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Abstract
We study in R3+1 a system of nonlinearly coupled Klein-Gordon equations under the null condition, with (possibly
vanishing) mass varying in the interval [0, 1]. Our goal is three-fold, which extends the results in the earlier work
of [5, 3]: 1) we want to establish the global well-posedness result to the system that is uniform in terms of the
mass parameter (i.e., the smallness of the initial data is independent of the mass parameter); 2) we want to obtain a
unified pointwise decay result for the solution to the system, in the sense that the solution decays more like a wave
component (independent of the mass parameter) in a certain range of time, while the solution decays as a Klein-
Gordon component with a factor depending on the mass parameter in the other part of the time range; 3) the solution
to the Klein-Gordon system converges to the solution to the corresponding wave system in a certain sense when the
mass parameter goes to 0. In order to achieve these goals, we will rely on both the flat and hyperboloidal foliation of
the spacetime and prove a mass-independent 𝐿2–type energy estimate for the Klein-Gordon equations with possibly
vanishing mass. In addition, the case of the Klein-Gordon equations with certain restricted large data is discussed.
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1. Introduction

1.1. Motivation and review of the classical results

The study of nonlinear wave equations, nonlinear Klein-Gordon equations and their coupled systems
has been an active area of research for decades, and the question ‘what kind of quadratic nonlinearities
lead to global-in-time solutions?’ has attracted special attention from researchers. In addition to the
mathematical interest and challenges, such studies are also motivated by the Einstein equations, the
Einstein-Klein-Gordon equations, the Yang-Mills equations, the electroweak standard model and many
other important models from mathematical physics. Recall that, on the one hand, wave equations in
R

3+1 with null form nonlinearities were proved to admit global-in-time solutions independently by
Klainerman [14] and Christodoulou [2] (and Klainerman identified the class of null forms); see also the
generalizations of null condition to the weak null condition in [19, 20] and to the non-resonant condition
in [22], for instance. On the other hand, it was shown by Klainerman [12] and Shatah [23] that Klein-
Gordon equations with general quadratic nonlinearities in R3+1 admit small solutions. In addition, the
global well-posedness results for different types of coupled wave and Klein-Gordon systems, with or
without physical models behind, were obtained; see, for instance, [1, 6, 5, 7, 9, 10, 11, 15, 16, 17, 18,
21, 27].

It is well known that (linear) Klein-Gordon components decay 𝑡−1/2 faster than the (linear) wave
components in R𝑛+1 (𝑛 ≥ 1) and that the presence of the mass term allows one to control the 𝐿2–type
energy of the Klein-Gordon components by their natural energy. Both of these make it less difficult
to study nonlinear Klein-Gordon equations in R3+1. When it comes to the study of nonlinear wave
equations, we can utilise the scaling vector field, which makes it easy to apply the Klainerman-Sobolev
inequality, and we can rely on the conformal energy estimates to obtain 𝐿2–type energy estimates for
wave components (with no derivatives). Thus, we can see from the simple comparisons above that
different features help to study pure wave equations and pure Klein-Gordon equations.

Concerning the fact that Klein-Gordon equations become wave equations when the masses are set
to be 0, a natural interesting question is that for Klein-Gordon equations with varying mass in [0, 1],
what kind of quadratic nonlinearities can ensure small data global existence results that are uniform in
terms of the varying mass parameter? Our primary goal is to prove that all kinds of null nonlinearities
can uniformly guarantee global existence results for systems of Klein-Gordon equations with mass
varying in [0, 1]. Such results are known to be valid at the end points 0, 1, which correspond to wave
equations and Klein-Gordon equations with fixed mass, respectively. But more is involved if one wants
to get global existence results uniform in terms of the mass parameter in [0, 1], because, for instance,
we cannot use the scaling vector field, cannot obtain mass-independent 𝐿2–type estimates by the mass
term or by the conformal energy estimates, and so on. The main difficulties arise when the mass is
close to 0, which is why we refer to this problem as the zero mass problem of the Klein-Gordon
equations.

In addition, the study of the Klein-Gordon equations with varying mass (especially when the mass
goes to 0) is also motivated by the study of mathematical physics. We briefly recall in [5] that when
studying the electroweak standard model, there appear several Klein-Gordon equations with different
masses, and physical experiments have verified that some of the masses are extremely small (close to
0 but still positive) compared to others. Thus it is important to obtain results that are uniform in terms
of the small masses for Klein-Gordon equations. Since the cases of 𝑚 = 0, 1 have been well studied,
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we will only focus on Klein-Gordon equations with one single mass 𝑚 ∈ [0, 1] to capture the most
interesting feature instead of coupling with Klein-Gordon equations with masses 0, 1.

1.2. Model of interest

We will consider the following system of coupled Klein-Gordon equations with varying mass𝑚 ∈ [0, 1]:

−�𝑣𝑖 + 𝑚2𝑣𝑖 = 𝑁
𝑗𝑘
𝑖 𝑄0 (𝑣 𝑗 , 𝑣𝑘 ) + 𝑀

𝑗𝑘𝛼𝛽
𝑖 𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 ), (1.1)

with initial data prescribed on 𝑡 = 𝑡0 = 2(
𝑣𝑖 , 𝜕𝑡𝑣𝑖

)
(𝑡0) =

(
𝑣𝑖0, 𝑣𝑖1

)
. (1.2)

In the above, � = 𝜂𝛼𝛽𝜕𝛼𝛽 is the wave operator, where 𝜂 = diag(−1, 1, 1, 1) is the metric of the
spacetime, and the Einstein summation convention is adopted. We note that 𝑄0 (𝑣 𝑗 , 𝑣𝑘 ) = 𝜕𝛼𝑣 𝑗𝜕

𝛼𝑣𝑘
and 𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 ) = 𝜕𝛼𝑣 𝑗𝜕𝛽𝑣𝑘 − 𝜕𝛼𝑣𝑘𝜕𝛽𝑣 𝑗 are classical null forms of Klainerman. The indices 𝑖, 𝑗 , 𝑘 ∈
{1, · · · , 𝑁0} with 𝑁0 the number of equations (also the number of unknowns), and we use 𝑎, 𝑏, 𝑐, · · · ∈
{1, 2, 3} and 𝛼, 𝛽, 𝛾, · · · {0, 1, 2, 3} to denote the space indices and the spacetime indices, respectively.
Throughout the paper, we will also use 𝐴 � 𝐵 to indicate 𝐴 ≤ 𝐶𝐵, with C a generic constant
(independent of the mass parameter m).

At the end points of𝑚 = 0 and𝑚 = 1, the small data global existence result (as well as other properties
of the solution) for the system in equations (1.1)–(1.2) is well known, and the proofs are conducted
depending on the different features of the pure wave equations and the pure Klein-Gordon equations.
Here we want to establish the global existence result and explore the properties of the solution for the
system in equation (1.1), which are uniform in terms of the mass parameter 𝑚 ∈ [0, 1], by which we
mean the smallness of the initial data is independent of m. In addition, we derive the unified pointwise
decay result for the equations, by which we mean the pointwise decay result unifies the wave and
the Klein-Gordon equations with explicit dependence on the mass parameter m. In addition, it is also
interesting to show that the solution to equation (1.1) converges to the corresponding wave system when
𝑚 → 0. Since some features of the pure wave equations or the pure Klein-Gordon equations cannot be
relied on when obtaining the uniform result, the analysis of the proof is more subtle and requires new
insights.

1.3. Difficulties and new observations

When studying the Klein-Gordon equations, the most well-known difficulty is that one cannot use
the scaling vector field because the scaling vector field does not commute with the Klein-Gordon
operators. However, more difficulties arise in studying the Klein-Gordon system with possibly vanishing
mass.

First, in order to apply Sobolev–type inequalities to obtain pointwise decay results for the Klein-
Gordon components 𝑣 = (𝑣𝑖) or to estimate the null forms, we need to bound the 𝐿2–type norm for
𝑣𝑖 , which is supposed to be mass-independent, and this is the most difficult part. On the one hand,
the presence of the mass term in the Klein-Gordon equation does not seem to help obtain the 𝐿2–type
energy estimate. That is because what we can get from the mass term is only

𝑚‖𝑣‖𝐿2 � 𝐵, i.e. ‖𝑣‖𝐿2 � 𝑚−1𝐵,

1which is mass-dependent, and very unfortunately, the bound for ‖𝑣‖𝐿2 blows up when m goes to 0;
and in the above, B represents some bound from the energy estimates. On the other hand, the conformal
energy estimates allow one to get the 𝐿2–type estimates for wave components (i.e., the cases of 𝑚 = 0),

1𝑚−1 is interpreted as +∞ when 𝑚 = 0.
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but they can no longer be applied due to the presence of the mass term, which means we cannot obtain
𝐿2–type estimates for 𝑣𝑖 using the conformal energy. Second, the solution to the system in equation
(1.1) does not decay sufficiently fast. In general, we can expect solutions to Klein-Gordon equations
with fixed mass to decay like 𝑡−3/2 in R3+1, but due to the possibly vanishing mass 𝑚 ∈ [0, 1], the best
we can expect for the Klein-Gordon components 𝑣𝑖 is the (mass-independent) wave decay

|𝑣𝑖 | � 𝑡−1,

and the (mass-dependent) Klein-Gordon decay

|𝑣𝑖 | � 𝑚−1𝑡−3/2.

In addition, the null form of the type 𝜕𝛼𝑣 𝑗𝜕𝛼𝑣𝑘 does not seem to decay sufficiently fast. It is not
consistent with the Klein-Gordon equations since we lack the scaling vector field to gain a good factor
of 𝑡−1 from 𝜕𝛼𝑣 𝑗𝜕𝛼𝑣𝑘 . Last but not least, there are some difficulties in gaining the factor 𝑡−1 from the
null forms 𝑄0 (𝑣 𝑗 , 𝑣𝑘 ), 𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 ) in the highest-order energy estimate, which again is due to the lack
of the conformal energy estimate.

In order to tackle the problems caused by the presence of the possibly vanishing mass term, we will
rely on the following key observations and insights. First, we will use the hyperboloidal foliation of
the spacetime to prove the (uniform) global existence result for the system in equation (1.1), which is
developed by Klainerman [12], Hormander [8], LeFloch-Ma [16], and so forth. We will take advantage
of the fact that the null forms (𝑄0, 𝑄𝛼𝛽) can be decomposed as sums of products of good components
in the hyperboloidal foliation setting (see Lemma 2.4); this is true even for the highest-order energy
estimate. As a consequence, we are able to obtain the mass-dependent pointwise decay result��𝑣𝑖 (𝑡, 𝑥)�� � 𝑚−1𝑡−3/2.

Next, we will move to the usual flat foliation of the spacetime to show the unified pointwise decay result,
which is the most difficult part. To achieve this, we will obtain the mass-independent 𝐿2–type norm
estimates for the solution 𝑣 = (𝑣𝑖) by using tricks from the Fourier analysis. To be more precise, we
write the Klein-Gordon equation in the Fourier space and solve the corresponding ordinary differential
equation to get the solution in the Fourier space, and then obtain the mass-independent 𝐿2–type norm
estimates for the solution 𝑣 = (𝑣𝑖) (see Proposition 3.1). However, according to Proposition 3.1, in order
to get sufficiently good 𝐿2–type estimates for the solution, we need to gain the extra factor 𝑡−1 from the
null nonlinearities. For the null forms of type 𝑄𝛼𝛽 , we easily have

��𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 )�� � 1
𝑡

(
|Γ𝑣 𝑗 | |𝜕𝑣𝑘 | + |Γ𝑣𝑘 | |𝜕𝑣 𝑗 |

)
, Γ ∈ {𝜕𝛼,Ω𝑎𝑏 , 𝐿𝑎},

and for the higher-order case, the following observation (from [11]) helps

𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 ) = 𝜕𝛼 (𝑣 𝑗𝜕𝛽𝑣𝑘 ) − 𝜕𝛽 (𝜕𝛼𝑣𝑘𝑣 𝑗 ),

thanks to the hidden divergence form of the null nonlinearities 𝑄𝛼𝛽 . For the null forms of type 𝑄0, at
first glance, it does not seem to be possible to gain the factor 𝑡−1 from the null form 𝑄0 because we do
not have good control over the scaling vector field. But we observe that a nonlinear transformation will
help, which transforms the quadratic term𝑄0 to the sum of cubic terms and quadratic terms with a good
factor 𝑚2 in front. These observations allow us to obtain the mass-independent 𝐿2–type estimates, and
hence the mass-independent pointwise decay result for the solution��𝑣𝑖 (𝑡, 𝑥)�� � 𝑡−1

can be obtained with the aid of the Klainerman-Sobolev inequality in Proposition 2.6. More details
follow. We will divide the solution into several parts and analyse each part according to its features. For

https://doi.org/10.1017/fms.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.22


Forum of Mathematics, Sigma 5

the parts where we can gain 𝑡−1 factor from the null form or the nonlinearities are cubic, Proposition
3.1 will be sufficient to obtain the mass-independent pointwise decay. For the part with quadratic
nonlinearities with the good factor 𝑚2, we will carefully study the m-dependent relation of the norms
of the nonlinearities and try to gain the factor m to cancel the one appearing in the energy.

1.4. Main theorem

Now we provide the statement of the main result.

Theorem 1.1. Consider the system of Klein-Gordon equations (1.1) with mass𝑚 ∈ [0, 1], and let 𝑁 ≥ 6
be an integer. There exists small 𝜖0 > 0, which is independent of the mass parameter m, such that for
all 𝜖 < 𝜖0 and all compactly supported initial data that are small in the sense that

‖𝑣𝑖0‖𝐻𝑁+1 + ‖𝑣𝑖1‖𝐻𝑁 ≤ 𝜖, for all i, (1.3)

then the Cauchy problem in equations (1.1)–(1.2) admits a global-in-time solution 𝑣 = (𝑣𝑖). In addition,
the unified decay of the solution is obtained

��𝑣𝑖 (𝑡, 𝑥)�� � 1
𝑡 + 𝑚𝑡3/2 . (1.4)

In the proof of Theorem 1.1, we will always assume 𝑚 ∈ (0, 1] unless specified since the result for
the case of 𝑚 = 0 is well-known and classical. We will also assume the initial data (𝑣𝑖0, 𝑣𝑖1) are spatially
supported in the unit ball {(𝑥, 𝑡) : 𝑡 = 𝑡0 = 2, |𝑥 | ≤ 1}, but the results in the theorem still hold for all of
the initial data prescribed at any 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 with compact support; see the remark in [6] that is below
the main theorem there. We note that the compactness assumption implies

‖𝑣𝑖1‖𝐿6/5 (R3) � ‖𝑣𝑖1‖𝐿2 (R3) ,

and this will be used when applying Proposition 3.1.
It can be seen from Theorem 1.1 that the global existence result and the pointwise decay result

are both consistent with the cases of 𝑚 = 0 and 𝑚 = 1, which are the usual wave equations and the
usual Klein-Gordon equations (with fixed mass). It is worth mentioning that the unified decay result
in equation (1.4) shows that the solution decays more like a wave component (with no m dependence)
as 𝑡−1 in the time range 𝑡 ∈ [𝑡0, 𝑚−2), while it decays more like a Klein-Gordon component (with m
dependence) as 𝑚−1𝑡−3/2 in the rest of the time range (if non-empty). In addition to the results contained
in Theorem 1.1, we have the following convergence result, which tells us that the solution to the system
in equation (1.1) converges to the solution to the corresponding wave system (i.e., the system in equation
(1.1) with 𝑚 = 0) in a certain sense. Let

𝑣 (𝑚) , 𝑚 ∈ [0, 1],

denote the solution to the system in equation (1.1) with mass m, and we can now demonstrate the
convergence theorem.

Theorem 1.2. Consider the system in equation (1.1), and let the same assumptions in Theorem 1.1 hold.
Then the solution to the system in equation (1.1) with mass m converges to the system in equation (1.1)
with 𝑚 = 0, in the sense that (with 0 < 𝛿 � 1)��𝜕𝜕𝐼 𝐿𝐽 (𝑣 (𝑚) − 𝑣 (0) )

��
𝐿2 + 𝑚

��𝜕𝐼 𝐿𝐽 (𝑣 (𝑚) − 𝑣 (0) )
��
𝐿2 � 𝑚2𝑡1+𝛿 , |𝐼 | + |𝐽 | ≤ 𝑁. (1.5)

We note that Theorem 1.2 indicates that the solution 𝑣 (𝑚) tends to 𝑣 (0) at the rate 𝑚2 when 𝑚 → 0
on each fixed slice 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, but the bounds for the energy of the difference 𝑣 (𝑚) − 𝑣 (0) blow up as
𝑡 → +∞ for each fixed m.
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The study of the zero mass problem of the Klein-Gordon equations is a new subject. We recall that
such studies have appeared in earlier work [5, 3], where the zero mass problem for Dirac equations (we
note that Dirac equations can be transformed into Klein-Gordon equations) and Klein-Gordon equations
with divergence form nonlinearities were investigated. In this paper, we extend the earlier work to be
able to treat quadratic nonlinearities satisfying the null condition, which is a big step forward. It is
also natural to deal with null forms as they frequently appear in the field of wave and Klein-Gordon
equations. Of great mathematical interest, the zero mass problem for the Klein-Gordon equations with
more types of nonlinearities, as well as in the low dimension cases, is to be studied, which also seems
very promising and challenging.

1.5. Further discussions

The goal of this part is to discuss one way to show global existence for nonlinear Klein-Gordon equations
with some restricted bounded large data. For general bounded large data, our method does not apply.

For simplicity, we consider the Klein-Gordon equation with 𝑚 ∈ (0, 1] (note we exclude 𝑚 = 0 with
no harm)

− �𝑢 + 𝑚2𝑢 = 𝜕𝛼𝑢𝜕
𝛼𝑢,(

𝑢, 𝜕𝑡𝑢
)
(𝑡 = 0) = (𝑢0, 𝑢1) = (𝑢0, 0).

(1.6)

From Theorem 1.1, we know there exists 𝜖0 independent of m, such that for all compactly supported
initial data satisfying the smallness condition

‖𝑢0‖𝐻 7 < 𝜖0,

the Cauchy problem in equation (1.6) admits a global solution with pointwise decay

|𝑢(𝑡, 𝑥) | � 1
𝑡 + 𝑚𝑡3/2 .

We introduce the new spacetime variables

(𝑇, 𝑋) = (𝑚𝑡, 𝑚𝑥)

and define the function

𝑈 (𝑇, 𝑋) = 𝑢(𝑚−1𝑇, 𝑚−1𝑋) = 𝑢(𝑡, 𝑥).

A simple calculation shows that 𝑈 (𝑇, 𝑋) solves the nonlinear Klein-Gordon equation with fixed mass
1, which reads

𝜕𝑇 𝜕𝑇𝑈 (𝑇, 𝑋) −
∑
𝑎

𝜕𝑋𝑎𝜕𝑋𝑎𝑈 (𝑇, 𝑋) +𝑈 (𝑇, 𝑋) = −
(
𝜕𝑇𝑈 (𝑇, 𝑋)

)2 +
∑
𝑎

(
𝜕𝑋𝑎𝑈 (𝑇, 𝑋)

)2
,

(
𝑈 (𝑇, 𝑋), 𝜕𝑇𝑈 (𝑇, 𝑋)

)
(𝑇 = 0) = (𝑈0 (𝑋), 0),

(1.7)

in which

𝑈0 (𝑋) = 𝑢0(𝑚−1𝑋).

We observe that ��𝜕𝐼𝑋𝑈0
��
𝐿2 (R3) = 𝑚3/2−|𝐼 |��𝜕𝐼𝑥𝑢0‖𝐿2 (R3) , |𝐼 | ≤ 7.
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Clearly, for any chosen non-zero small initial data (𝑢0, 0) for equation (1.6), we can always pick
𝑚 ∈ (0, 1] sufficiently small so that the initial data for equation (1.7) is large: that is, satisfying��𝑈0

��
𝐻 7 > 𝐶𝐿

for any given large constant 𝐶𝐿 > 1. This means the nonlinear Klein-Gordon equation (1.7) with fixed
mass 1 admits a global solution even if the size of the initial data is large (but restricted).

1.6. Outline

The rest of this paper is organised as follows: In Section 2, we revisit some notations, Sobolev–
type inequalities and basic results on the Klein-Gordon equations. Next, we provide the key result of
obtaining the mass-independent 𝐿2 norm estimates for solutions to the Klein-Gordon equations with
possibly vanishing masses in Section 3. Then we prove the global existence result in Section 4. Finally,
the proof for the mass-independent decay result and the proof for the convergence result are illustrated
in Section 5 and Section 6, respectively.

2. Preliminaries

2.1. Basic notations

We work in the (3 + 1) dimensional spacetime with metric 𝜂 = diag(−1, 1, 1, 1). We write a point
(𝑥0, 𝑥𝑎) = (𝑡, 𝑥𝑎), and the indices are raised or lowered by the metric 𝜂. We use

𝜕𝛼 = 𝜕𝑥𝛼 , 𝛼 = 0, 1, 2, 3,
Ω𝑎𝑏 = 𝑥𝑎𝜕𝑏 − 𝑥𝑏𝜕𝑎, 𝑎, 𝑏 = 1, 2, 3, and 𝑎 < 𝑏,

𝐿𝑎 = 𝑥𝑎𝜕𝑡 + 𝑡𝜕𝑎, 𝑎 = 1, 2, 3

to denote the vector fields of translation, rotation and Lorentz boosts, respectively. For convenience, we
use 𝜕,Ω, 𝐿 to represent a general vector field of translation, rotation and Lorentz boost, respectively;
and with the notation

𝑉 = {𝜕𝛼,Ω𝑎𝑏 , 𝐿𝑎},

Γ is used to represent a general vector field in V.
When it turns to the hyperboloidal foliation of the spacetime of the cone K := {(𝑡, 𝑥) : 𝑡 ≥ 𝑡0 =

2, 𝑡 ≥ |𝑥 | + 1}, we use H𝑠 = {(𝑡, 𝑥) : 𝑡2 = |𝑥 |2 + 𝑠2} to denote a hyperboloid at hyperbolic time s with
𝑠 ≥ 𝑠0 = 2. We note that throughout we will only consider (unless specified) functions with support
in K, since the solution to equation (1.1) is supported in K. We emphasize here that for all points
(𝑡, 𝑥) ∈ K⋂H𝑠 (𝑠 ≥ 2), the following relations hold:

𝑠 ≤ 𝑡 ≤ 𝑠2, |𝑥 | ≤ 𝑡. (2.1)

In order to adapt to the hyperboloidal foliation of the spacetime, we first recall the semi-hyperboloidal
frame introduced in [16], which is defined by

𝜕0 = 𝜕𝑡 , 𝜕𝑎 =
𝐿𝑎
𝑡

= 𝜕𝑎 +
𝑥𝑎
𝑡
𝜕𝑡 . (2.2)

We can also represent the usual partial derivatives 𝜕𝛼 in terms of the semi-hyperboloidal frame by

𝜕0 = 𝜕0, 𝜕𝑎 = −𝑥𝑎
𝑡
𝜕0 + 𝜕𝑎 . (2.3)
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We denote the Fourier transform of a nice function u by

�̂�(𝜉) =
∫
R3
𝑢(𝑥)𝑒−2𝑖 𝜋𝑥 ·𝜉 𝑑𝑥.

We recall some properties regarding the Fourier transform, which will be used in the analysis. The
partial derivatives are reflected by Fourier multipliers

𝜕𝑎𝑢(𝜉) = 2𝜋𝑖𝜉𝑎�̂�(𝜉), (2.4)

and the Plancheral identity connects the 𝐿2 norms between the function and its Fourier transform

‖𝑢‖𝐿2 (R3) =
���̂���

𝐿2 (R3) . (2.5)

2.2. Estimates for commutators and null forms

Estimates for commutators
We first demonstrate some well-known results regarding the commutators of different vector fields,
which can be found in [26, 16].

Lemma 2.1. Let u be a sufficiently regular function with support K, and denote the commutator by
[Γ, Γ′] = ΓΓ′ − Γ′Γ; then we have

��[𝜕𝛼, 𝐿𝑎]𝑢�� + ��[𝜕𝛼,Ω𝑎𝑏]𝑢�� �∑
𝛽

��𝜕𝛽𝑢��,
��[𝐿𝑐 ,Ω𝑎𝑏]𝑢�� + ��[𝐿𝑎, 𝐿𝑏]𝑢�� �∑

𝑑

��𝐿𝑑𝑢��,
��[𝐿𝑎, (𝑠/𝑡)]𝑢�� � ��(𝑠/𝑡)𝑢��,��[𝐿𝑏𝐿𝑎, (𝑠/𝑡)]𝑢�� � ��(𝑠/𝑡)𝑢�� +∑

𝑐

��(𝑠/𝑡)𝐿𝑐𝑢��,
��[𝜕𝑎, 𝐿𝑏]𝑢�� �∑

𝑐

��𝜕𝑐𝑢��.

(2.6)

Next, we recall the following result from [26], which tells us that the null forms acted by a vector
field still give us null forms.

Lemma 2.2. For all nice functions 𝑢, 𝑤, we have

𝜕𝛼𝑄0 (𝑢, 𝑤) −𝑄0 (𝜕𝛼𝑢, 𝑤) −𝑄0 (𝑢, 𝜕𝛼𝑤) = 0,
𝜕𝛾𝑄𝛼𝛽 (𝑢, 𝑤) −𝑄𝛼𝛽 (𝜕𝛾𝑢, 𝑤) −𝑄𝛼𝛽 (𝑢, 𝜕𝛾𝑤) = 0,

𝐿𝑎𝑄0 (𝑢, 𝑤) −𝑄0(𝐿𝑎𝑢, 𝑤) −𝑄0 (𝑢, 𝐿𝑎𝑤) = 0,��𝐿𝑎𝑄𝛼𝛽 (𝑢, 𝑤) −𝑄𝛼𝛽 (𝐿𝑎𝑢, 𝑤) −𝑄𝛼𝛽 (𝑢, 𝐿𝑎𝑤)
�� ≤ ∑

𝛼′,𝛽′

��𝑄𝛼′𝛽′ (𝑢, 𝑤)��.
(2.7)

Estimates for null forms
We first recall the classical estimates for null forms of the type 𝑄𝛼𝛽 , which can be found in [26].

Lemma 2.3. We have for sufficiently regular functions 𝑢, 𝑤 with support in K = {(𝑡, 𝑥) : 𝑡 ≥ 𝑡0, 𝑡 ≥
|𝑥 | + 1}

��𝑄𝛼𝛽 (𝑢, 𝑤)�� � 1
𝑡

(
|𝐿𝑢 | |𝜕𝑤 | + |𝜕𝑢 | |𝐿𝑤 |

)
. (2.8)
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In addition, following from [17] of the hyperboloidal setting, we also have the following estimates
for all types of null forms.

Lemma 2.4. It holds for smooth functions 𝑢, 𝑤 with support in K = {(𝑡, 𝑥) : 𝑡 ≥ 𝑡0, 𝑡 ≥ |𝑥 | + 1} that��𝑄0 (𝑢, 𝑤)
�� + ��𝑄𝛼𝛽 (𝑢, 𝑤)�� � (𝑠/𝑡)2 |𝜕𝑡𝑢𝜕𝑡𝑤 | +

∑
𝑎,𝛼

(
|𝜕𝛼𝑢𝜕𝑎𝑤 | + |𝜕𝛼𝑤𝜕𝑎𝑢 |

)
. (2.9)

Proof. We revisit the proof for 𝑄0(𝑢, 𝑤) only, from [16], for readers who are not familiar with the
hyperboloidal foliation method.

Recall the semi-hyperboloidal frame

𝜕𝑡 = 𝜕0, 𝜕𝑎 = −𝑥𝑎
𝑡
𝜕0 + 𝜕𝑎,

and we express the null form 𝑄0(𝑢, 𝑤) in the semi-hyperboloidal frame to get

𝑄0 (𝑢, 𝑤) = − 𝑠
2

𝑡2
𝜕0𝑢𝜕0𝑤 − 𝑥𝑎

𝑡
(𝜕0𝑢𝜕

𝑎𝑤 + 𝜕0𝑤𝜕
𝑎𝑢) + 𝜕𝑎𝑢𝜕

𝑎𝑤.

Then the fact |𝑥 | ≤ 𝑡 concludes the estimates. �

2.3. Sobolev–type inequalities

Klainerman-Sobolev inequality
In order to obtain pointwise decay estimates for the Klein-Gordon components, we need the follow-
ing Klainerman-Sobolev inequality, which was introduced in [13]. We need the following version of
Klainerman-Sobolev inequality because it will not need to rely on the scaling vector field 𝐿0 = 𝑡𝜕𝑡 +𝑥𝑎𝜕𝑎
(which is not consistent with the Klein-Gordon equations), and this feature is vital in obtaining the mass-
independent pointwise decay results for the Klein-Gordon components.

Proposition 2.5. Assume 𝑢 = 𝑢(𝑡, 𝑥) is a sufficiently smooth function that decays sufficiently fast at
space infinity for each fixed 𝑡 ≥ 2; then for any 𝑡 ≥ 2, 𝑥 ∈ R3, we have

|𝑢(𝑡, 𝑥) | � 𝑡−1 sup
0≤𝑡′ ≤2𝑡 , |𝐼 | ≤3

��Γ𝐼𝑢��
𝐿2 (R3) , Γ ∈ 𝑉 = {𝐿𝑎, 𝜕𝛼,Ω𝑎𝑏 = 𝑥𝑎𝜕𝑏 − 𝑥𝑏𝜕𝑎}. (2.10)

We will use a simplified version of Proposition 2.5 where we do not need to use the rotation vector
field because we only need to consider functions supported in K = {(𝑡, 𝑥) : 𝑡 ≥ 2, 𝑡 ≥ |𝑥 | + 1}.

Proposition 2.6. Assume 𝑢 = 𝑢(𝑡, 𝑥) is a sufficiently smooth function with support K; then for any 𝑡 ≥ 2,
𝑥 ∈ R3, we have

|𝑢(𝑡, 𝑥) | � 𝑡−1 sup
𝑡0≤𝑡′ ≤𝑡0+2𝑡 , |𝐼 |+ |𝐽 | ≤3

��𝜕𝐼 𝐿𝐽𝑢��
𝐿2 (R3) . (2.11)

Proof. The Klainerman-Sobolev inequality in equation (2.11) can be obtained from equation (2.10),
the commutator estimates, and the fact that∑

𝑎<𝑏

|Ω𝑎𝑏𝑤 | �
∑
𝑎

|𝐿𝑎𝑤 |

holds for all nice functions w with support K. �

Sobolev-type inequality on hyperboloids
We now recall a Sobolev-type inequality adapted to the hyperboloids from [16], which allows us to get
the (mass-dependent) sup-norm estimates for the Klein-Gordon components.
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Proposition 2.7. Let 𝑢 = 𝑢(𝑡, 𝑥) be a sufficiently nice function with support {(𝑡, 𝑥) : 𝑡 ≥ |𝑥 | + 1}; then
for all 𝑠 ≥ 2, one has

sup
H𝑠

��𝑡3/2𝑢(𝑡, 𝑥)
�� � ∑

|𝐽 | ≤2
‖𝐿𝐽𝑢‖𝐿2

𝑓
(H𝑠) , (2.12)

where the symbol L denotes the Lorentz boosts.
The Sobolev inequality in equation (2.12) combined with the commutator estimates gives us the

following inequality:

sup
H𝑠

��𝑠 𝑡1/2𝑢(𝑡, 𝑥)
�� � ∑

|𝐽 | ≤2
‖(𝑠/𝑡)𝐿𝐽𝑢‖𝐿2

𝑓
(H𝑠) . (2.13)

Hardy inequality on hyperboloids
Proposition 2.8. Let 𝑢 = 𝑢(𝑥) be a sufficiently smooth function in dimension 𝑑 ≥ 3; then it holds
(𝑟 = |𝑥 |) ��𝑟−1𝑢

��
𝐿2 (R𝑑) ≤ 𝐶

∑
𝑎

��𝜕𝑎𝑢��𝐿2 (R𝑑) . (2.14)

The Hardy inequality can also be adapted to the hyperboloidal setting; see, for instance, [16, 17].
Proposition 2.9. Assume the function u is sufficiently regular and supported in the region K; then for
all 𝑠 ≥ 2, one has

‖𝑟−1𝑢‖𝐿2
𝑓
(H𝑠) �

∑
𝑎

‖𝜕𝑎𝑢‖𝐿2
𝑓
(H𝑠) . (2.15)

As a consequence, we also have

‖𝑡−1𝑢‖𝐿2
𝑓
(H𝑠) �

∑
𝑎

‖𝜕𝑎𝑢‖𝐿2
𝑓
(H𝑠) . (2.16)

Sobolev embedding theorem
We recall the following type of Sobolev embedding theorem.
Proposition 2.10. Let 𝑢 = 𝑢(𝑥) ∈ 𝐿6/5(R3); then it holds that��� 𝑢

Λ

���
𝐿2 (R3)

� ‖𝑢‖𝐿6/5 (R3) , (2.17)

in which Λ =
√
−Δ =

√
−𝜕𝑎𝜕𝑎.

2.4. Energy estimates for Klein-Gordon equations

Given a function 𝑢 = 𝑢(𝑡, 𝑥) supported in K, we define its energy E𝑚, following [16], on a hyperboloid
H𝑠 by

E𝑚(𝑠, 𝑢) :=
∫
H𝑠

( (
𝜕𝑡𝑢

)2 +
∑
𝑎

(
𝜕𝑎𝑢

)2 + 2(𝑥𝑎/𝑡)𝜕𝑡𝑢𝜕𝑎𝑢 + 𝑚2𝑢2
)
𝑑𝑥

=
∫
H𝑠

( (
(𝑠/𝑡)𝜕𝑡𝑢

)2 +
∑
𝑎

(
𝜕𝑎𝑢

)2 + 𝑚2𝑢2
)
𝑑𝑥

=
∫
H𝑠

( (
𝜕⊥𝑢

)2 +
∑
𝑎

(
(𝑠/𝑡)𝜕𝑎𝑢

)2 +
∑
𝑎<𝑏

(
𝑡−1Ω𝑎𝑏𝑢

)2 + 𝑚2𝑢2
)
𝑑𝑥,

(2.18)
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in which 𝜕⊥ := 𝜕𝑡 + (𝑥𝑎/𝑡)𝜕𝑎 is the orthogonal vector field. The integral 𝐿2
𝑓 (H𝑠) is defined by

‖𝑢‖2
𝐿2

𝑓
(H𝑠)

:=
∫
H𝑠

|𝑢 |2 𝑑𝑥 :=
∫
R3

��𝑢(√𝑠2 + |𝑥 |2, 𝑥)
��2 𝑑𝑥. (2.19)

We note that it holds
��(𝑠/𝑡)𝜕𝑢��

𝐿2
𝑓
(H𝑠) +

∑
𝑎

��𝜕𝑎𝑢��𝐿2
𝑓
(H𝑠) � E𝑚(𝑠, 𝑢)1/2,

which will be used frequently.
Next, we demonstrate the energy estimates in the hyperboloidal setting.

Proposition 2.11 (Energy estimates for wave-Klein-Gordon equations). For 𝑚 ≥ 0 and for 𝑠 ≥ 𝑠0 (with
𝑠0 = 2), it holds that

E𝑚 (𝑠, 𝑢)1/2 ≤ E𝑚(𝑠0, 𝑢)1/2 +
∫ 𝑠

2

�� − �𝑢 + 𝑚2𝑢
��
𝐿2

𝑓
(H𝑠′ )

𝑑𝑠′ (2.20)

for all sufficiently regular functions u, which are defined and supported in K[𝑠0 ,𝑠] =
⋃
𝑠0≤𝑠′≤𝑠H𝑠′ .

The proof of equation (2.20) can be found in [16, 17].
In comparison with E𝑚, we use 𝐸𝑚 to denote the usual energy on the flat slices 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, which

is expressed as

𝐸𝑚(𝑡, 𝑢) =
∫
R3

��𝜕𝑢��2 + 𝑚2𝑢2 𝑑𝑥.

Similarly, we have the following energy estimate:

𝐸𝑚(𝑡, 𝑢)1/2 ≤ 𝐸𝑚(𝑡0, 𝑢)1/2 +
∫ 𝑡

2

�� − �𝑢 + 𝑚2𝑢
��
𝐿2 (R3) 𝑑𝑡

′. (2.21)

3. Mass-independent 𝐿2 norm estimates for Klein-Gordon equations

We will rely on the following key proposition to obtain the mass-independent 𝐿2–type energy estimates
for the solution to the system in equation (1.1). A similar result was previously obtained in [3], and we
now provide an enhanced version of it. We note that the improvements compared with the results in
[3] mainly include the following: 1) the norm for the right-hand side source is taken to be ‖ · ‖𝐿6/5 (R3)
in Proposition 3.1 instead of the previous weighted ‖|𝑥 | · ‖𝐿2 (R3) of [3], which allows us to benefit
from more decay rates in many cases; 2) the norm for the right-hand side source is without r-weight in
Proposition 3.1 compared with the result in [3], and this is expected to treat the non-compactly supported
case where it is much better to get rid of the r-weight in the region 𝑟 � 𝑡.

Proposition 3.1. Consider the wave-Klein-Gordon equation

−�𝑢 + 𝑚2𝑢 = 𝑓 ,
(
𝑢, 𝜕𝑡𝑢

)
(𝑡0) = (𝑢0, 𝑢1),

with mass 𝑚 ∈ [0, 1], and assume

‖𝑢0‖𝐿2 (R3) + ‖𝑢1‖𝐿2 (R3)
⋂
𝐿6/5 (R3) � 𝐶𝑡0 , ‖ 𝑓 ‖𝐿6/5 (R3) ≤ 𝐶 𝑓 𝑡

−1+𝑞 ,
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for some numbers 𝐶𝑡0 and 𝐶 𝑓 . Then we have

‖𝑢‖𝐿2 (R3) �

⎧⎪⎪⎨
⎪⎪⎩
𝐶𝑡0 + 𝐶 𝑓 𝑡𝑞 , 𝑞 > 0,
𝐶𝑡0 + 𝐶 𝑓 log 𝑡, 𝑞 = 0,
𝐶𝑡0 + 𝐶 𝑓 , 𝑞 < 0.

(3.1)

Proof. We first write the equation of u in the Fourier space (𝑡, 𝜉)

𝜕𝑡𝜕𝑡 �̂� + 𝜉2
𝑚�̂� = �̂�

and solve the ordinary differential equation to get the solution

�̂�(𝑡, 𝜉) = cos
(
𝑡𝜉𝑚

)
�̂�0 +

sin
(
𝑡𝜉𝑚

)
𝜉𝑚

�̂�1 +
1
𝜉𝑚

∫ 𝑡

𝑡0

sin
(
(𝑡 − 𝑡 ′)𝜉𝑚

)
�̂� (𝑡 ′) 𝑑𝑡 ′,

with the notations defined by

�̂�0 = 𝑢0, �̂�1 = 𝑢1, 𝜉𝑚 =
√

4𝜋2 |𝜉 |2 + 𝑚2 ≥ |𝜉 |.

Next, we take the 𝐿2 norm in the frequency space to obtain���̂�(𝑡, ·)��
𝐿2 (R3)

�
�� cos

(
𝑡𝜉𝑚

)
�̂�0
��
𝐿2 (R3) +

��� sin
(
𝑡𝜉𝑚

)
𝜉𝑚

�̂�1

���
𝐿2 (R3)

+
��� 1
𝜉𝑚

∫ 𝑡

𝑡0

sin
(
(𝑡 − 𝑡 ′)𝜉𝑚

)
�̂� (𝑡 ′) 𝑑𝑡 ′

���
𝐿2 (R3)

�
���̂�0

��
𝐿2 (R3) +

��� 1
|𝜉 | �̂�1

���
𝐿2 (R3)

+
∫ 𝑡

𝑡0

��� 1
|𝜉 | �̂� (𝑡

′)
���
𝐿2 (R3)

𝑑𝑡 ′,

which in the physical space reads

��𝑢(𝑡, ·)��
𝐿2 (R3) �

��𝑢0
��
𝐿2 (R3) +

���𝑢1
Λ

���
𝐿2 (R3)

+
∫ 𝑡

𝑡0

��� 𝑓 (𝑡 ′)
Λ

���
𝐿2 (R3)

𝑑𝑡 ′,

with Λ =
√
−𝜕𝑎𝜕𝑎.

Then by the Sobolev embedding theorem in equation (2.17), we admit

��𝑢(𝑡, ·)��
𝐿2 (R3) �

��𝑢0
��
𝐿2 (R3) +

��𝑢1
��
𝐿6/5 (R3) +

∫ 𝑡

𝑡0

�� 𝑓 (𝑡 ′)��
𝐿6/5 (R3) 𝑑𝑡

′,

and the simple result of the integral
∫ 𝑡

𝑡0

𝑡 ′−1+𝑞 𝑑𝑡 ′

implies the desired result of equation (3.1). �

We note in the proof that to obtain the 𝐿2–type energy estimates for the solution, we transformed the
original equation to the Fourier space, solved the corresponding ordinary differential equation and then
conducted the analysis. It is worth mentioning that we find such procedures to bound the 𝐿2–type norms
for Klein-Gordon equations (with possibly vanishing mass) can also be applied to pure wave equations,
especially in the low dimension where the conformal energy cannot bound the 𝐿2 norm of the solution;
see, for instance, [4].
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As a consequence, combined with the Klainerman-Sobolev inequality in equation (2.10), we also get

‖𝑢‖𝐿∞ (R3) �

⎧⎪⎪⎨
⎪⎪⎩
𝐶𝑡0 𝑡

−1 + 𝐶 𝑓 𝑡−1+𝑞 , 𝑞 > 0,
𝐶𝑡0 𝑡

−1 + 𝐶 𝑓 𝑡−1 log 𝑡, 𝑞 = 0,
𝐶𝑡0 𝑡

−1 + 𝐶 𝑓 𝑡−1, 𝑞 < 0,
(3.2)

if additional information for higher-order energy is true (with Γ ∈ {𝜕,Ω, 𝐿})��Γ𝐼𝑢(𝑡0)��𝐿2 (R3) +
��Γ𝐼 𝜕𝑡𝑢(𝑡0)��𝐿2 (R3)

⋂
𝐿6/5 (R3) � 𝐶𝑡0 ,

��Γ𝐼 𝑓 ��
𝐿6/5 (R3) ≤ 𝐶 𝑓 𝑡

−1+𝑞 , |𝐼 | ≤ 3.

4. Proof for the global existence result

4.1. Initialisation of the bootstrap method

In this section, we aim to prove the uniform global existence result for the system in equation (1.1) via
the hyperboloidal foliation method.

As usual, we will rely on the bootstrap method. The local well-posedness result allows us to assume
(for all i)

E𝑚(𝑠, 𝜕𝐼 𝐿𝐽 𝑣𝑖)1/2 ≤ 𝐶1𝜖, |𝐼 | + |𝐽 | ≤ 𝑁, (4.1)

for all 𝑠 ∈ [𝑠0, 𝑠1) with 𝑠1 > 𝑠0. In equation (4.1), 𝐶1 � 1 is some large constant to be determined, and
𝜖 > 0 is the size of the initial data satisfying 𝐶1𝜖 � 𝛿 � 1, and 𝑠1 is defined by

𝑠1 := sup{𝑠 : 𝑠 > 𝑠0, equation (4.1) holds}. (4.2)

If 𝑠1 = +∞, then the global existence result is done. So in the following proof, we first assume 𝑠1 < +∞
and then deduce contradictions to assert that 𝑠1 must be +∞.

By recalling the definition of the energy E𝑚, we easily have the following estimates.

Lemma 4.1. Assume equation (4.1) holds; then for all 𝑠 ∈ [𝑠0, 𝑠1) and |𝐼 | + |𝐽 | ≤ 𝑁 , we have the
following estimates:

��(𝑠/𝑡)𝜕𝜕𝐼 𝐿𝐽 𝑣𝑖��𝐿2
𝑓
(H𝑠) + 𝑚

��𝜕𝐼 𝐿𝐽 𝑣𝑖��𝐿2
𝑓
(H𝑠) +

∑
𝑎

��𝜕𝑎𝜕𝐼 𝐿𝐽 𝑣𝑖��𝐿2
𝑓
(H𝑠) � 𝐶1𝜖,

��(𝑠/𝑡)𝜕𝐼 𝐿𝐽 𝜕𝑣𝑖��𝐿2
𝑓
(H𝑠) +

∑
𝑎

��𝜕𝐼 𝐿𝐽 𝜕𝑎𝑣𝑖��𝐿2
𝑓
(H𝑠) � 𝐶1𝜖 .

(4.3)

Combined with the Sobolev–type inequality on hyperboloids in equation (2.12), the following point-
wise estimates are valid.

Lemma 4.2. For all |𝐼 | + |𝐽 | ≤ 𝑁 − 2, we have
��(𝑠/𝑡)𝜕𝜕𝐼 𝐿𝐽 𝑣𝑖 �� + 𝑚��𝜕𝐼 𝐿𝐽 𝑣𝑖 �� +∑

𝑎

��𝜕𝑎𝜕𝐼 𝐿𝐽 𝑣𝑖 �� � 𝐶1𝜖𝑡
−3/2. (4.4)

In addition to the estimates above, we also introduce estimates obtained by using the Hardy inequality
in equations (2.15)–(2.16). They will not be used in the current section but will be used in Section 5.

Lemma 4.3. The following estimates are valid:��𝑡−1𝜕𝐼 𝐿𝐽 𝑣𝑖
��
𝐿2

𝑓
(H𝑠) � 𝐶1𝜖, |𝐼 | + |𝐽 | ≤ 𝑁,��𝜕𝐼 𝐿𝐽 𝑣𝑖 �� � 𝐶1𝜖𝑡

−1/2, |𝐼 | + |𝐽 | ≤ 𝑁 − 2.
(4.5)
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4.2. Improved energy estimates and global existence result

We now want to show the improved energy estimates for the solution 𝑣 = (𝑣𝑖) and conclude the global
existence result.

Proposition 4.4 (Improved energy estimates). Let the assumptions in equation (4.1) be true; then for
all 𝑠 ∈ [𝑠0, 𝑠1), it holds that

E𝑚(𝑠, 𝜕𝐼 𝐿𝐽 𝑣𝑖)1/2 � 𝜖 + (𝐶1𝜖)2, |𝐼 | + |𝐽 | ≤ 𝑁. (4.6)

Proof. When the vector field 𝜕𝐼 𝐿𝐽 with |𝐼 | + |𝐽 | ≤ 𝑁 acts on the model equations in (1.1),
we get

−�𝜕𝐼 𝐿𝐽 𝑣𝑖 + 𝑚2𝜕𝐼 𝐿𝐽 𝑣𝑖 = 𝑁
𝑗𝑘
𝑖 𝜕𝐼 𝐿𝐽𝑄0 (𝑣 𝑗 , 𝑣𝑘 ) + 𝑀

𝑗𝑘𝛼𝛽
𝑖 𝜕𝐼 𝐿𝐽𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 ).

According to the commutator estimates in Lemma 2.2, we can bound the right-hand side as
follows:

��𝑁 𝑗𝑘𝑖 𝜕𝐼 𝐿𝐽𝑄0 (𝑣 𝑗 , 𝑣𝑘 ) + 𝑀
𝑗𝑘𝛼𝛽
𝑖 𝜕𝐼 𝐿𝐽𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 )

��
�

∑
𝑗 ,𝑘,𝛼,𝛽

|𝐼1 |+ |𝐼2 | ≤ |𝐼 |, |𝐽1 |+ |𝐽2 | ≤ |𝐽 |

(��𝑄0 (𝜕𝐼1𝐿𝐽1𝑣 𝑗 , 𝜕
𝐼2𝐿𝐽2𝑣𝑘 )

�� + ��𝑄𝛼𝛽 (𝜕𝐼1𝐿𝐽1𝑣 𝑗 , 𝜕
𝐼2𝐿𝐽2𝑣𝑘 )

��) .

Then the estimates for null forms in the hyperboloidal setting in Lemma 2.4 yield

��𝑁 𝑗𝑘𝑖 𝜕𝐼 𝐿𝐽𝑄0(𝑣 𝑗 , 𝑣𝑘 ) + 𝑀
𝑗𝑘𝛼𝛽
𝑖 𝜕𝐼 𝐿𝐽𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 )

��
�

∑
𝑗 ,𝑘,𝛼,𝑎

|𝐼1 |+ |𝐼2 | ≤ |𝐼 |, |𝐽1 |+ |𝐽2 | ≤ |𝐽 |

(
(𝑠/𝑡)2��𝜕𝑡𝜕𝐼1𝐿𝐽1𝑣 𝑗𝜕𝑡𝜕

𝐼2𝐿𝐽2𝑣𝑘
��

+
��𝜕𝛼𝜕𝐼1𝐿𝐽1𝑣 𝑗𝜕𝑎𝜕

𝐼2𝐿𝐽2𝑣𝑘
�� + ��𝜕𝛼𝜕𝐼2𝐿𝐽2𝑣𝑘𝜕𝑎𝜕

𝐼1𝐿𝐽1𝑣 𝑗
��) .

We rely on the energy estimates for Klein-Gordon equations on hyperboloids in equation (2.20)
to get

E𝑚(𝑠, 𝜕𝐼 𝐿𝐽 𝑣𝑖)1/2

≤ E𝑚(𝑠0, 𝜕
𝐼 𝐿𝐽 𝑣𝑖)1/2 +

∫ 𝑠

𝑠0

��𝑁 𝑗𝑘𝑖 𝜕𝐼 𝐿𝐽𝑄0 (𝑣 𝑗 , 𝑣𝑘 ) + 𝑀
𝑗𝑘𝛼𝛽
𝑖 𝜕𝐼 𝐿𝐽𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 )

��
𝐿2

𝑓
(H𝑠′ )

𝑑𝑠′

� 𝜖 +
∑
𝑗 ,𝑘,𝛼,𝑎

|𝐼1 |+ |𝐼2 | ≤ |𝐼 |, |𝐽1 |+ |𝐽2 | ≤ |𝐽 |

∫ 𝑠

𝑠0

���(𝑠/𝑡)2��𝜕𝑡𝜕𝐼1𝐿𝐽1𝑣 𝑗𝜕𝑡𝜕
𝐼2𝐿𝐽2𝑣𝑘

��

+
��𝜕𝛼𝜕𝐼1𝐿𝐽1𝑣 𝑗𝜕𝑎𝜕

𝐼2𝐿𝐽2𝑣𝑘
�� + ��𝜕𝛼𝜕𝐼2𝐿𝐽2𝑣𝑘𝜕𝑎𝜕

𝐼1𝐿𝐽1𝑣 𝑗
�����
𝐿2

𝑓
(H𝑠′ )

𝑑𝑠′.
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We thus have (since2 𝑁 ≥ 6)

E𝑚(𝑠, 𝜕𝐼 𝐿𝐽 𝑣𝑖)1/2

� 𝜖 +
∑
𝑗 ,𝑘,𝛼,𝑎

|𝐼1 |+ |𝐽1 | ≤𝑁 , |𝐼2 |+ |𝐽2 | ≤𝑁−2

∫ 𝑠

𝑠0

(��(𝑠′/𝑡)𝜕𝑡𝜕𝐼1𝐿𝐽1𝑣 𝑗
��
𝐿2

𝑓
(H𝑠′ )

��(𝑠′/𝑡)𝜕𝑡𝜕𝐼2𝐿𝐽2𝑣𝑘
��
𝐿∞

𝑓
(H𝑠′ )

+
��(𝑠′/𝑡)𝜕𝛼𝜕𝐼1𝐿𝐽1𝑣 𝑗

��
𝐿2

𝑓
(H𝑠′ )

��(𝑡/𝑠′)𝜕𝑎𝜕𝐼2𝐿𝐽2𝑣𝑘
��
𝐿∞

𝑓
(H𝑠′ )

+
��𝜕𝑎𝜕𝐼1𝐿𝐽1𝑣 𝑗

��
𝐿2

𝑓
(H𝑠′ )

��𝜕𝛼𝜕𝐼2𝐿𝐽2𝑣𝑘
��
𝐿∞

𝑓
(H𝑠′ )

)
𝑑𝑠′

� 𝜖 + (𝐶1𝜖)2
∫ 𝑠

𝑠0

��𝑡−3/2 + 𝑡−1/2𝑠′−1��
𝐿∞ (H𝑠′ )

𝑑𝑠′ � 𝜖 + (𝐶1𝜖)2.

Hence the proof is done. �

As a consequence of the improved energy estimates in Proposition 4.4, we conclude the global
existence result of the system in equation (1.1).

Proof of the global existence result. We choose 𝐶1 large and 𝜖 small such that

𝐶
(
𝜖 + (𝐶1𝜖)2) ≤ 1

2
𝐶1𝜖,

in which C is the hidden constant in equation (4.6), which thus leads us to the improved estimates

E𝑚(𝑠, 𝜕𝐼 𝐿𝐽 𝑣𝑖)1/2 ≤ 1
2
𝐶1𝜖, |𝐼 | + |𝐽 | ≤ 𝑁.

If 𝑠1 > 𝑠0 is some finite number, then the improved estimates above imply that we can extend the
solution 𝑣 = (𝑣𝑖) to a strictly larger (hyperbolic) time interval, which contradicts the definition of 𝑠1 in
equation (4.2). Hence 𝑠1 must be +∞, which implies the global existence of the solution 𝑣 = (𝑣𝑖) to the
system in equation (1.1). �

5. Proof for the uniform pointwise decay result

5.1. Decomposition and nonlinear transformation

Our task in this section is to show the unified pointwise decay estimate in equation (1.4)

��𝑣𝑖 (𝑡, 𝑥)�� � 1
𝑡 + 𝑚𝑡3/2 ,

which corresponds to the usual wave decay and Klein-Gordon decay with 𝑚 = 0, 1, respectively. This
is the bulk of the paper.

Recall the system in equation (1.1):

−�𝑣𝑖 + 𝑚2𝑣𝑖 = 𝑁
𝑗𝑘
𝑖 𝑄0 (𝑣 𝑗 , 𝑣𝑘 ) + 𝑀

𝑗𝑘𝛼𝛽
𝑖 𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 ),(

𝑣𝑖 , 𝜕𝑡𝑣𝑖
)
(𝑡0) =

(
𝑣𝑖0, 𝑣𝑖1

)
.

In order to arrive at equation (1.4), it suffices to show��𝑣𝑖 (𝑡, 𝑥)�� � 𝑡−1, (5.1)

2Actually, 𝑁 ≥ 4 is enough to ensure the global existence result.
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which is because we already obtain ��𝑣𝑖 (𝑡, 𝑥)�� � 𝑚−1𝑡−3/2

in Section 4. To achieve equation (5.1), we first do a nonlinear transformation from 𝑣𝑖 to𝑉𝑖 = 𝑣𝑖+𝑁 𝑗𝑘𝑖 𝑣 𝑗𝑣𝑘
and then decompose 𝑉𝑖 into pieces

𝑉𝑖 = 𝑉𝑐,𝑖 +𝑉𝑚,𝑖 +𝑉𝑛,𝑖 . (5.2)

For clarity, we note that we use 𝑉𝑐,𝑖 to denote the decomposition with cubic nonlinearities, use 𝑉𝑚,𝑖
to denote the decomposition with nonlinearities with m-dependent factors and use 𝑉𝑛,𝑖 to denote the
decomposition with null nonlinearities of the type𝑄𝛼𝛽 . The functions V’s are solutions to the following
(linear) Klein-Gordon equations:

−�𝑉𝑖 + 𝑚2𝑉𝑖 = 𝑀
𝑗𝑘𝛼𝛽
𝑖 𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 ) − 𝑚2𝑁

𝑗𝑘
𝑖 𝑣 𝑗𝑣𝑘

+ 𝑁
𝑗𝑘
𝑖 𝑣𝑘

(
𝑁𝑚𝑛𝑗 𝑄0 (𝑣𝑚, 𝑣𝑛) + 𝑀

𝑚𝑛𝛼𝛽
𝑗 𝑄𝛼𝛽 (𝑣𝑚, 𝑣𝑛)

)
+ 𝑁

𝑗𝑘
𝑖 𝑣 𝑗

(
𝑁𝑚𝑛𝑘 𝑄0 (𝑣𝑚, 𝑣𝑛) + 𝑀

𝑚𝑛𝛼𝛽
𝑘 𝑄𝛼𝛽 (𝑣𝑚, 𝑣𝑛)

)
,(

𝑉𝑖 , 𝜕𝑡𝑉𝑖
)
(𝑡0) =

(
𝑉𝑖0, 𝑉𝑖1

)
:=

(
𝑣𝑖0 + 𝑁

𝑗𝑘
𝑖 𝑣 𝑗0𝑣𝑘0, 𝑣𝑖1 + 𝑁

𝑗𝑘
𝑖 (𝑣 𝑗0𝑣𝑘1 + 𝑣 𝑗1𝑣𝑘0)

)
,

(5.3)

−�𝑉𝑐,𝑖 + 𝑚2𝑉𝑐,𝑖 = 𝑁
𝑗𝑘
𝑖 𝑣𝑘

(
𝑁𝑚𝑛𝑗 𝑄0 (𝑣𝑚, 𝑣𝑛) + 𝑀

𝑚𝑛𝛼𝛽
𝑗 𝑄𝛼𝛽 (𝑣𝑚, 𝑣𝑛)

)
+ 𝑁

𝑗𝑘
𝑖 𝑣 𝑗

(
𝑁𝑚𝑛𝑘 𝑄0(𝑣𝑚, 𝑣𝑛) + 𝑀

𝑚𝑛𝛼𝛽
𝑘 𝑄𝛼𝛽 (𝑣𝑚, 𝑣𝑛)

)
,(

𝑉𝑐,𝑖 , 𝜕𝑡𝑉𝑐,𝑖
)
(𝑡0) =

(
𝑉𝑖0, 𝑉𝑖1

)
,

(5.4)

−�𝑉𝑚,𝑖 + 𝑚2𝑉𝑚,𝑖 = −𝑚2𝑁
𝑗𝑘
𝑖 𝑣 𝑗𝑣𝑘 ,(

𝑉𝑚,𝑖 , 𝜕𝑡𝑉𝑚,𝑖
)
(𝑡0) = (0, 0),

(5.5)

as well as

−�𝑉𝑛,𝑖 + 𝑚2𝑉𝑛,𝑖 = 𝑀
𝑗𝑘𝛼𝛽
𝑖 𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 ),(

𝑉𝑛,𝑖 , 𝜕𝑡𝑉𝑛,𝑖
)
(𝑡0) = (0, 0).

(5.6)

In addition to the decomposition above, we find it helps to utilise the divergence structure of the null
forms of the form 𝑄𝛼𝛽 if we further decompose the 𝑉𝑛,𝑖 part as

𝑉𝑛,𝑖 = 𝑉5
𝑛,𝑖 + 𝜕𝛾𝑉

𝛾
𝑛,𝑖 . (5.7)

We use𝑉5
𝑛,𝑖 , 𝑉

𝛾
𝑛,𝑖 to denote the decomposition with 0 nonlinearities and divergent nonlinearities without

𝜕𝛾 , respectively. Similarly, 𝑉5
𝑛,𝑖 , 𝑉

𝛾
𝑛,𝑖 are solutions to the following (linear) Klein-Gordon equations:

−�𝑉5
𝑛,𝑖 + 𝑚

2𝑉5
𝑛,𝑖 = 0,(

𝑉5
𝑛,𝑖 , 𝜕𝑡𝑉

5
𝑛,𝑖

)
(𝑡0) = (0, 0),

(5.8)

−�𝑉𝛾𝑛,𝑖 + 𝑚
2𝑉
𝛾
𝑛,𝑖 = 𝑀

𝑗𝑘𝛾𝛽
𝑖 𝑣 𝑗𝜕𝛽𝑣𝑘 − 𝑀

𝑗𝑘𝛼𝛾
𝑖 𝑣 𝑗𝜕𝛼𝑣𝑘 ,(

𝑉
𝛾
𝑛,𝑖 , 𝜕𝑡𝑉

𝛾
𝑛,𝑖

)
(𝑡0) = (0, 0).

(5.9)

5.2. The mass-independent 𝐿2 norm estimates

Recall that our goal is to obtain the following mass-independent 𝐿2 estimates for functions Vs, and we
will rely on the bootstrap method one more time to achieve it.
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Proposition 5.1. For all |𝐼 | + |𝐽 | ≤ 𝑁 − 1 (and for each i), we have��𝜕𝐼 𝐿𝐽 (𝑉𝑐,𝑖 , 𝑉𝑚,𝑖 , 𝑉𝑛,𝑖 , 𝑉5
𝑛,𝑖

)��
𝐿2 (R3) + 𝑡

−𝛿��𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖��𝐿2 (R3) ≤ 𝐶3𝜖, (5.10)

and for all |𝐼 | + |𝐽 | = 𝑁 , we have��𝜕𝐼 𝐿𝐽 (𝑉𝑐,𝑖 , 𝑉𝑚,𝑖 , 𝑉5
𝑛,𝑖

)��
𝐿2 (R3) + 𝑡

−𝛿��𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖��𝐿2 (R3) ≤ 𝐶3𝜖, (5.11)

in which 𝐶3 ≥ 𝐶2 ≥ 𝐶1 are some constants to be determined.

We have the following results, which are a consequence of the pointwise decay estimate��𝜕𝐼 𝐿𝐽 𝜕𝑣, 𝜕𝜕𝐼 𝐿𝐽 𝑣�� � 𝐶1𝜖𝑡
−1, |𝐼 | + |𝐽 | ≤ 𝑁 − 2,

obtained in Section 4.

Lemma 5.2. We have for all |𝐼 | + |𝐽 | ≤ 𝑁 − 2 that

𝐸𝑚 (𝑡, 𝜕𝐼 𝐿𝐽 𝑣)1/2 � 𝐶1𝜖𝑡
𝛿/2. (5.12)

Since we are proving energy estimates for linear equations, we know the solutions already exist. We
first prove the energy estimates for the low-order cases. By the continuity of the energy, we assume the
following bounds are valid for all 𝑡 ∈ [𝑡0, 𝑡1):��𝜕𝐼 𝐿𝐽 (𝑉𝑐,𝑖 , 𝑉𝑚,𝑖 , 𝑉𝑛,𝑖 , 𝑉5

𝑛,𝑖

)��
𝐿2 (R3) + 𝑡

−𝛿��𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖��𝐿2 (R3) ≤ 𝐶2𝜖, |𝐼 | + |𝐽 | ≤ 𝑁 − 3,��𝜕𝐼 𝐿𝐽 (𝑉𝑐,𝑖 , 𝑉𝑚,𝑖 , 𝑉5
𝑛,𝑖

)��
𝐿2 (R3) + 𝑡

−𝛿��𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖��𝐿2 (R3) ≤ 𝐶2𝜖, |𝐼 | + |𝐽 | ≤ 𝑁 − 2.
(5.13)

Similar to the definition of 𝑠1 in Section 4, 𝑡1 is defined by

𝑡1 := sup{𝑡 : 𝑡 > 𝑡0, equation (5.13) holds}. (5.14)

A direct result from the bootstrap assumption in equation (5.13) is the following.

Lemma 5.3. For all 𝑡 ∈ [𝑡0, 𝑡1), we have��𝜕𝐼 𝐿𝐽 𝑣��
𝐿2 (R3) � 𝐶2𝜖, |𝐼 | + |𝐽 | ≤ 𝑁 − 3,��𝜕𝐼 𝐿𝐽 𝑣��
𝐿2 (R3) � 𝐶2𝜖𝑡

𝛿 , |𝐼 | + |𝐽 | = 𝑁 − 2.
(5.15)

Proof. For all |𝐼 | + |𝐽 | ≤ 𝑁 − 3, we first have��𝜕𝐼 𝐿𝐽𝑉��
𝐿2 (R3) � 𝐶2𝜖,

which simply follows from the relations

𝑉𝑖 = 𝑉𝑐,𝑖 +𝑉𝑚,𝑖 +𝑉𝑛,𝑖 , 𝑉𝑛,𝑖 = 𝑉5
𝑛,𝑖 + 𝜕𝛾𝑉

𝛾
𝑛,𝑖 ,

and the commutator estimate in Lemma 2.1��[𝜕, 𝐿]𝑢�� � |𝜕𝑢 |.

Next, we recall it holds that

𝑣𝑖 = 𝑉𝑖 − 𝑁
𝑗𝑘
𝑖 𝑣 𝑗𝑣𝑘 .
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Thus we get∑
|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝐼 𝐿𝐽 𝑣𝑖��𝐿2 (R3)

�
∑

|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝐼 𝐿𝐽𝑉𝑖��𝐿2 (R3) +
∑

|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝐼 𝐿𝐽 𝑣𝑖��𝐿2 (R3)

∑
|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝐼 𝐿𝐽 𝑣𝑖��𝐿∞ (R3) ,

and the pointwise estimate obtained in Lemma 4.3 yields∑
|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝐼 𝐿𝐽 𝑣𝑖��𝐿2 (R3) �
∑

|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝐼 𝐿𝐽𝑉𝑖��𝐿2 (R3) + 𝐶1𝜖𝑡
−1/2

∑
|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝐼 𝐿𝐽 𝑣𝑖��𝐿2 (R3) ,

and the smallness of 𝐶1𝜖 allows us finally to obtain∑
|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝐼 𝐿𝐽 𝑣𝑖��𝐿2 (R3) �
∑

|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝐼 𝐿𝐽𝑉𝑖��𝐿2 (R3) .

The bound for the case of |𝐼 | + |𝐽 | = 𝑁 − 2 can be derived in the same way; hence the proof is
complete. �

We are going to derive the improved estimates under the bootstrap assumption of equation (5.13),
and we first provide the improved estimates for low-order cases.

Proposition 5.4. Let the estimate in equation (5.13) be true; then for any 𝑡 ∈ [𝑡0, 𝑡1), we have
��𝜕𝐼 𝐿𝐽 (𝑉𝑐,𝑖 , 𝑉𝑚,𝑖 , 𝑉𝑛,𝑖 , 𝑉5

𝑛,𝑖

)��
𝐿2 (R3) + 𝑡

−𝛿��𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖��𝐿2 (R3) � 𝜖 + (𝐶2𝜖)2, |𝐼 | + |𝐽 | ≤ 𝑁 − 3,��𝜕𝐼 𝐿𝐽 (𝑉𝑐,𝑖 , 𝑉𝑚,𝑖 , 𝑉5
𝑛,𝑖

)��
𝐿2 (R3) + 𝑡

−𝛿��𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖��𝐿2 (R3) � 𝜖 + (𝐶2𝜖)2, |𝐼 | + |𝐽 | ≤ 𝑁 − 2.
(5.16)

Proof. In terms of the features of each term, we estimate them one by one.
Estimate for

��𝜕𝐼 𝐿𝐽𝑉𝑚,𝑖��𝐿2 (R3) . We start with the easy one, and the energy estimate for the 𝜕𝐼 𝐿𝐽𝑉𝑚,𝑖
equation gives

𝐸𝑚 (𝑡, 𝜕𝐼 𝐿𝐽𝑉𝑚,𝑖)1/2 ≤ 𝐸𝑚(𝑡0, 𝜕𝐼 𝐿𝐽𝑉𝑚,𝑖)1/2 +
∫ 𝑡

𝑡0

��𝜕𝐼 𝐿𝐽𝐹𝑉𝑚,𝑖

��
𝐿2 (R3) 𝑑𝑡

′,

with

𝐹𝑉𝑚,𝑖 = −𝑚2𝑁
𝑗𝑘
𝑖 𝑣 𝑗𝑣𝑘 .

Recall the m-dependent pointwise estimate

𝑚
��𝜕𝐼 𝐿𝐽 𝑣�� � 𝐶1𝜖𝑡

−3/2,

and we get

𝐸𝑚(𝑡, 𝜕𝐼 𝐿𝐽𝑉𝑚,𝑖)1/2 � 𝑚2𝜖 + 𝑚
∫ 𝑡

𝑡0

∑
|𝐼 |+ |𝐽 | ≤𝑁−2

��𝜕𝐼 𝐿𝐽 𝑣��
𝐿2 (R3)

∑
|𝐼 |+ |𝐽 | ≤𝑁−2

��𝑚𝜕𝐼 𝐿𝐽 𝑣��
𝐿∞ (R3) 𝑑𝑡

′

� 𝑚2𝜖 + 𝑚𝐶1𝜖𝐶2𝜖

∫ 𝑡

𝑡0

𝑡 ′−3/2+𝛿 𝑑𝑡 ′ � 𝑚𝐶1𝜖𝐶2𝜖 .
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Hence the definition of the energy 𝐸𝑚 implies that��𝜕𝐼 𝐿𝐽𝑉𝑚,𝑖��𝐿2 (R3) � 𝐶1𝜖𝐶2𝜖 .

Estimates for
��𝜕𝐼 𝐿𝐽𝑉𝑐,𝑖��𝐿2 (R3) ,

��𝜕𝐼 𝐿𝐽𝑉𝑛,𝑖��𝐿2 (R3) ,
��𝜕𝐼 𝐿𝐽𝑉5

𝑛,𝑖

��
𝐿2 (R3) . Since the procedure is the

same when estimating these three solutions, we gather the proof here.
For the equations with fast-decay nonlinearities, which is the situation now, we rely on Proposition

3.1 to obtain the m-independent 𝐿2 norm bounds. Thus it suffices to estimate ‖nonlinearities‖𝐿6/5 (R3) .
We find for estimating

��𝜕𝐼 𝐿𝐽𝑉𝑐,𝑖��𝐿2 (R3) it suffices to show that

∑
|𝐼 |+ |𝐽 | ≤𝑁−2

���𝜕𝐼 𝐿𝐽 (𝑁 𝑗𝑘𝑖 𝑣𝑘
(
𝑁𝑚𝑛𝑗 𝑄0 (𝑣𝑚, 𝑣𝑛) + 𝑀

𝑚𝑛𝛼𝛽
𝑗 𝑄𝛼𝛽 (𝑣𝑚, 𝑣𝑛)

)

+ 𝑁
𝑗𝑘
𝑖 𝑣 𝑗

(
𝑁𝑚𝑛𝑘 𝑄0 (𝑣𝑚, 𝑣𝑛) + 𝑀

𝑚𝑛𝛼𝛽
𝑘 𝑄𝛼𝛽 (𝑣𝑚, 𝑣𝑛)

) )���
𝐿6/5 (R3)

�
∑

|𝐼 |+ |𝐽 | ≤𝑁−2

��𝜕𝐼 𝐿𝐽 𝑣��
𝐿2 (R3)

∑
|𝐼 |+ |𝐽 | ≤𝑁−2

��𝜕𝐼 𝐿𝐽 𝜕𝑣��2
𝐿6 (R3)

� 𝐶2𝜖𝑡
𝛿

∑
|𝐼 |+ |𝐽 | ≤𝑁−2

��𝜕𝐼 𝐿𝐽 𝜕𝑣��2/3
𝐿2

∑
|𝐼 |+ |𝐽 | ≤𝑁−2

��𝜕𝐼 𝐿𝐽 𝜕𝑣��4/3
𝐿∞

� 𝐶2𝜖 (𝐶1𝜖)2𝑡−4/3+2𝛿 ,

in which we used the estimate in equation (5.12).
Similarly, in order to estimate

��𝜕𝐼 𝐿𝐽𝑉𝑛,𝑖��𝐿2 (R3) , we need to demonstrate that
∑

|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝐼 𝐿𝐽 (𝑀 𝑗𝑘𝛼𝛽
𝑖 𝑄𝛼𝛽 (𝑣 𝑗 , 𝑣𝑘 )

)
‖𝐿6/5 (R3)

� 𝑡−1
∑

|𝐼 |+ |𝐽 | ≤𝑁−2

��𝜕𝐼 𝐿𝐽 𝑣��
𝐿2 (R3)

∑
|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝜕𝐼 𝐿𝐽 𝑣��
𝐿3 (R3)

� 𝐶2𝜖𝑡
−1+𝛿

∑
|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝜕𝐼 𝐿𝐽 𝑣��2/3
𝐿2 (R3)

∑
|𝐼 |+ |𝐽 | ≤𝑁−3

��𝜕𝜕𝐼 𝐿𝐽 𝑣��1/3
𝐿∞ (R3)

� 𝐶2𝜖𝐶1𝜖𝑡
−4/3+𝛿 .

The estimate for
��𝜕𝐼 𝐿𝐽𝑉5

𝑛,𝑖

��
𝐿2 (R3) with |𝐼 | + |𝐽 | ≤ 𝑁 −2 is trivial according to Proposition 3.1, since

the equation is homogeneous.
Estimate for

��𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖��𝐿2 (R3) . We utilise the energy estimate for the equation of 𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖 with
|𝐼 | + |𝐽 | ≤ 𝑁 − 2 to get

𝐸𝑚(𝑡, 𝜕𝐼 𝐿𝐽𝑉𝛾𝑛,𝑖)
1/2 ≤

∫ 𝑡

𝑡0

��𝜕𝐼 𝐿𝐽 (𝑀 𝑗𝑘𝛾𝛽
𝑖 𝑣 𝑗𝜕𝛽𝑣𝑘 − 𝑀

𝑗𝑘𝛼𝛾
𝑖 𝑣 𝑗𝜕𝛼𝑣𝑘

)��
𝐿2 (R3) 𝑑𝑡

′

�
∫ 𝑡

𝑡0

∑
|𝐼 |+ |𝐽 | ≤𝑁−2

��𝜕𝐼 𝐿𝐽 𝑣��
𝐿2 (R3)

∑
|𝐼 |+ |𝐽 | ≤𝑁−2

��𝜕𝜕𝐼 𝐿𝐽 𝑣��
𝐿∞ (R3) 𝑑𝑡

′

�
∫ 𝑡

𝑡0

𝐶2𝜖𝑡
′𝛿𝐶1𝜖𝑡

′−1 𝑑𝑡 ′ � 𝐶2𝜖𝐶1𝜖𝑡
𝛿 .

By the definition of 𝐸𝑚 and the commutator estimates, we deduce��𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖��𝐿2 (R3) � 𝐶2𝜖𝐶1𝜖𝑡
𝛿 , |𝐼 | + |𝐽 | ≤ 𝑁 − 2.

�
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According to the refined bounds in Proposition 5.4, we easily know that the estimates in equation
(5.13) are true for all 𝑡 ∈ [𝑡0, +∞) after carefully choosing 𝐶2 large enough and 𝜖 sufficiently small (we
might shrink the choice of 𝜖 in Proof 4.2 if needed, and nothing else is affected).

The Klainerman-Sobolev inequality in equation (2.11) together with equation (5.13) provides the
following mass-independent results��𝜕𝐼 𝐿𝐽 𝑣��

𝐿2 (R3) � 𝐶2𝜖, |𝐼 | + |𝐽 | ≤ 𝑁 − 3,��𝜕𝐼 𝐿𝐽 𝑣��
𝐿2 (R3) � 𝐶2𝜖𝑡

𝛿 , |𝐼 | + |𝐽 | = 𝑁 − 2,��𝜕𝐼 𝐿𝐽 𝑣��
𝐿∞ (R3) � 𝐶2𝜖𝑡

−1, |𝐼 | + |𝐽 | ≤ 𝑁 − 6,

(5.17)

which are valid for all 𝑡 ∈ [𝑡0, +∞).
Next, to proceed to prove the bounds of high-order energy in Proposition 5.1, we make new bootstrap

assumptions for 𝑡 ∈ [𝑡0, 𝑡2) (and for all i):��𝜕𝐼 𝐿𝐽 (𝑉𝑐,𝑖 , 𝑉𝑚,𝑖 , 𝑉𝑛,𝑖 , 𝑉5
𝑛,𝑖

)��
𝐿2 (R3) + 𝑡

−𝛿��𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖��𝐿2 (R3) ≤ 𝐶3𝜖, |𝐼 | + |𝐽 | ≤ 𝑁 − 1,��𝜕𝐼 𝐿𝐽 (𝑉𝑐,𝑖 , 𝑉𝑚,𝑖 , 𝑉5
𝑛,𝑖

)��
𝐿2 (R3) + 𝑡

−𝛿��𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖��𝐿2 (R3) ≤ 𝐶3𝜖, |𝐼 | + |𝐽 | ≤ 𝑁.
(5.18)

Similar to the definition of 𝑡1, 𝑡2 is defined by

𝑡2 := sup{𝑡 : 𝑡 > 𝑡0, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.18) ℎ𝑜𝑙𝑑𝑠}. (5.19)

Recall that 𝐶3 ≥ 𝐶2 is to be determined.
We have the following refined estimates for high-order cases.

Proposition 5.5. Assuming the estimate in equation (5.18) is true, then for all 𝑡 ∈ [𝑡0, 𝑡2), we have��𝜕𝐼 𝐿𝐽 (𝑉𝑐,𝑖 , 𝑉𝑚,𝑖 , 𝑉𝑛,𝑖 , 𝑉5
𝑛,𝑖

)��
𝐿2 (R3) + 𝑡

−𝛿��𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖��𝐿2 (R3) � 𝜖 + (𝐶3𝜖)2, |𝐼 | + |𝐽 | ≤ 𝑁 − 1,��𝜕𝐼 𝐿𝐽 (𝑉𝑐,𝑖 , 𝑉𝑚,𝑖 , 𝑉5
𝑛,𝑖

)��
𝐿2 (R3) + 𝑡

−𝛿��𝜕𝐼 𝐿𝐽 𝜕𝑉𝛾𝑛,𝑖��𝐿2 (R3) � 𝜖 + (𝐶3𝜖)2, |𝐼 | + |𝐽 | ≤ 𝑁.

(5.20)

The proof for Proposition 5.4 also applies to Proposition 5.5, so we omit it. Also, similarly, we can
choose 𝐶3 large enough, and 𝜖 sufficiently small (we shrink it further if needed), so that we can improve
the estimates in equation (5.18) with a factor 1/2 in front of the original bounds. And this indicates that
the estimates in equation (5.18) are valid for all 𝑡 ∈ [𝑡0, +∞).

The proof for Proposition 5.1 follows from the established estimates in equations (5.13) and (5.18),
which are valid for all 𝑡 ∈ [𝑡0, +∞).

5.3. The mass-independent wave decay for the solution

With the estimates built in Proposition 5.1, we have the following results for the original solution
𝑣 = (𝑣𝑖).

Lemma 5.6. For all 𝑡 ∈ [𝑡0, +∞), we have��𝜕𝐼 𝐿𝐽 𝑣��
𝐿2 (R3) � 𝐶3𝜖, |𝐼 | + |𝐽 | ≤ 𝑁 − 1,��𝜕𝐼 𝐿𝐽 𝑣��
𝐿2 (R3) � 𝐶3𝜖𝑡

𝛿 , |𝐼 | + |𝐽 | = 𝑁.
(5.21)

The proof for Lemma 5.6 follows from the proof for Lemma 5.3.
Next, we apply the Klainerman-Sobolev inequality in equation (2.11) to arrive at the mass-

independent pointwise decay results.
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Proposition 5.7. It holds that��𝜕𝐼 𝐿𝐽 𝑣��
𝐿∞ (R3) � 𝐶3𝜖𝑡

−1, |𝐼 | + |𝐽 | ≤ 𝑁 − 4,��𝜕𝐼 𝐿𝐽 𝑣��
𝐿∞ (R3) � 𝐶3𝜖𝑡

−1+𝛿 , |𝐼 | + |𝐽 | = 𝑁 − 3.
(5.22)

We now establish equation (1.4) in Theorem 1.1.

Proof of equation (1.4). From Proposition 5.7, we obtain the mass-independent pointwise decay result��𝑣𝑖 �� � 𝑡−1,

while the estimates in Lemma 4.2 give us the mass-dependent Klein-Gordon decay��𝑣𝑖 �� � 𝑚−1𝑡−3/2, 𝑚 ∈ (0, 1] .

Combining these two kinds of decay bounds, we are led to

��𝑣𝑖 �� � 1
𝑡 + 𝑚𝑡3/2 , 𝑚 ∈ (0, 1] . (5.23)

But we see equation (5.23) is obviously true for the case of 𝑚 = 0 (because it is just the case of wave
equations), and hence the proof for equation (1.4) is complete. �

6. Proof for the covergence result

With the global existence result and the unified pointwise decay result prepared in the last two sections,
we now want to build the convergence result when the mass parameter m goes to 0.

Proof of Theorem 1.2. We take the difference between the equation of 𝑣 (𝑚)𝑖 and the equation of 𝑣 (0)𝑖 to
have

− �
(
𝑣 (𝑚)𝑖 − 𝑣 (0)𝑖

)
+ 𝑚2 (𝑣 (𝑚)𝑖 − 𝑣 (0)𝑖

)
= −𝑚2𝑣 (0)𝑖 + 𝑁

𝑗𝑘
𝑖 𝑄0

(
𝑣 (𝑚)𝑗 − 𝑣 (0)𝑗 , 𝑣 (𝑚)𝑘

)
+ 𝑁

𝑗𝑘
𝑖 𝑄0

(
𝑣 (0)𝑗 , 𝑣 (𝑚)𝑘 − 𝑣 (0)𝑘

)
+ 𝑀

𝑗𝑘𝛼𝛽
𝑖 𝑄𝛼𝛽

(
𝑣 (𝑚)𝑗 − 𝑣 (0)𝑗 , 𝑣 (𝑚)𝑘

)
+ 𝑀

𝑗𝑘𝛼𝛽
𝑖 𝑄𝛼𝛽

(
𝑣 (0)𝑗 , 𝑣 (𝑚)𝑘 − 𝑣 (0)𝑘

)
=: 𝐹 (𝑚) ,

with zero initial data
(
𝑣 (𝑚)𝑖 − 𝑣 (0)𝑖 , 𝜕𝑡𝑣

(𝑚)
𝑖 − 𝜕𝑡𝑣

(0)
𝑖

)
(𝑡0) = (0, 0).

The vector field 𝜕𝐼 𝐿𝐽 with |𝐼 | + |𝐽 | ≤ 𝑁 − 2 acts on the equation 𝑣 (𝑚)𝑖 − 𝑣 (0)𝑖 , and then the energy
estimates give

𝐸𝑚
(
𝑡, 𝜕𝐼 𝐿𝐽 𝑣 (𝑚)𝑖 − 𝜕𝐼 𝐿𝐽 𝑣 (0)𝑖

)1/2 ≤ 𝐸𝑚
(
𝑡0, 𝜕

𝐼 𝐿𝐽 𝑣 (𝑚)𝑖 − 𝜕𝐼 𝐿𝐽 𝑣 (0)𝑖
)1/2 +

∫ 𝑡

𝑡0

��𝜕𝐼 𝐿𝐽𝐹 (𝑚)��
𝐿2 (R3) 𝑑𝑡

′,

and by the fact
��𝜕𝜕𝐼 𝐿𝐽 𝑣�� � 𝐶1𝜖𝑡

−1, we further have

𝐸𝑚
(
𝑡, 𝜕𝐼 𝐿𝐽 𝑣 (𝑚)𝑖 − 𝜕𝐼 𝐿𝐽 𝑣 (0)𝑖

)1/2

� 𝑚2𝐶1𝜖𝑡 + 𝐶1𝜖
∑

|𝐼 |+ |𝐽 | ≤𝑁−2

∫ 𝑡

𝑡0

𝑡 ′−1𝐸𝑚
(
𝑡 ′, 𝜕𝐼 𝐿𝐽 𝑣 (𝑚)𝑖 − 𝜕𝐼 𝐿𝐽 𝑣 (0)𝑖

)1/2
𝑑𝑡 ′.
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In succession, we apply Gronwall’s inequality to obtain∑
|𝐼 |+ |𝐽 | ≤𝑁−2

𝐸𝑚
(
𝑡, 𝜕𝐼 𝐿𝐽 𝑣 (𝑚)𝑖 − 𝜕𝐼 𝐿𝐽 𝑣 (0)𝑖

)1/2 � 𝑚2𝐶1𝜖𝑡
1+𝐶𝐶1 𝜖 , (6.1)

with C a generic constant.
Thus by choosing 𝜖 sufficiently small such that 𝐶𝐶1𝜖 ≤ 𝛿/2, we complete the proof for the cases of

|𝐼 | + |𝐽 | ≤ 𝑁 − 2.
Based on the estimates obtained and the Klainerman-Sobolev inequality in equation (2.11), we obtain∑

|𝐼 |+ |𝐽 | ≤𝑁−5

��𝜕𝜕𝐼 𝐿𝐽 𝑣 (𝑚)𝑖 − 𝜕𝜕𝐼 𝐿𝐽 𝑣 (0)𝑖
��
𝐿∞ (R3) � 𝑚2𝐶1𝜖𝑡

𝛿/2;

then for |𝐼 | + |𝐽 | ≤ 𝑁 with 𝑁 ≥ 6, we can bound∫ 𝑡

𝑡0

��𝜕𝐼 𝐿𝐽𝐹 (𝑚)��
𝐿2 (R3) 𝑑𝑥 � 𝑚2𝐶1𝜖𝑡

1+𝛿/2 + 𝐶1𝜖
∑

|𝐼 |+ |𝐽 | ≤𝑁

∫ 𝑡

𝑡0

𝑡 ′−1𝐸𝑚
(
𝑡 ′, 𝜕𝐼 𝐿𝐽 𝑣 (𝑚)𝑖 − 𝜕𝐼 𝐿𝐽 𝑣 (0)𝑖

)1/2
𝑑𝑡 ′,

which further yields∑
|𝐼 |+ |𝐽 | ≤𝑁

𝐸𝑚
(
𝑡, 𝜕𝐼 𝐿𝐽 𝑣 (𝑚)𝑖 − 𝜕𝐼 𝐿𝐽 𝑣 (0)𝑖

)1/2

� 𝑚2𝐶1𝜖𝑡
1+𝛿/2 + 𝐶1𝜖

∑
|𝐼 |+ |𝐽 | ≤𝑁

∫ 𝑡

𝑡0

𝑡 ′−1𝐸𝑚
(
𝑡 ′, 𝜕𝐼 𝐿𝐽 𝑣 (𝑚)𝑖 − 𝜕𝐼 𝐿𝐽 𝑣 (0)𝑖

)1/2
𝑑𝑡 ′.

Again, Gronwall’s inequality deduces that (by letting 𝜖 sufficiently small)∑
|𝐼 |+ |𝐽 | ≤𝑁

𝐸𝑚
(
𝑡, 𝜕𝐼 𝐿𝐽 𝑣 (𝑚)𝑖 − 𝜕𝐼 𝐿𝐽 𝑣 (0)𝑖

)1/2 � 𝑚2𝐶1𝜖𝑡
1+𝛿 . (6.2)

Now the proof is complete. �
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