides an axiomatic description of the developing boundary
layers that represents the influence of the Reynolds number and the flow number.
This approach is motivated by Schlichting, who extended the integral method of
boundary layer theory established by von Kármán (1921) and Pohlhausen (1921).
Schlichting (1953) generalized the von Kármán equation for laminar outer flow
around a rotating body.

This paper is organized as follows. First, it gives a literature review concerning
the influence of swirl on friction, velocity profiles and separation in the following
section. In § 3 the generalized von Kármán equation together with the angular
momentum balance is derived for an extended boundary layer theory. This approach
is valid for laminar and turbulent flow and indeed validated by the experimental
results also presented in the context of this paper. The radial pressure gradient is
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derived as a function of the swirl boundary layer thickness. For the integral method,
an ansatz function for the velocity profiles, i.e. axial and swirl velocity, and for
the wall shear stresses is needed. Appropriated profiles and wall shear stresses are
discussed in § 4 and the solution of the axial boundary layer and swirl boundary
layer thickness is given. Section 5 presents the experimental set-up together with the
experimental results, which validate the theory. Thereby, the influence of roughness
and flow separation is investigated. Applying Stratford’s criterion (Stratford 1959)
to the presented extended boundary layer theory, the critical flow number is derived
analytically for a turbulent flow in a rotating pipe. This result is validated by our
experiment as well. Hence, this paper gives a physical insight to the impact of the
centrifugal force on the axial momentum balance, which is discussed in the closing
of this article in § 6.

2. Literature review
The interaction of the centrifugal force and axial momentum is less investigated at

the inlet of a rotating pipe than in the fully developed region. At the inlet of a rotating
pipe, the boundary layers develop and an axial gradient of the velocity field occurs.
At the fully developed region, this gradient vanishes and the boundary layers reach the
centreline of the pipe. For a turbulent flow, the boundary layers reach the centreline
for z > 102 depending on flow number and Reynolds number (Nishibori, Kikuyama
& Murakami 1987). In the following, the influence of the swirl on friction, axial and
circumferential velocity profile and flow separation is analysed depending on the flow,
e.g. turbulent versus laminar, and region, e.g. fully developed region versus inlet of a
rotating pipe.

In contrast to Blasius’ investigations of friction losses in non-rotating smooth pipes
by a turbulent flow (Blasius 1913), the hydraulic losses decrease with decreasing flow
number in a rotating pipe (Levy 1927; White 1964). This is due to the turbulence
damping by the swirl, which stabilizes the flow. The damping has a stronger
influence close to the wall than in the core. Consequently, more low-frequency
than high-frequency vibrations are damped (Borisenko, Kostikov & Chumachenko
1973). At the inlet of the rotating pipe for ϕ > 1 the turbulence is stimulated due to
a sudden increase of the swirl for z< 20, but further downstream the damping due to
centrifugal force predominates (Nagib et al. 1973; Bissonnette & Mellor 1974). For a
laminar flow with small Reynolds number, the swirl increases the friction coefficient
and stimulates the turbulence. Thus, the transition point to a turbulence flow is further
upstream than in a non-rotating pipe (White 1964).

At the inlet of a rotating pipe, a complex transformation of the axial velocity profile
occurs due to the interaction of the increased centrifugal force and the stimulating
turbulence burst. The transformation depends on the inlet condition: when a fully
developed, turbulent flow enters the rotating pipe, the turbulent profile transforms
continuously into a laminar profile in the axial direction (Kikuyama et al. 1983b).
This effect is called ‘laminarization’ (Nishibori et al. 1987; Weigand & Beer 1994;
Imao, Itohi & Harada 1996). For higher flow number, the axial velocity profile is
retransformed to a turbulent profile, being well described by Prandtl’s 1/7 power
law (Nishibori et al. 1987), and for small flow number the ‘laminarized’ profile
reaches the fully developed region. Weigand & Beer (1992) model the transformation
analytically and meet the experimental results qualitatively whereby the coupling
effect between the swirl and axial flow is overestimated. Thus, the influence of the
swirl on the axial momentum has so far not been sufficiently investigated at the inlet
of a rotating pipe.
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The evolution of the swirl is given by the swirl boundary layer with the
circumferential velocity profile. At the fully developed region, the circumferential
velocity profile is parabolic and follows uϕ= r2 when a turbulent flow enters a rotating
pipe (Murakami & Kikuyama 1980; Kikuyama, Murakami & Nishibori 1983a; Reich
1988; Imao et al. 1996), and for a laminar flow it follows solid-body rotation uϕ = r
(Reich 1988). Both profiles are derived by Lie group analysis (Oberlack 1999). In
the transition region between laminar and turbulent flow, the circumferential velocity
profile is between the parabolic and linear profiles (Imao, Zhang & Yamada 1989).
At the inlet of a rotating pipe, the circumferential velocity profile is less investigated.
The experimental investigations with a thin laminar boundary layer at ϕ > 0.71
show a possible transformation of the circumferential velocity profile. Whether and
where the transformation occurs depend on flow number and Reynolds number. The
circumferential velocity profile transforms before an effect on the axial velocity can be
perceived. After the transformation, both boundary layers become thicker (Nishibori
et al. 1987). Kikuyama et al. (1983a) give a circumferential velocity profile scaled
with the momentum thickness δ2 for high flow numbers. However, considerable
deviations exist for z< 40. Also the profile presented by Weigand & Beer (1992) is
not sufficient because it is not independent of the axial coordinate with deviations for
z< 20. Thus, there is a need to describe the circumferential velocity profile and the
evolution of the swirl in more detail at the inlet of a rotating pipe.

For ϕ < ϕc, flow separates and a recirculation bubble appears at the wall. The
separation is caused by the sudden pressure increase due to swirl at the wall. At the
inlet of a rotating pipe, the flow separation is analytically and numerically investigated
by a laminar flow with Re<103 (Lavan, Nielsen & Fejer 1969; Crane & Burley 1976).
For small Reynolds numbers Re� 103, the critical flow number is a linear function of
the Reynolds number (Lavan et al. 1969; Crane & Burley 1976), but for Re> 102, the
linear relation loses its validity (Crane & Burley 1976). Experimental investigations
by Imao et al. (1989) show flow separation for ϕ < ϕc ≈ 0.33 at Re = 3000. Up to
now, flow separation for a turbulent flow at the inlet of a rotating pipe has not been
sufficiently analysed.

Najafi et al. (2005) investigate the complementary case in which a turbulent rotating
flow enters a pipe at rest. Analysing this work, we find three limitations: first, the
radial pressure gradient, which is the root cause of flow separation, is initially assumed
to be constant and is later neglected in the analytic section; second, the governing
equations are linearized, which is not justified in this paper; and finally, the results are
‘validated’ by Reynolds-averaged Navier–Stokes (RANS) simulations. The referenced
RANS simulations, solved with a commercial solver, still do not predict turbulent
rotating flows satisfyingly today. Thus, RANS simulations are not suitable to validate
these kinds of flows.

3. Generalized von Kármán’s momentum equation
In the following we give an order-of-magnitude analysis of all relevant physical

quantities. The order of magnitude of the time-averaged circumferential velocity uφ
is 1 and the order of magnitude of the time-averaged axial velocities u, U follows
ϕ. The order of magnitude of the wall coordinate y follows δ, δS. For thin boundary
layers δ, δS� 1, an order-of-magnitude analysis of the continuity equation within the
boundary layer yields uy ∼ ϕδ (∼ represents ‘is of the order’) for the time-averaged
radial velocity and u′y ∼ u′δ for the turbulent fluctuations since z ∼ 1. Here u′ and
u′y are the fluctuations of the axial and radial velocity components, respectively. With
the order-of-magnitude analysis given so far, the order of magnitude of ∂uφ/∂y is 1/δ
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and ∂u/∂y∼ϕ/δ. For ϕ∼ δ�1, ∂uφ/∂y dominates the time-averaged velocity gradient
because all other components, especially ∂u/∂y, are at least one order of magnitude
smaller than ∂uφ/∂y. In contrast, for ϕ∼ 1/δ� 1, ∂u/∂y is the dominating component
of the velocity gradient.

In a non-rotating pipe, the mixing length l equals κy near the smooth wall with
the von Kármán constant κ = 0.4 (Nikuradse 1932), whereas in a rotating pipe l6 κy
(Kikuyama et al. 1983a,b; Weigand & Beer 1994). For both cases, with κ = 0.4 and
y ∼ δ ∼ 10−1, the mixing length is of the order of magnitude 10−2 or equivalent to
the order of magnitude δ2. An order-of-magnitude analysis of the turbulence viscosity
introduced by Smagorinsky (1963) yields

νturb = (κy)2
(
2eijeij

)1/2 ≈ (κy)2︸ ︷︷ ︸
∼δ4

√(
∂uφ
∂y

)2

+
(
∂u
∂y

)2

︸ ︷︷ ︸
∼1/δ
√

1+ϕ2

∼ δ3
√

1+ ϕ2 6 δ3 (3.1)

for the present flow. Even though it is unusual to have an order of magnitude as a
sum, we prefer to use this presentation for the distinction of cases ϕ� 1 and ϕ ∼ 1
in the following. By doing so, the order-of-magnitude analysis keeps the flow number
general. For the generic set-up considered here, flow separation is expected for ϕ� 1
and is the focus of this paper. Hence, there is no need to consider the case ϕ � 1.
Applying Boussinesq’s eddy viscosity concept (Pope 2011), the Reynolds stress tensor
is

τij,turb = u′iu′j = 1
3 u′lu

′
lδij − νturbeij. (3.2)

Here, δij is the Kronecker tensor and eij is the mean strain-rate tensor. In the following,
(3.2) is exclusively applied to analyse the order of magnitude of the Reynolds stress
tensor.

The normal components of the Reynolds stress tensor are implicit due to the
turbulent kinetic energy u′iu′i/3. The order of magnitude of the normal components
of the Reynolds stress tensor (3.2) is determined by eliminating the kinetic energy.
Subtracting u′yu′y from u′u′ yields

u′u′ − u′yu′y = νturb︸︷︷︸
∼δ3

 ∂uy

∂y︸︷︷︸
∼ϕ

− ∂u
∂z︸︷︷︸
∼ϕ

∼ ϕδ3. (3.3)

With u′y ∼ u′δ it follows that u′yu′y ∼ u′u′δ2. Thus, u′u′ is of the order of magnitude of
ϕδ3. Hence, τzz,turb = u′u′ ∼ ϕδ3 and τyy,turb = u′yu′y ∼ ϕδ5. With this result, the order of
magnitude of τφφ,turb = u′φu′φ ∼ ϕδ3 is given.

The radial component of the momentum equation is

− uy
∂uy

∂y︸ ︷︷ ︸
∼ϕ2δ

− u
∂uy

∂z︸ ︷︷ ︸
∼ϕ2δ

− u2
φ

1− y︸ ︷︷ ︸
∼1

= ∂p
∂y︸︷︷︸
∼1

+ 2
Re︸︷︷︸
∼δ2

− ∂2uy

∂y2︸︷︷︸
∼ϕ/δ

+ 1
1− y

∂uy

∂y︸ ︷︷ ︸
∼ϕ

+ ∂2u
∂z2︸︷︷︸
∼ϕ

+ uy

(1− y)2︸ ︷︷ ︸
∼ϕδ


+ ∂u′yu′y

∂y︸ ︷︷ ︸
∼ϕδ4

+ ∂u′yu′

∂z︸ ︷︷ ︸
∼ϕδ2

− u′yu′y
1− y︸ ︷︷ ︸
∼ϕδ5

− u′φu′φ
1− y︸ ︷︷ ︸
∼ϕδ3

(3.4)
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with the static pressure p. An order-of-magnitude analysis of (3.4) yields that the
viscous and Reynolds stresses are negligible for ϕ � 1, ϕ ∼ 1 and ϕ > 1. The case
ϕ>1 is treated by Kikuyama et al. (1983a), Kitoh (1991) and Imao et al. (1996). The
order of magnitude of the centrifugal force, i.e. the third term on the left-hand side
of (3.4), is 1. The momentum fluxes, i.e. the first and second terms on the left-hand
side of (3.4), are of the order of magnitude ϕ2δ. The order of magnitude of the
viscous stress, i.e. the terms in the square brackets on the right-hand side of (3.4), are
smaller than or equal to ϕδ since Re∼1/δ2 for a laminar flow (Schlichting 1970; Pope
2011). For a turbulent flow, the Reynolds number is much larger. Hence, Re ∼ 1/δ2

serves as an upper bound on the order of magnitude of the viscous stress for the
order-of-magnitude analysis. Indeed, our measurements indicate that Re∼ 104 ≈ 1/δ4

for a turbulent flow. The Reynolds stress, i.e. the last four terms on the right-hand
side of (3.4), is of the order of magnitude smaller than or equal to ϕδ2. Thus, the
viscous and the Reynolds stresses are at least one order of magnitude smaller than
the centrifugal force and are negligible, especially for ϕ� 1. Consequently, the radial
pressure gradient has to balance the centrifugal force, and this gradient is of the order
of magnitude 1. The radial component of the momentum equation (3.4) yields

− u2
φ

1− y
= ∂p
∂y
+O(ϕδ) (3.5)

for y< δS. For y> δS, the circumferential velocity vanishes (uφ = 0) by definition and
the static pressure is a function only of the axial coordinate P(z), satisfying the axial
component of Euler’s equation

dP
dz
=−U

dU
dz
∼ ϕ2, (3.6)

where U is the axial flow velocity in the core region. Hence, the pressure distribution
within the swirl boundary layer y< δS is

p(y, z)=
∫ δS

y

u2
φ

1− y′
dy′ + P(z)∼ δ + ϕ2. (3.7)

For the sketched control volume in figure 1 (broken line), the axial momentum balance
reads

d
dz

∫ δ

0
(1− y)u2 dy︸ ︷︷ ︸
∼ϕ2δ

−U
d
dz

∫ δ

0
(1− y)u dy︸ ︷︷ ︸
∼ϕ2δ

= d
dz

∫ δ

0
(1− y)τzz(y, z) dy︸ ︷︷ ︸

∼δ(δ+ϕ2)+ϕδ3+ϕδ4

− (1− δ)τzz(δ, z)
dδ
dz︸ ︷︷ ︸

∼δ(δ+ϕ2)+ϕδ3+ϕδ4

− τyz,w︸︷︷︸
∼δ(δ+ϕ2)

, (3.8)

where u is the time-averaged axial velocity component inside the axial boundary
layer, τyz,w is the yz shear-stress component at the wall and τzz is the zz shear-stress
component. For a Newtonian fluid and a turbulent flow, τzz = −p + τzz,vis + τzz,turb.
Hereby, the order of magnitude of the viscous stress is

τzz,vis = 4
Re
∂u
∂z
∼ ϕδ2, (3.9)
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since employing the lower bound of the Reynolds number Re ∼ 1/δ2 for a laminar
flow yields an upper bound of the order of magnitude of the viscous stress. As
stated earlier, with Re∼ 1/δ4 for a turbulent flow, this gives the lower bound for the
viscous stress. As known from (3.3), τzz,turb= u′u′∼ ϕδ3. Thus, an order-of-magnitude
analysis of the axial momentum balance (3.8) yields the following: the viscous and
Reynolds stress of the zz component are negligible. The axial momentum fluxes, i.e.
the terms on the left-hand side of (3.8), are of the order of magnitude ϕ2δ. The
order of magnitude of the pressure is δ + ϕ2 as (3.6) and (3.7) indicate. Thus, the
order of magnitude of the centrifugal force, i.e. the terms on the right-hand side
of (3.8) including the pressure p, is δ(δ + ϕ2). The wall shear stress, i.e. the third
term on the right-hand side of (3.8), needs to balance the axial momentum fluxes
and the centrifugal force. Thus, its order of magnitude is δ(δ + ϕ2). All terms with
the viscous stress of the zz component are of the order of magnitude ϕδ3 and of the
Reynolds stress are of the order of magnitude ϕδ4. The terms of the viscous and
Reynolds stresses are at least one order of magnitude smaller than all other terms
and are negligible. Hence, the axial momentum balance reads

d
dz

∫ δ

0
(1− y)u2 dy−U

d
dz

∫ δ

0
(1− y)u dy

=− d
dz

∫ δ

0
(1− y)p(y, z) dy+ (1− δ)p(δ, z)

dδ
dz
− τyz,w +O(ϕδ3). (3.10)

For ϕ � 1, the axial momentum fluxes are an order of magnitude smaller than the
centrifugal force. Hence, the centrifugal force and the wall shear stress dominate the
axial momentum balance. The pressure p(y > δS, z) equals the pressure of the core
flow P(z).

Using the displacement thickness δ1, defined as usual (Piquet 1999) as∫ δ

0
(1− y)u dy := 1

2
U
[
(1− δ1)

2 − (1− δ)2] (3.11)

and the momentum thickness δ2 defined by∫ δ

0
(1− y)u2 dy := 1

2
U2
[
(1− δ2)

2 + (1− δ1)
2 − (1− δ)2 − 1

]
, (3.12)

the axial momentum balance yields

(1− δ2)
dδ2

dz
+
(

2δ2 − δ2
2 + δ1 − 1

2
δ2

1

)
1
U

dU
dz
+ G

U2
= τyz,w

U2
+O

(
δ3

ϕ

)
, (3.13)

with the coupling term

G :=− d
dz

∫ δ

0
(1− y)

∫ δS

y

u2
φ

1− y′
dy′ dy+ (1− δ)dδ

dz

∫ δS

δ

u2
φ

1− y
dy. (3.14)

The second term on the right-hand side of (3.14) vanishes for δ > δS because
uφ(y > δS) = 0. For swirl-free flow, the coupling term vanishes (G = 0) and (3.13)
reduces to the von Kármán momentum equation. Hence, (3.13) is a generalization of
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the von Kármán momentum equation and considers the radial pressure distribution
due to swirl. The angular momentum equation

d
dz

∫ δ

0
(1− y)2uφu dy︸ ︷︷ ︸
∼ϕδ

+ d
dz

∫ δS

δ

(1− y)2uφU dy︸ ︷︷ ︸
∼ϕδ

= d
dz

∫ δS

0
(1− y)2τzφ dy︸ ︷︷ ︸
∼δ3+δ4

− τyφ,w︸︷︷︸
∼ϕδ

(3.15)

is needed to determine G. Here, τyφ,w is the yφ shear-stress component at the wall
and τzφ is the zφ shear-stress component. Equation (3.15) is valid for any case, either
δ < δS or δ > δS. For δ > δS, the second term on the left-hand side of (3.15) vanishes
because uφ(y > δS) = 0. For δ < δS, the axial velocity profile changes within the
swirl boundary layer and this is considered by the second term on the left-hand side
of (3.15). Furthermore, there is no convective angular momentum transport either
into or out of the swirl boundary layer over δS, as there is with the convective axial
momentum transport over δ (second term of the left-hand side of (3.8)). This is
justified by the swirl-free flow outside the swirl boundary layer.

An order-of-magnitude analysis of the angular momentum balance (3.15) yields that
the viscous and Reynolds stresses of the zφ component are negligible. The angular
momentum flux, i.e. the left-hand side of (3.15), is of the order of magnitude ϕδ.
The wall shear stress needs to balance the angular momentum fluxes, thus its order
of magnitude is ϕδ as well. The torque due to the shear stress of the zφ component
at the inlet and outlet of the control volume, i.e. the first term on the right-hand side
of (3.15), is of the order of magnitude δ3. This is due to the order of magnitude of
the stress component τzφ . The upper bound of the order of magnitude of the viscous
stress of this component is given by

τzφ,vis = 2
Re
∂uφ
∂z
∼ δ2. (3.16)

We employ (3.2) to approximate the order of magnitude of the Reynolds stress

τzφ,turb =−u′u′φ = νturb
∂uφ
∂z
∼ δ3. (3.17)

Hence, at the inlet and outlet of the control volume, the order of magnitude of
the viscous and Reynolds stresses τzφ is smaller than or even of the same order of
magnitude as δ2. Thus, only the torque integral on the right-hand side of (3.15) is
of the order of magnitude δ3 and for ϕ ∼ 1 it is two orders of magnitude smaller
than all other terms and one order of magnitude smaller for ϕ � 1. Hence, for the
boundary layer approximation, (3.15) reduces to

d
dz

∫ δ

0
(1− y)2uφu dy+ d

dz

∫ δS

δ

(1− y)2uφU dy=−τyφ,w +O(δ3), (3.18)

and is valid for thin laminar and turbulent boundary layers. The system of equations
(3.13) and (3.18) is completed by the continuity equation

d
dz

∫ δ

0
u(1− y) dy+ d

dz

∫ 1

δ

U(1− y) dy= 0, (3.19)
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which describes the interdependence between the boundary layer and the core flow
velocity. Substituting the first term on the left-hand side with the displacement
thickness (3.11), the continuity equation yields

1
U

dU
dz
= 2

1− δ1

dδ1

dz
. (3.20)

By doing so, it becomes clear that the flow is accelerated due to the displacement
thickness at the core region. Thus, the axial pressure gradient (3.6) must be negative
at the core region, as (3.20) indicates.

To analyse the interdependence of the axial momentum balance and the angular
momentum balance, (3.13), (3.18) and (3.20) have to be solved. All velocity profiles
u(y, z) and uφ(y, z) must satisfy these conservation laws in integral form. In the
following, we assume power laws for both axial and swirl velocity profiles with the
corresponding wall shear stress and determine both boundary layer thicknesses δ and
δS and their interaction.

4. Solution of the generalized von Kármán momentum equation
The well-recognized advantage of the integral method is that neither detailed

knowledge of the velocity distribution within the boundary layers nor a turbulence
model is needed. As will be shown, the velocity profiles can be modelled by power
laws, logarithmic, harmonic functions (Schlichting 1970) or other functions that
capture the asymptotic behaviour of the velocity profile. In other words, the method
is robust with respect to the shape of the ansatz functions; the shape of the ansatz
function has a very limited influence on the findings. This work employs power-law
distributions as ansatz functions for the axial velocity profile

u(y, z)
U(z)

=
(

y
δ(z)

)n

(4.1)

and circumferential velocity profile

uφ(y, z)=
(

1− y
δS(z)

)k

. (4.2)

Applying the integral method to flows with a turbulent boundary layer, it is known that
the ansatz function like the chosen (4.1) has to be adjusted, since ∂u/∂y→∞ for
y → 0. To adjust the ansatz function, it is common to use an empirical ansatz
function in treating the turbulent boundary layer by integral methods (Schubauer &
Tchen 1961; Schlichting 1970). The integral method keeps the physical content
of the flow even for seemingly crude assumptions. For a turbulent pipe flow,
Schlichting (1970) models the wall shear stress with τyz,w = λϕ2/8 using the Blasius
law λ= 0.3164(ϕRe)−1/4 (Blasius 1913), as shown in appendix A. The ansatz function
(4.1) in combination with the Blasius law reads

τyz,w(z)= c−2/(n+1)U(z)2/(n+1)

(
2

δ(z)Re

)2n/(n+1)

. (4.3)

For the Reynolds number interval Re= 104–106, the exponent n is 1/7 and c= 8.74
(Schlichting 1970). Even the value of c has a very limited influence on the findings, as
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shown in appendix A. This again shows the desired robustness of the chosen integral
method.

In contrast to the axial velocity profile (4.1), the circumferential velocity profile
(4.2) shows no singularity in the velocity gradient at the wall. Near the smooth wall,
the Reynolds stress vanishes due to kinematic reasons. Hence, the viscous stress is

τyφ,w(z)= 2a
Re
∂uφ
∂y

∣∣∣∣
w

=− 2ak
δS(z)Re

, (4.4)

with a=1. Our experiments indicate a>1 to predict the turbulent swirl boundary layer
thickness properly. For k=2 and a=1.53, being independent of Reynolds number and
flow number, the swirl boundary layer thickness is well predicted. The influence of the
constant a on the boundary layer thicknesses is plotted in appendix A for 16 a6 2. It
has become clear so far that the Blasius constant c= 8.74 and a= 1.53 are empirical
constants, as is the von Kármán constant κ = 0.4. Despite these empirical constants,
the findings are robust, since these constants are independent of flow parameters like
Reynolds number and flow number.

The constant a is determined by solving the generalized von Kármán equations
(3.13) and (3.18) and the continuity equation (3.20) with the ansatz functions
(4.1)–(4.4) and calibrates the swirl boundary layer thickness with the experimental
measurements at z= 2, ϕ = 0.40 and log(Re)= 4.41.

For those who are not familiar with the power of the integral method of the
boundary layer theory approach of using ansatz functions, it may seem like fitting,
but it is not. At the very end, the conservation laws in integral form are fulfilled to a
very good degree of approximation as our experimental validation shows. The method
and the outcomes, i.e. the boundary layer thicknesses, are very robust with respect to
the ansatz function (von Kármán 1921; Pohlhausen 1921; Schlichting 1970).

4.1. Axial and swirl boundary layer thickness
Solving the generalized von Kármán equation (3.13) and (3.18) and the continuity
equation (3.20) with the velocity profiles (4.1) and (4.2) and the wall shear stresses
(4.3) and (4.4) with n= 1/7 and k= 2 numerically, the swirl boundary layer thickness,
depending on axial coordinate, Reynolds number and flow number, is given by the
lines in figure 2. The solution of axial boundary layer thickness is shown in figure 3
and, due to swirl, the axial boundary layer is thickened. For ϕ > 1, the swirl-free
solution δ(G= 0) (black lines in figure 3) is approached asymptotically. For ϕ < 1, a
clear influence of swirl is observed. As indicated by the order-of-magnitude analysis
of (3.8), the centrifugal force balances the wall shear stress. A new asymptote appears
and dominates the axial boundary layer thickness. The interdependence of the axial
boundary layer and the swirl is represented by an increase of the axial boundary layer
thickness g := δ − δ(G= 0).

4.2. Power laws of the boundary layer thicknesses
Throughout this paper, only the empirical constants of von Kármán κ = 0.4, Blasius
constant c = 8.74 and a = 1.53 are the fundamental empirical constants. All other
calibrations are employed only for a short representation of the solution of the
generalized von Kármán momentum equation. Analysing the slope of the boundary
layer solution in the double-logarithmic diagrams (figure 2) for each parameter far
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FIGURE 2. Swirl boundary layer thickness versus axial coordinate, Reynolds number and
flow number for Rz = 0.04 %. Experiments and solution of the boundary layer theory.
Description of the experimental set-up is given by § 5.

away from the singularity at z= 0, a power law for the swirl boundary layer thickness
is given,

δS =CSRem1ϕm2zm3, (4.5)
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10010–1
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FIGURE 3. Influence of Reynolds number and flow number on the axial boundary layer
thickness. Solution of the boundary layer theory.

with m1=−0.487, m2=−0.492 and m3=0.507. The outcome of a ‘power law’ for the
swirl boundary layer thickness is obvious. We calibrate the constant CS to the achieved
swirl boundary layer thickness from the generalized von Kármán momentum equations
(3.13), (3.18) and (3.20) with the ansatz functions (4.1)–(4.4), yielding CS= 6.39. This
constant and the exponents m1 . . . m3 are independent of the Reynolds number, flow
number and axial coordinate. Therefore, the exponents and the constant are very robust
concerning changes of the ansatz functions, cf. appendix A and von Kármán (1921),
Pohlhausen (1921) and Schlichting (1970). Applying equation (4.5) by (4.4), we get
an approximation for the circumferential wall shear stress for a turbulent, hydraulic
smooth flow,

τyφ,w =−2ak
CS

Re−(m1+1)ϕ−m2z−m3, (4.6)

and also the dimensionless hydraulic torque, which is equal to the shaft power and
non-dimensionalized with ρ̃R̃3Ω̃2, depending on the length of the pipe L (see figure 1),

T = 2π

∫ L

0
τyφ,w dz=− 4π

1−m3

ak
CS

Re−(m1+1)ϕ−m2L1−m3 . (4.7)

Applying the method once again for the axial boundary layer thickness as was done
for the swirl boundary layer thickness (4.5), the axial boundary layer thickness follows
g∝ ϕm7Rem8zm9 and we obtain

δ =C1Rem4ϕm5zm6 +C2Rem7ϕm8zm9, (4.8)

with m4 = −0.198, m5 = −0.198, m6 = 0.790, m7 = −0.969, m8 = −2.94 and
m9= 0.974. The values for the constants C1= 0.414 and C2= 11.520 are analogous to
CS. The value of δ(G= 0), i.e. the first term on the right-hand side of (4.8), is close
to the turbulent boundary layer on a flat plate. Again, the constants in (4.5) and (4.8)
are to a large degree independent of the ansatz function. The relative accuracy of the
power-law equations (4.5) and (4.8) to the numerical solution of the generalized von
Kármán momentum equation (figures 2 and 3) is less than 10 %. The advantage of
the power laws is that the differential equation system need not be solved to predict
the boundary layer thicknesses.
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(1) Flow straightener (2) Flow straightener Rotating pipe

Borger nozzle
Aerosol inlet

Orifice plate
flow measurement

..

FIGURE 4. (Colour online) Configuration test rig.

This section presented the solution, i.e. the axial and swirl boundary layer
thicknesses δ and δS, of the differential equation system, (3.13), (3.18) and (3.20),
using (4.1) and (4.2) for the velocity profiles with n= 1/7 and k = 2 and (4.3) and
(4.4) for the wall shear stresses. In addition, this section gave power laws for δ
and δS.

5. Experiments and discussion

An apparatus is designed for the experimental validation of the swirl boundary
layer thickness; see figure 4. With this apparatus, the swirl velocity distribution, the
swirl boundary layer thickness and the flow separation depending on flow number,
Reynolds number, axial position and surface roughness are investigated. Thereby, only
the circumferential velocity component is measured by laser Doppler anemometry
(LDA).

5.1. Experimental set-up
The air flow at room temperature and ambient pressure is provided by a radial fan,
which increases pressure in a large plenum chamber with a flow resistance. The outlet
of this chamber is followed by the first flow straightener, shown in figure 4 on the
left side. Using this set-up, possible forced pulsations by the fan are minimized. The
volume flow is measured by an orifice plate. Hence, the average flow velocity is given
and is controlled by changing the rotation speed of the fan. The apparatus allows axial
velocity up to 13 m s−1, resulting in a Mach number smaller than 0.1.

The orifice plate is followed by a diffuser, the second flow straightener, three
turbulence screens and a so-called Börger nozzle (Börger 1973). Owing to the
acceleration with the nozzle, the velocity profile is forced to be uniform across the
inlet section of the rotating pipe. We measure the axial boundary layer of a thickness
of δ̃/R̃= 0.08–0.12 % at the inlet of the rotating pipe (z= 0). For log(ϕRe)> 4.22 the
axial boundary layer is turbulent; the turbulence intensity has a value of approximately
Tuz := ũ′rms/Ũ= 1 % in the core region and 13 % in the boundary layer. The turbulence
intensity slightly increases with increasing core velocity.

There is a small axial gap of 4 h R̃ between the non-rotating and the rotating pipe.
The rotating pipe with a diameter of 50 mm and a length of 5R̃ is supported by
sealed ball bearings and is driven by a belt. Thus, the gap is sealed as well. By
doing so, a maximum angular speed of Ω̃ = 1308 s−1 is reached and controlled. The
rotating pipe is made of stainless steel with a surface roughness of R̃z/R̃ = 0.04 %.
For the experiment we also coated the pipe with silicon carbide powder of different
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FIGURE 5. Measured self-similar swirl velocity profile versus axial coordinate, Reynolds
number and flow number for attached flow for Rz = 0.04 %.

grain sizes to change the surface roughness. This resulted in three further relative
roughnesses: 0.75 %, 1.24 % and 4.90 %. The air leaves the rotating pipe as a free
jet. The advantage of this design is a convenient accessibility from downstream to
the flow field within the rotating pipe.

This accessibility is used to measure the circumferential velocity component by one-
dimensional LDA with frequency shift. The probe has a focus of 315 mm and is
located downstream of the rotating pipe at an angle of 12◦. By doing so, only the
swirl component is measured and averaged over >30 s, weighted by the transit time
and consisting of at least 500 velocity measurements. The measurement volume has
a length of <1.6 % R̃ and a diameter of <2 h R̃. The measurement volume can be
moved in a two-dimensional plane by using a traverse table. The positioning accuracy
of the measurement volume is approximated as ±4 h R̃ in the plane. With this LDA
system, a measurement of the swirl velocity up to a wall distance of >1.6 % R̃ is
possible. An aerosol of silicone oil as tracer particles is added to the air to enable
LDA measurements; see figure 4.

Hence, all design and operation parameters are chosen so that typical Reynolds
numbers log(Re)= 4.1–5.1 and flow numbers ϕ = 0.05–1 of the turbomachinery are
met. The systematic error of the Reynolds number is less than 2 % and that of the
flow number less than 3.6 %.

5.2. Swirl velocity profile
In the developing region for an attached turbulent flow, the swirl velocity profile
is self-similar within the swirl boundary layer uφ(y < δS, z) = (1 − y/δS(z))2, as
measurements indicate; see figure 5. This measurement result confirms that the
incoming flow is turbulent; cf. the literature review. Below the critical flow number ϕc,
the boundary layer separates and the swirl velocity distribution changes dramatically.
For turbulent flow and Reynolds numbers up to Re= 105.1, the swirl velocity profile
is unaffected by Reynolds number and flow number for attached flow.
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FIGURE 6. Influence of surface roughness on swirl boundary layer thickness versus
Reynolds number.

To validate our results, we performed three series of independent parameter
variations: Reynolds number (figure 2b), flow number (figure 2c) and surface
roughness (figure 6). In the parameter field investigated, the measurement result
of swirl boundary layer thickness is in accordance with the analytical solution for the
smooth pipe. Only in figure 2(a) next to the entrance of the rotating pipe, z< 1, is
a relative deviation of approximately 10 % observable. The dependence of the swirl
boundary layer thickness on the axial coordinate, Reynolds number and flow number
in the measurements agrees very well with the analytical solution. Hence, the derived
generalized von Kármán equation (see § 3) describes the flow situation at the inlet of
a rotating pipe. The agreement between the experimental data and the model is better
by far than the agreement between experiment and computational fluid dynamics
results; cf. the literature review.

5.3. Surface roughness
On the basis of Nikuradse’s and Prandtl’s work we know that, when the Reynolds
number of a non-swirling flow reaches a critical value, depending on surface
roughness, both the velocity profile and also wall shear stress become independent
of viscous friction, i.e. Reynolds number. Because up to this point we assumed
hydraulically smooth walls, we examined the swirl boundary layer thickness at
constant flow number ϕ = 0.35, varying Reynolds number log(Re) = 4.1–5.1 for
different pipe roughnesses. Figure 6 shows the measured swirl boundary layer
thickness at z = 2. What is known from the axial boundary layer is also true for
the swirl boundary layer: for Reynolds numbers below the critical number, the
swirl boundary layer thickness is independent of roughness. When the critical value
is exceeded, the swirl boundary layer thickness increases and ultimately becomes
independent of the Reynolds number.

Thus, the given analytical solutions with the chosen assumption of swirl velocity
distribution and wall shear stress only represent the turbulent flow in a hydraulically
smooth pipe. The extension of the presented method to rough surfaces is within the
current research focus.

For safe operation of turbomachinery it is desirable to predict part load recirculation.
To do so, the critical flow number ϕc is needed. The method validated so far can easily
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FIGURE 7. Experimentally measured ϕc for fully separated flow at the inlet of a rotating
pipe for the hydraulically smooth case.

serve for Stratford’s criterion (Stratford 1959) to predict the stability limit ϕc(Re). This
is done in § 5.4.

5.4. Flow separation
In the following, we restrict ourselves to turbulent flow in a hydraulically smooth pipe.
From the velocity measurements, we derive the desired stability limit ϕc = ϕc(Re). In
parallel with our experiments, we identify the critical flow number ϕc for the fully
separated flow, e.g. part load recirculation at the inlet of the rotating pipe. The stability
map is shown in figure 7. In the core region, the fluid is accelerated, hence dP/dz< 0,
whereas at the wall, the axial component of the wall pressure gradient dpw/dz can be
positive due to swirl. From (3.7) for y= 0 with (3.6) and (3.20), we obtain

dpw

dz
= d

dz

∫ δS

0

u2
ϕ

1− y′
dy′ − 2U2

1− δ1

dδ1

dz
. (5.1)

Hence, the swirl can cause a positive pressure gradient at the wall and also aids the
growth of the axial boundary layer. Both effects provoke a separation of the axial
boundary layer when a critical flow number ϕc(Re) is reached. To indicate an incipient
separation, we assume the swirl-induced pressure slope as a superimposed pressure
field for an axial boundary layer in a non-rotating pipe G(= 0). Then, we use the
criterion of Stratford (1959) to determine the point of zero wall friction. Starting from
equation (16) (

y∗

δ∗

)2−4n

= 3(nκβ)4

n(n+ 1)
(
δ∗

dCp

dz

)2 , (5.2)

with equation (17) ( u
u∗

)2 = 3n
1+ n

, (5.3)

and equation (18) of Stratford (1959)

Cp =
[

1−
( u

u∗

)2
] (

y∗

δ∗

)2n

, (5.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

73
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.734


366 F.-J. Cloos, D. Stapp and P. F. Pelz

0.08

0.10

0.20

10010–110–2 101

z

Experiment

Boundary layer solution

at

at

FIGURE 8. Zero wall shear stress at ϕc and measured separation.

where y∗ = y, δ∗ = δ(G= 0) and Cp = 2(p∗ − p0(G= 0))/ϕ2 with

p∗ = 1
δS

∫ δS

0
p(y, z) dy, (5.5)

p is given by (3.7) and p0(G= 0)= dp0(G= 0)/dz= 0. By doing so, an alternative,
equivalent pressure distribution within the swirl boundary layer is defined by (5.5),
which is independent of the wall coordinate as is necessary for using Stratford’s
criterion. To avoid overestimating the influence of the centrifugal force, the pressure
distribution is area averaged within the swirl boundary layer by (5.5). Here p∗
represents the pressure within the outer layer, and the pressure gradient in (5.2)
represents the pressure distribution within the inner layer. Therefore, the wall pressure
gradient (5.1) is used and not the pressure gradient of p∗. To balance the omitted
higher-order term, Stratford introduced the empirical parameter β. The wall shear
stress τyz,w vanishes for

δ(G= 0)
ϕ2

dpw

dz

(
p∗

ϕ2

)(1−2n)/2n

= 1
2
(nκβ)2

(
1− 2n
2+ 2n

)(1−2n)/2n
√

3
n(n+ 1)

. (5.6)

The von Kármán constant appears because Stratford describes the Reynolds stresses
with Prandtl’s mixing model to consider the profile transformation within the inner
layer due to the pressure rise; see (11) of Stratford (1959). With κ = 0.4, n= 1/7 and
β = 0.66, this simplifies to

ϕc = 3.442
(
δ(G= 0)

dpw

dz
p∗5/2

)1/7

. (5.7)

With equation (4.2) and k = 2, dpw/dz is given by (5.1), p∗ is given by (5.5) and
δ(G= 0). When the zero wall shear stress condition is fulfilled, an incipient separation
is predicted. In figure 8, the isoline for zero wall shear stress (5.7) is plotted versus
the axial coordinate at log(Re)= 4.7.

One must be aware that the criterion τyz,w = 0 indicates the beginning of flow
separation. Hence, the associated ϕc given by (5.7) indicates the incipient separation.
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FIGURE 9. Measured swirl velocity profile depending on axial coordinate and flow number
to indicate separation.

For a validation of separation criterion (5.7), we observe the swirl velocity profile as
an indicator of the beginning of flow separation. When separation occurs, the swirl
velocity profile within the swirl boundary layer differs from the self-similar swirl
velocity profile of an attached flow (broken lines in figure 9) and a new distribution
develops. At different axial positions, the swirl velocity profile is measured by
changing the flow number. Hence, we determine the separation with the swirl velocity
profile as an indicator depending on the axial coordinate, as shown in figure 9. We
define separation when the measured swirl velocity profile differs on average by more
than 15 % from the attached swirl velocity profile.

By reducing the flow number, the measurements show a transformation of the swirl
velocity profile beginning further downstream. This transformation moves upstream as
the flow number is reduced, until the swirl reaches the non-rotating pipe and indicates
the fully developed separation at the critical flow number. The comparison of the
separation criterion (5.7) is in qualitative agreement with the experimental findings,
as figure 8 indicates.

6. Conclusion

Applying the integral method of boundary layer theory, a generalization of the von
Kármán momentum equation is derived to model the flow at the inlet of a rotating
pipe. By doing so, the radial pressure distribution due to the centrifugal force is
considered and yields a coupling term G which is solved by using the angular
momentum equation. Equations (3.13), (3.18) and (3.20) are solved, assuming an
ansatz function, e.g. power laws, for the axial and circumferential velocity distribution
and wall shear stresses. The solutions of the boundary layer thicknesses δS and δ,
figures 2 and 3, take Reynolds number and flow number into account. The growth of
the swirl boundary layer thickness is confirmed by experiments for the hydraulically
smooth wall. Both boundary layers become thicker for small flow numbers due to
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swirl and this is in contrast to the results of Kikuyama et al. (1983a). For ϕ � 1,
the influence of the coupling term G becomes of the same order of magnitude as the
wall shear stress and dominates the axial boundary layer thickness. Hence, the radial
pressure distribution should not be neglected for small flow numbers. Additionally, it
is well known that the swirl deforms the axial velocity distribution and this could
be quantified by the coupling term G using the axial boundary layer thickness from
measurements as an input to the differential equation system. The validation of the
axial boundary layer is within the current research focus.

For a hydraulically rough wall, the experiments meet our expectation and the
expansion of the given approach will be researched further. When the critical
Reynolds number is exceeded, the swirl boundary layer becomes independent of
viscous friction, i.e. the Reynolds number, but depends on the surface roughness and
its thickness increases. Figure 6 is analogous to the well-known Nikuradse diagram
(Nikuradse 1933) for the swirl boundary layer.

With decreasing Reynolds number and flow number, a critical flow number is
reached and the wall shear stress vanishes. We call this point incipient separation.
Applying Stratford’s criterion, we derived a critical flow number for this point and
validated it with measurements. Incipient separation begins downstream and moves
upstream for reduced flow numbers. Full separation is expected at a flow number
below this critical value, as figure 7 shows. Closing, this prediction of part load
recirculation in a rotating pipe is employable for the design of a turbomachine,
especially a shrouded turbomachine and flow channels of secondary air flow of a gas
turbine. Thus, part load recirculation does not require blades.
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Appendix A

We are following the proposal of Schlichting (1970), section XX b ‘The relation
between law of friction and velocity distribution’, to derive a representation of
the viscous wall shear stress. The dimensionless radius R = 1 and, in analogy to
Schlichting (1970), Blasius law (Blasius 1913)

λ := τzy,w

8
ϕ2 = 0.3164(ϕRe R)−1/4, (A 1)

is used to give a representation of the axial wall shear stress component

τzy,w = λ8ϕ
2 = 0.03955ϕ7/4(Re R)−1/4 (A 2)

for an axial fully developed pipe flow. For the ansatz function u/U= (y/δ)n the ratio
of mean to centreline velocity, e.g. outside the boundary layer, is

ϕ

U
= 2
(1+ n)(2+ n)

. (A 3)
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FIGURE 10. Sensitivity analysis of the swirl and axial boundary layer thickness depending
on constants a and c.

With n= 1/7 this yields ϕ/U=0.8. The dimensionless shear velocity u∗ :=√τyz,w gives
a short form of (A 2) as

U
u∗
= c

(
u∗Re R

2

)n

, (A 4)

with c= 1/0.8 2−1/7(8/0.3164)4/7 = 8.74. Hence, the wall shear stress, depending on
the exponent of the axial velocity profile, is

τzy,w = c−2/(n+1)U2/(n+1)

(
2

Re δ

)2n/(n+1)

. (A 5)

The viscous effects are significant within the boundary layer, hence for a developing
boundary layer δ <R, the wall shear stress has to be scaled on δ instead of R, yielding
equation (4.3).

The robustness of the integral method is demonstrated by a sensitivity analysis; see
figure 10. Hereby, we vary the constants a and c. As figure 10 illustrates, there is
a parallel shift of the boundary layer thicknesses, thus the dependence on the axial
coordinate is not changed. This is valid for the dependence on the Reynolds number
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and the flow number as well. The influence of the inlet condition of the axial boundary
layer thickness, δ(z= 0)≈ 0.08, is visible for z . 1.
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