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CONFORMAL IMMERSIONS OF COMPACT RIEMANN

SURFACES INTO THE 2^-SPHERE (n > 2)

JUN-ICHI HANO

The purpose of this article is to prove the following theorem:

Let n be a positive integer larger than or equal to 2, and let S be the unit sphere

in the 2n -+• 1 dimensional Euclidean space. Given a compact Riemann surface, we can

always find a conformal and minimal immersion of the surface into S whose image is

not lying in any 2n — 1 dimensional hyperplane.

This is a partial generalization of the result by R. L. Bryant. In this papers,

he demonstrates the existence of a conformal and minimal immersion of a compact

Riemann surface into S n, which is generically 1 :1, when n = 2 ([2]) and n = 3

We start with an idea formulated by Bryant in his paper [2], which is also

fundamental for our proof. Let V be the set of all maximal isotropic subspaces in

C with respect to the complex symmetric bilinear form, the extension of the

standard inner product on R . The set V is a connected compact complex mani-
n

fold and has a natural projection π on the unit sphere S n, defining the twistor

bundle (V, π, S ), where the SO (2/2 + 1)-actions on V and on S n are equivar-

iant under the projection π. Beginning with E. Calabi's work ([5], [6]), the twister

bundle plays an important role in the geometry of minimal surfaces, or more

generally harmonic maps of surfaces, in S . (For recent developments on twistor

bundles over even dimensional Riemannian symmetric spaces and their applica-

tions, we refer to Bryant [3], Burstall-Rawnsley [4]).

There is a distribution T on V perpendicular to the fibre at each point with

respect to any Riemannian metric invariant under the SO(2n + 1)-action, which

is not integrable, but is holomorphic [2]. An oriented surface immersed in S n has

a complex structure canonically determined by the orientation and the first fun-

damental form. The basic idea of Bryant's proof [2] is that if a Riemann surface M

admits an anti-holomorphic immersion φ into V whose image is tangent to the dis-

tribution T at each point on M, then π,φ : M—> 5 n is a minimal and conformal
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immersion.

Furthermore, the complex manifold V admits a holomorphic imbedding into

the complex projective space P 2 ~~\ introduced by E. Cartan [7] in connection with

the spinor representation. For our purpose, it is crucial that the imbedding can be

written in an explicit form in terms of the Cartan coordinates on a dense open

subset in V, so that V is realized as a projective submanifold of a simple form.

Our task is to combine the above two known results. In the section 1, we

study the distribution T on the twistor space V and give its concrete description

in terms of Cartan's local holomorphic coordinates (Lemma 1.1). In the section 2,

making use of the Clifford algebra, we treat the projective imbedding of V (Lemma

2.1). In his lecture notes [7] (Chap. V, 92), E. Cartan suggests a quite different,

more direct approach to the projective imbedding. We would like to explore his

idea elsewhere.

The first half of the section 3 is a survey of differential geometry of a surface

in 5 which admits an anti-holomorphic section into the bundle space V whose

image is tangent to the distribution T. Corresponding to two different aspacts of

the twistor space, we state two characterizations of such immersion (Lemma 3.2

and 3.4). In Lemma 3.6, we show that if the image of such section is in general

position in P (not contained in any linear submanifold), then the surface in S n

can not lie in any hyperplane of dimension 2n — 1. In the last section 4, using the

Riemann-Roch theorem, we construct an anti-holomorphic immersion of a given

compact Riemann surface into P whose image is contained in V, tangent to the

distribution T and in general position in P 2 ~\ This yields immediately the main

theorem.

1. The twistor space over S

1.1. The real Cartesian space R n+ is contained in C n+ canonically and its

standard inner product extends to a complex symmetric bilinear form on C

which will be denoted by B.

Using the standard basis {ε̂  λ = 0 , 1 , . . . , w, Γ , . . . , n'} of R n+ we put

(1.1.1) e0 = ε0, et = (lΛ/2)(ε, - / ^ T ε Γ ) , ev = (1/^2) (εi + / = T ε Γ ) .

Then {eλ λ = 0 , 1 , . . . , n, 1 ' , . . . , nf) is a basis of C , and

B(Σλaλeλ, Σλbλeλ) = aobo + ΈMfiv + M<)

With this basis, the standard hermitian form is given by
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INTO THE 2w-SPHERE 81

H(Σλaλeλ1 Σλbλeλ) = Σλaλbλ.

We denote by Gc and by G respectively the matrix representations of the spe-

cial complex orthogonal group S0(2n + 1, C) and the special orthogonal group

SO (2w + 1) with respect to the basis {eλ}. The group Gc consists of all complex

matrices leaving the complex bilinear form B and the wedge product ε0 Λ ε1 Λ εv

Λ . . . Λ εn Λ εnr invariant, and the group G is the intersection of Gc and the

unitary group U(2n + 1).

Let g and gc be the Lie algebras of G and Gc respectively. A complex (2n +

1, 2n + 1) matrix X belongs to gc if and only if its entries Xλlί satisfy the follow-

ing conditions:

and X belongs to g if and only if X is skew-hermitian and belongs to gc.

n+1.2. A complex subspace V of the vector space C n+ is said to be isotropic

if the restriction of B to V is identically zero. Every maximal isotropic subspace

in C n+ is of the same dimension n, by Witt's Theorem. We denote by V the set of
n+all maximal isotropic subspaces in C

The subspace Vo spanned by elf. . ., en in the basis (1.1.1) is a maximal isot-

ropic subspace. Take an arbitrary maximal isotropic subspace V, and choose an

orthonormal basis {flt. . ., fn} of V with respect to H. Let / , denote the complex

conjugate of f{ with respect to R . Then, there exists one and only one unit vec-

tor /0 such that /0 is orthogonal to f l f . . ., fn, fv...,fn and that

(1.2.1) ε o Λ ^ Λ ε ^ Λ . . . Λ εn Λ en, = ( - v ^ T ) w / 0 Λ (fλ ΛfjΛ . . . Λ(/WΛ/M).

Arranging these 2n + 1 column vectors /0, fv . . ., fn, fίf. . ., /w, we obtain a

matrix belonging to G, which maps e{ to fi9 (i — 0 ,1, . . . , n), and et to /,, (i —

1,.. ., /z), and hence Vo to V. Thus, both G and Gc act transitively on V.

Moreover, the correspondence π : F l ~^/ 0 is a G-equivariant map from V onto

the unit sphere 5 . As the bundle space of the fiber bundle (V, TΓ, 5 ), V is the

twistor space of the sphere S n ([13]IV, 9).

The subset (Gc)0 of all matrices in the complex Lie group Gc which leave the

complex subspace Vo invariant is a complex Lie subgroup of Gc. Thus, the quo-

tient space V of the complex Lie group Gc modulo (Gc)0 is a connected compact

complex manifold. Its complex dimension is n(n + l )/2.

We denote by H the subgroup in G consisting of all matrices leaving the vec-
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tor e0 invariant, and by K the subgroup of all matrices leaving the subspace Vo in-

variant or equivalently the complex conjugate of VQ invariant. The subgroup H is

isomorphic to S0(2w), and if is a subgroup of H and isomorphic to U(n). As quo-

tient spaces of G, V = G/K and S n = G/H. We denote by Π the quotient map

G—* G/K = V. The composite it. Π is the quotient map G"~* G/H — S .

The Lie subalgebras in 9 corresponding to the Lie subgroups K and H are de-

noted by f and t) respectively.

1.3. Given a point p ^ S , let us take an arbitrary maximal isotropic sub-

space V lying over p and its complex conjugate V with respect to the real vector

space R . Clearly V Γ) V = {0}. The direct sum F + V" is the complexification

of the tangent space Sp to S n at p. There exists a unique complex structure Jp on

Sp such that V is the subspace of all eigen-vectors belonging to the eigen-value

V'— 1 of Jp (i.e., the (l.O)-component of the complexification of Sp. The endomorph-

ism Jp is orthogonal with respect to the inner product on Sp.

Conversely, take an orthogonal complex structure Jp on the tangent space Spt

and a unitary basis ifv . . ., fn} of the (l.O)-component V of the complexification

of Sp. Obviously, V is a maximal isotropic subspace in C . As a point in V, V is

lying over p, this is π{V) = p if and only if (1.2.1) is satisfied, with f0 — pΛίn is

even, τr(V) = τr(V) = p, but if n is odd, one and only one of 7r(V) and τr(V) is ̂ >.

1.4. Consider V as the quotient space GC/(GC)O, where (Gc)0 is the isotropy

subgroup at the point 0 = Vo ^ V. We denote by L (resp. LJ the subgroup of

matrices in (Gc)0 which induce the identity on the subspace VQ (resp. leave not

only Vo, but also its complex conjugate Vo). The subgroup L is nilpotent, connected

and simply connected. The subgroup Lx is isomorphic to GL(n> C).

The isotropy subgroup (Gc)0 is the semi-direct product of its normal sub-

group L and the subgroup L1 and hence connected. Later we need the fact that the

normalizer of (Gc)0 in Gc coincides with (Gc)0. This follows easily from that a

vector in C n+ kept fixed by the subgroup L belongs to Vo.

Let (gc)0 be the Lie subalgebra corresponding to the subgroup (Gc)0. We re-

gard the quotient space 9 c /(g c ) 0 as the (l,0)-component of the complexification of

the tangent space T(V)0 to V at the point 0. Then, the isomorphism: g/f—•

g c /(g c ) 0 induced by the inclusion g c gc maps a real vector in T(V)0 to its (1,0)

component with respect to the complex structure on g c/(g c) 0. (The same vector in

T(V)0 can be a real vector as an element of g/I and its (1,0) component as an ele-

ment of gc/(gc)0.)
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1.5. Let n be the nilpotent subalgebra of gc consisting of matrices ξ =

(XJ with

,Xij = XiΎ = 0, Xiy = 0.

As a vector space, gc is the direct sum of subspaces π and (gc)0.

If ξ = Uζ^) e n, we set ξ, = Xo< = - Xvo and ξf, = X,,, = - Xri. We have

1

0
(1.5.1) expξ =

The connected Lie subgroup corresponding to the Lie algebra π intersects

with (Gc)0 at the identity, and the correspondence

q

o

difines a 1 :1 holomorphic map from the complex vector space π onto an open sub-

set Vo in V. We regard (ξi9 ξjk), 1 < i, j , k < n, ξjk + ξkj = 0, the complex

coordinates of the point (exp ξ) (Vo) on Vo.

Let x0, xv . . . , xn, xVi. . ., xnr be the complex coordinates of C n with re-

spect to the basis {eλ} in 1.1. These coordinate functions form the dual basis of

{eλ}. If (exp ξ) (Vo) = V, the restrictions of xlf. . ., xn form the dual basis of the

basis { (expξ)^, . . ., (expξ)en) of Vby (1.5.1), and V is the solutions subspace

of the following n + 1 linear equations (Cartan [7] Chap. V, 92):

(1.5.2)
, + (i/2)ζix0-: Liξ Λ = 0, (1 < < n).

Conversely, given (ξif ξjk) satisfying ξjk + ξkj = 0 (1 < i, j , k < n), the sub-

space V of solutions of the above n + 1 linear equations is a maximal isotropic

subspace in C n+ and belongs to Vo.

The image of the identity element e of Gc under Π is the point o = Vo, whose

coordinates are all zero. Take X = (Xλu) ^ Qc, and denote by X' a matrix in n de-

termined by X = Xr (mod (gc)0). Then (U^)e(Xe) = (Il*)e(X'e) and

(1.5.3) ΣiΊxiΊ(d/dξυ)0.

1.6. Let (V, π, S2n) be the fibre bundle constructed in 1.2. We show that

the fibre Y(p) over an arbitrary point p G S n is a connected complex sub-
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manifold.

Since V(^o) = H/K, it is connected and its real dimension is n{n + 1). Let f

be the ideal of π consisting of matrices ξ such that ξ{ = 0 (1 < i < n). If ξ e f,

(exp ξ) (e0) = e0 and the matrix exp ξ leaves the wedge product e0 Λ (eλ Λ ev) Λ

. . . Λ (en Λ enr) invariant by (1.5.1). Hence, the image of (exp £)(V0) under π is

e0 by definition, and (expξMVo) belongs to the fibre Y(e0). Comparing dimen-

sions, we see that in open subset Vo, the fibre Y(e0) is the complex submanifold

defined by ξx — * = ξn = 0. By the homogeneity of the G-action on V, we

obtain the desired result.

1.7. Let t be the subspace in the complex nilpotent subalgebra n defined by

ξjk = 0 (1 < >, k < n). We have π = t + f and t Γ) f = {0}. We denote by Ύo the

complex subspace t + (gc)</(gc)0 in the tangent space T(V)0 at o = Vo of V,

which is spanned by (d/dξ^^..., (d/dξn)0.

Since [(QC)0, t + (g c)J c t + (QC)0 and since (Gc)0 is connected, the sub-

space Ύo is invariant under the linear isotropy representation of (Gc)0. Hence,

there exists a Gc-invariant distribution T on V which assigns to the point o the

subspace To. As t + (gc)0 is not a subalgebra, T is not completely integrable.

Consider now V as the quotient space G/K. The tangent space at o to the

fibre V(^o) is ί)/f = f + (g c) 0/(g c) 0, on which the linear isotropic representation

of K induces the dual of the \]{n)-action on the space of all complex

skew-symmetric (n, ή) -matrices. The if-action leaves T σ invariant and its repre-

sentation on To is equivalent to the dual of the \J(n) -action on C . Clealy these

two representations of U W are inequίvalent.

With respect to any G-invariant Riemann metric on G/K=Y, the subspaces

ΐ)/ΐ and To are mutually orthogonal, and the distribution T assigns to each point

V on V the orthogonal complement Ύv of the tangent space of the fibre

V(ττ(V)) ih the tangent space to V.

Let 7Γ* be the differential of the projection 7Γ : V—• 5 .At each point V ^ V.

the restriction to Ύv of (τr^)v is an isomorphism onto the tangent space of S at

τr(V). If we choose the G-invariant Kahler metric on V associated to — l / ( 4 n — 2)

times the Killing form of g, this isomorphism becomes an isometry.

1.8. LEMMA 1.1. On the open subset Vo, the distribution T is defined by the

following n(n + 1) /2 equations:

(1.8.1) dξυ + (1 /2) (ξjdξt ~ ξtdξ,) = 0 , 1 < i < j < n.
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Proof. We denote by D the distribution on Vo which assings to each point

the subspace of solutions of the equations (1.8.1), and show that D = T. The n

vector fields

(1.8.2) d/dξk - a/2)Σιξιd/dξkl, 1 < k < n,

are solutions of (1.8.1) and span the distribution D. Since the subspace To is span-

ned by O/Sfx),,. . ., (d/dξn)0, Ύo = Do. Therefore, in order to verify T = D, it

suffices to show that D is invariant under the Gc-action. We will show that if g.o

^ Vo for some g ^ Gc, the image of Ύo under the differential of the translation Lg

coincides with Όg0 (1 < k < n).

Take an arbitrary vector X ^ Ύo. X is the tangent vector at o — Vo of the

path t •-> (exp tX).o for some X e t(1.7). We put σt = (g. exp tX),

where o = VQ.

(d/dί),.β(ξ<(σ f.V0)) = k, and W/df) ί=o(ξ,,(σ(.Fo)) = |,,,

Then,

a,)#GY*) = Σ^O/Sft),.,, + Σ^O/SftΛ.*-

This vector belongs to D^o, namely, written as a linear combination of n vector

fields given by (1.8.2) at g.o, if and only if its coefficients satisfy the equations

(1.8.3) ξμ + (l/2)k&(g.o) ~ ( l/2)t,ξ,(g.o) = 0 , 1 <j< i < n.

On account of Cartan's equations (1.5.2),

xy(σt.eϊ) + (l/2)ξj(σt.Vo)xo(σt.eι) — ΈtξH(σt.V^Xi(σt.e^ = 0,

1 < j , I < n. We differentiate both sides of each equation at t = 0 and obtain the

equality

(1.8.4) Σ,{£Λ + fe & ^
(g.X)n + Σ , { - a/2)ξi(g-θ)ξi(g.o) + ξt,(g.o)}(g.X)u, 1 <j,l<n.

Since J e t , (g.X)λ, = (g)λoX0ι- Take ξ e π such that (exp ξ).V0 = exp ξ.o

= g.o. By (1.5.1), the components of the column vector exp ζ.βj are

(£,(s.o),.. .,δ t f l - a/2)ξi(g.o)ξj(g.o) +ξu(g.o),...,).

Thus, the right hand side of the equality (1.8.4) is equal to
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B(expξ.ej9 g.eo)Xoι,

where B is the symmetric bilinear form defined in 1.1. Since expξ.βj ^ g.VQ,

B(exp ξ.ejy g.e0) = 0 and the left hand side of the equality (1.8.4) is zero. From

the assumption that g.VQ belongs to Vo, it follows that the determinant of the

(n, w)-minor ((g) ί ;) is not zero. Thus, we have verified the equalities (1.8.3) for

an arbitrary vector X* in To, completing the proof.

2. Cartan's projective imbedding

2.1. Here, we summarize what we need from the spin representation theory

([9] Ch.Π.§XI). Let us denote by N the set of integers {1 , . . . , n) and by N the col-

lection of all subsets in N, consisting of 2 subsets including the empty set 0 . For

A G N, # (A) denotes the number of integers in A, Ac the complement of A. For

A, B G N, A + B is the subset of those integers which belong to A U B but not

to A Π B. Given A> B ^ N, we denote by p(A, B) the number of pairs (i, j) such

that i^AJ^B and i > j, and put ε(A, B) = (- \)HA'B\

Let © be the Clifford algebra over C n+ with the symmetric bilinear form B,

the quotient algebra of the tensor algebra over Q2n+1 modulo the ideal generated

by v ® v + J3(0, v).l, v e C 2 w + 1. The subspace K2 spanned by [w, v] = uyυ —

υ.uiu, y e C w + ) is closed under the bracket product, and is a Lie algebra. To

each [u, v], we assign the linear map l([u, v]) of C given by w ^ [[u, v], w]

= 4(B(u, w)υ + B(v, w)u). Then / defines a Lie algebra isomorphism S2—• QC.

Using the basis ieλ} given by (1.1.1), we put

a{ = (1/4) [e0, et] and a, = (1/4) Uo, e Γ ] , 1 < i < n,

then, /(αf) = £ ί 0 — EQi, and /(αΓ) = Ero — Eoi, where Eλμ is the matrix whose

U, μ)-entry is 1 and others are all 0, Q, μ ^ {0,1, . . , w, l r , . . . , ;/}). Thus,

the Lie algebra K2 is generated by a{ and α Γ , 1 < i < n. Indeed,

(2.1.1) / ( - [aif a,]) = Eiy - Ejn / ( - [at, a,,]) = £ y - En,, and

/ ( - [α Γ , α r ] ) = EiΊ - En, 1 < i, < w.

In the associative algebra S,

(2.1.2) aflj 4- «yflf = α r# ;v + a ; , a r = 0 and a{ay + aya{ + (1/2)δ ί 7 = 0.

Hence,

(2.1.3) [ai9 a,] = 2^^-, [α/f ar] = 2aiay + (

and [atr, af] = 2avav, 1 < t, < w.
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INTO THE 2W-SPHERE 8 7

For each A = {iv..., iv} e N (1 < iλ < < iv < n), we put

(2.1.4) ΛA = W2)vβil...aia1,...aΛ,.

Then, by (2.1.2), we have

0, if i e A,

( 2 " L 6 ) --~A { O,ifi*A.

Thus, the subspace A in (£ spanned by these 2 elements Λ^, A ^ N, is a

right ideal in the associative subalgebra ©+ generated by 1 and S2. By assigning

to each element a in the subalgebra S (resp. the Lie algebra ©2), the restriction

K#) to Tl of the right multiplication by α, we obtain a representation of the asso-

ciative algebra ©+ (resp. the Lie algebra S2) on A We denote by p the homomorph-

ism r°l from gc into the general linear Lie algebra gl(/l).

We denote by H(λ) the diagonal matrix Σ ^ ( £ , , — Evv) = /(— Σ ^ , [α, ,

tf,Ί), /ί2

 e C, 1 < i < n. These diagonal matrices form a Cartan subalgebra of gc.

Using the equalities (2.1.2 and 3), we obtain

p(H(λ)).ΛA = ((-l/2)Σn

1λk+Σιίλi)ΛA, for A - « l f..., i j e N.

Thus, ( l/2)Σ 1 /ί A ; is the highest weight of the representation p and ΛN is a high-

est weight vector. The representation p on A is the spin representation of QC.

(With respect to the basis {AA, A ^ N), the matrix representations of r(a{ +

atf) and K(\/"~ 1) (^f ~ ^ r ) ) , are skew-hermitian.)

2.2 We denote by (Gc) the connected Lie subgroup in the general linear

group GLC4) corresponding to the Lie algebra K2. The center Z of (Gc) is {+ /}

and hence the group (Gc) is Spin (2n + 1, C), the universal covering group of

SO (2n + 1, C). Obviously, Gc = (Gc) /Z induces the isomorphism p.

Let us denote by P the complex projective space of all complex lines

through the origin in the 2w-dimensional complex vector space A, and by o the

point in P determined by the line along the highest weight vector ΛN. The com-

plex spin group (Gc) acts on the projective space modulo the center Z, and the

(Gc) -orbit through the point o can be identified with the complex manifold V —

GC/(GC)O.

The Lie subalgebra (QC)0 is spanned by

E,o - Ew (1 < i < n), Eir - Eh, (1 < i < j < ή) and

https://doi.org/10.1017/S0027763000005535 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005535


88 JUN-ICHI HANO

Etj-EjΎ(l <i,j<n),

and /" ((QC)0) is spanned by a{ (\ < i < n) > aμ^ (1 < i < j < n) and ava{ + δtj

(1 < i < j < n) by (2.1.1-3). Hence, p((Qc)0) is contained in the subalgebra of

matrices X such that p(X).ΛN is a scalar multiple of ΛN by (2.1.4.6). Moreover,

one can verify easily that these two subalgebras coincide. Thus, the isotropy sub-

group of (Gc) /Z at the point o contains a connected subgroup isomorphic to

(Gc)0 as its connected component. As is mentioned in 1.4, the normalizer of (Gc)0

in Gc is itself and hence the isotropy subgroup at o is isomorphic to (Gc)0.

Therefore, the (Gc) -orbit through the point o can be identified with GC/(GC)O

= y

We denote by c this imbedding of V into P . Given g ^ Gc, take g ^

(G c )* lying over g. Then, c(g.V) = g*.c(V) for V e V. Particularly, if X e gc,

(2.2.1) ί((exp JO.V) = (expp(X)).c(V) for F G V.

2.3. Our purpose is to describe the imbedding c in terms of the coordinates

(ζn ζjj) on the open subset Vo defined in 1.5 and of appropriate homogeneous

coordinates on the projective space P 2 ~\

We adopt some notational conventions following E. Cartan [7]. Let ilf. . ., i2k

be an arbitrary choice of 2k integers in N — {1, . . . , n]. We put

where in the summation {jlt.. ., j2k) runs over all permutations of iί9. . ., i2k, and
ε0Ί> t hi) denotes the sign of the permutation j l f . . ., j 2 k . Obviously, f̂ ...̂  is

skew-symmetric with respect to the indecies. If iv . . ., i2k are all distinct, ^ . . . /^

is equal to

.Σ ε(j1...j2k)(ξJJ...(ξht_liJ.
ha-i<ha',h< <hk

One can verify easily the equality

(2-3.D ?,„,, = Σ * r < - i) 'XA-.v.. i i M-
For any choice of 2k — 1 integers z\,.. ,,i2k-ι from iV, we put

as in the previous case. We have the equality

(2.3.2) £,.,_ = Σf^i- ir
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Again, ξ{ t _ is skew-symmetric in indeces.

If A = {ilf.. . ,ik} and 1 < i1 < . . . < ik < n, we also denote by ξA the func-

tion ξfi ik, and if A = 0, we put ξ0 = 1.

2.4. For later convenience, we prepare a new basis for the representation

space A. Given A = {iv. . . ,ik}, 1 < ix < . . . < ik < n, we put A° = {jv. . ., /;},

1 < ;\ < . . . < j ι < n, and

( 2 4 υ * Λ ί ( DεG4, ΛO^c, \y # (A) = 2A,

l * V ) l c , t / # (A) = 2A - 1,

where ΛAc = (y/2)ιah.. .auav.. .an, by (2.1.4).

LEMMA 2.1. Let (ξif ζjk) be the coordinates on the open subset Vo defined in 1.5
Γ 1 τ-»2 w —1 r * A

and let lzA\ be the homogeneous coordinates on r associated to the basis \ ΛA,

A G N} of A defined by (2.4.1).

Then, on the open subset Vo, the immersion c : V —• P maps the point with

coordinates (ξtf ξjk) to the point [ζA].

The result coincides with the projective imbedding defined by Cartan [7].

Proof Take an arbitrary point in Vo and let (ξo ξik) be the coordinates of

the point. The point is written as exp ξ. o for some ξ — (Xλf)
 e π where ξ{ =

XOi = - Xt,0 and ξy = XiΊ = - Xn (1.5). By (2.2.1), r(exp ξ. o) = exp p(ξ).

By definition, p = r ° l~\ and exp p(ξ) = exp ril^iξ)). By (2.1.2) and

(2.1.2),

/ Kξ) — — laiξidi, — Zj^ijdiray.

Since r is an associative algebra homomorphism of S+, one can easily verify

that Kexp a) = exp r(ά) for any a G g2. Thus,

(2.4.1) r(exp f. o) = e x p ( - ( Σ , ξ ^ Γ + Σ ί ; ? ί ; tfrtf;O).0*.

What left is to compute the left hand side of the above equality. For this, it is

helpful to notice that the subalgebra generated by av,. . ., anr is isomorphic to the

exterior algebra over the vector space spanned by these vectors. The exponential

in the right hand side of the equality is a finite sum.
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expΓ1® =

! ) ( - l)*{ft(Σ ftαr)(Σ ξιtaeayγ-χ + (Σ ξϋat,ar)
k) =

?,,.,_ «,,.«,_} + ΣtGfc!)2* Σ ?,.,„ aflmaftt.

For A = {ίu. ..,i), l<i,< ... <iv<n, by (2.1.5-6),

(ari...a,.).ΛN =

Thus,

where the constant CA = ( - l)*(lΛ/2)εG4, ΛO if # (A) = 2/c - 1, and C^ =

( - l)*e(A, iV) if # (A) = 2/c.

By (2.4.1), *ΛA = CAΛAc, and

(expΓ\ξ)).ΛN=ΣAmCA.ξA*ΛA.

Finally we have ^(^(exp ζ. o)) = ξA, completing the proof.

3. A class of surfaces in 5

3.1. In this section, we study local properties of an oriented surface M im-

mersed in 5 (n > 2). A complex structure is uniquely determined on M by the

orientation and the first fundamental form. Without loss of generality, we may

assume that a surface is sufficiently small and imbedded as a submanifold in 5 .

Let (V, π, S n) be the twistor bundle, and let Π: G~* V be the quotient map

defined in 1.2. Given an immersion of a surface M into S , we call a map φ : M

—* V a lift of the immersion, if π.φ is the given immersion. If m is a G-valued

function (Eo, Ev. . ., En, EVi. . ., En,) on M such that Eo is the immersion, then

the map Π.m, which assigns to a point p ^ M the maximal isotropic subspace

spanned by Ex{p), . . . , En(p), is a lift of M. Conversely, any lift is locally

obtained in this form. We say that a G-valued moving frame m determines a lift

Π.m.

We put

(3.1.1) d £ ; = Σ β £ A , a,μ = 0,l,...,n, Y,...,n').

As the matrix (Ωλl) is g-valued,

(3.1.2) β 0 0 = 0, Ωoi = - Ωro, Ωw = - Ωi0, ΩiΎ = - ΩH,

Ωif = - % , , β,,, = - Ωri, (ί, = 1,..., n), and
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Ω u λ = - Ω u λ , U . , μ = 0 , 1 , . . . , n , Γ , . . . , w θ .

LEMMA 3.1. Let φ : M—*Y be a lift of an oriented surface M immersed in S

(n ^ 2). Then, the image of M under φ is tangent to the distribution T at each point

if and only if on a neighborhood of each point on M, φ is determined by a G-valued

moving frame m satisfying the equalities

(3.1.3) Ωiy = ΩtΊ = 0, for 1 < t, < n.

A lift φ is further anti-holomorphic if and only if m satisfies both (3.1.3) and

(3.1.4) Ωoi = ΩOιr is of bidegree (0,1) for 1 < i < n.

Proof Take a point p ^ M, and a tangent vector X at p. Let Xf be the tan-

gent vector at the identity of the group G corresponding to the matrix

{(Ωλl)p{X)). The equalities (3.1.1) means that the image (rn*)p(X) of X under the

differential of m is the image of X' under the differential of the left translation

Lm(p). (That is, the matrix (Ωλ() of 1-forms is the reciprocal image of the

Maurer-Cartan form on the group G under the differential of m) Thus,

By (1.5.3), the (l.O)-component of (ϊl*)e(X') is

(3.1.5) ΣJΩJX) (d/dξ,)0 + Σ^Ω^υo

On account of Lemma 1.1, (φ^)p(X) is tangent to T at φ(p) if and only if

W y o ( ( Π ^ ( I O ) = 0 (1 < i <j < n), and hence if and only if (Ωir)p(X) = 0

(1 < i < j < n). We have seen that φ(M) is tangent to T if and only if (3.1.3)

holds. Suppose that this is the case. Again, from the expression (3.1.5) of

, it follows that φ is anti-holomorphic if and only if (3.1.4) is valid.

3.2. Let us impose an additional condition on a G-valued moving frame m

on M that E1 is a tangent vector field of bidegree (1,0) of M. Let (Ωlf Ωv) be the

dual basis of (Elf Ev). With respect to the complex structure on the surface, Ωx

and Ωy are of bidegree (1,0) and (0,1) respectively.

As before, we put

dEλ = ΣuEuΩuλ, U, μ = 0 , 1 , . . . , n, Γ , . . . , tΐ).

Since

(3.2.1) dE0 = E.Ω, +EVΩV9
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(3.2.2) Ωl0 = Ωl9 Ωvo = Ωv, and Ωu0 = 0 for μ = 2 , . . . ,w, 2',... n'.

LEMMA 3.2. Let φ : M—• V 6β α /i/ί o/ an oriented surface M immersed in S

(w > 2). Then, φ is anti- holomorphic and the image φ (M) is tangent to T if and only

if, on a neighborhood of each point on M, φ is determined by a G-valued moving

frame m, such that Eo is the immersion and Eλ is a tangent vector field of bidegree

(1,0) of M and that the condition (3.1.3) is satisfied, namely, Ωiy — ΩiΊ — 0, for

1 < ί, j < n.

Proof. The condition is sufficient. Indeed, for such a moving frame m, (3.1.3)

and (3.2.2) are valid, and hence the second condition (3.1.4) in Lemma 3.1 is satis-

fied.

Next, we show that the condition is necessary. By Lemma 3.1, there exists

locally a G-valued moving frame m satisfying (3.1.3) and (3.1.4). Let Fx be a

(l,O)-tangent vector field of unit length on M, and let Fv be the complex conjugate

of Fv Then, dE0 = F^ + FVΘV, where (Θv Θv) is the dual basis of (Flt

Fy) and Θ1 and Θv are of bidegree (1,0) and (0,1) respectively.

On the other hand, dE0 = ΣEtΩi0 + ΣEifΩifQ by (3.1.1). From (3.1.2) and

(3.1.4), it follows that the 1-form HE$i0 is of bidegree (1,0) and the 1-form

ΣErΩro is of bidegree (0,1). Therefore, F^ = Σ £ , β / 0

 T h i s implies that

Fx{p) belongs to the maximal isotropic subspace φ(p) spanned by E1(p), . . . ,

En(p) at each pointy. Thus, on a neighborhood of each point in M, we can choose

a G-valued moving frame mr such that its second column is F1 and that Π.m/ = φ.

Hence, mr satisfies the condition (3.1.3).

3.3. Let M be an oriented surface immersed in S . We denote by T(M) the

tangent bundle over M, and by S(M) the restriction to M of the tangent bundle

over 5 . Obviously, T(M) is a sub-bundle of S(Άί). With respect to the complex

structure on M, T(M) is a holomorphic vector bundle.

Let F be the subset of the group G consisting of matrices whose 0-th column,

regarded as a point in 5 , belongs to M. The right action by the subgroup H, con-

sisting of all matrices in G leaving e0 fixed, leaves F invariant and F/H = M.

Thus, F is the principal bundle of S(M) with the structure group H.

We denote by fl = (Ω λt) the restriction of the left invariant Maurer-

Cartan form on G to F, and by co the h-valued 1-form {θ)λι) given by ωλu — 0 if

either λ = 0 or μ — 0, and ωλu — Ω λβ otherwise. The form cυ defines a connec-

tion on the pricipal bundle F.

Let £ be a (smooth) section of the vector bundle S(M) defined on M, and let

https://doi.org/10.1017/S0027763000005535 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005535


INTO THE 2«-SPHERE 93

Y be a tangent vector field on M. The covariant differentiation VY(E) of E along

Fwith respect to the connection ω is given by the equality

(3.3.1) (dE) (Y)p = a(p)p + VY(E)P,

where a is a scalar and B(p, VY(E)P) = 0 ([11], Chap. VII).

For later use, we prepare the following

LEMMA 3.3. Suppose that F is an S(M)-valued section on M such that F(p) is

orthogonal to T(M)p at each point p G M. Then, VF = 0 if and only if F is a con-

stant R -valued function.

Proof If F is costant, obviously, VF = 0 by (3.3.1). Conversely, suppose

that VF = 0. Since B(p, F{p)) = 0 and B(T(M)py F(p)) = 0 by assumption,

a(p) = B(p, (dE) (Y)p) = 0 for any p and Y. Hence, dF = 0 by (3.3.1) and F is

constant.

3.4. Here, we regard a point in V as a complex structure Jp on the tangent

space Sp to S at p (1.3). We recall that the subgroup K in H consists of matrices

leaving the subspace Vo spanned by elf. . ., en invariant. The tangent space to S n

at e0 is spanned by εlf..., εn, ε r , . . ., εw,. The point Vo in V is the complex struc-

ture / 0 defined by /o.ε f = εΓ, / o .ε Γ = — ε, (1 < ί < w). The group ϋί is the sub-

group of matrices in H which commute with /0.

Let M be an oriented surface immersed in S . A necessary and sufficient

condition for the structure group H of the vector bundle S(M) to reduce to its

subgroup K is that each fibre Sp of the vector bundle S(M) admits an orthogonal

complex structure Jp so that S(M) is a complex vector bundle. If that is the case,

we denote by / the smooth section p "-• Jp. By replacing Jp with — Jp, if necessary,

we can always assume that/^, belongs to the fibre V(p) over p (1.3).

Suppose that S(M) is a complex vector bundle with a complex vector bundle

structure /. Then, the map p '-* /^ ^ V is a lift 0 of Λf. Conversely, to a lift φ of

Λf into V, there corresponds a complex vector bundle structure / on S(M) such

that φ (p) = Jp.

A reduction of the structure group H of S(M) to its subgroup K preserves

the connection ω in 3.3, if and only if the complex structure / is parallel, that is,

F / = 0 ([11] Chap. II, Prop. 7.4). If/ is parallel, S(M) is a holomorphic vector

bundle over M by a theorem of Koszul-Malgrange [12].

LEMMA 3.4. Let φ:M—*Y be a lift of an oriented surface M immersed in
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5 (n > 2). The image φ{M) is tangent to T if and only if the reduction of the struc-

ture group H of the real vector bundle S(M) to the subgroup K associated to φ pre-

serves the connection ω. The lift φ is further anti-holomorphic if and only if the tan-

gent vector bundle T(M) is a complex sub-bundle of the holomorphic vector bundle

S(M) associated to φ.

Proof. Let φ be an arbitrary lift of an oriented sufrace M, and let / be the

complex vector bundle structure on S(M) associated to φ. We take a local

G-valued moving frame m = (Eo, Elf..., En, Ev,..., Enr) such that ΐl.m = φ.

Applying (3.3.1) to each Eit we have

VE{ = dE{ - EQΩoi = ΣΪE,Ωjt + Σ^E.Ω^ (l<i<n).

The complex vector bundle structure / being parallel with respect to the con-

nection ω means that the bidegree of a section is preserved by the covariant dif-

ferentiation. Thus, VJ — 0 if and only if

VE, = ΣΊEjΩjt (l<i< w), and Ωn = 0, for 1 < ί, / < w,

or equivalently, M admits a lift whose image is tangent to T, in virtue of Lemma

3.1.

Suppose that M admits a lift φ whose image is tangent to T. Then, by Lemma

3.2, φ is anti-holomorphic if and only if we can choose a local G-valued moving

frame m such that ΐl.m = φ and that Eλ is a tangent vector field of bidegree (1,0),

which amounts to that the tangent bundle T(M) is a complex sub-bundle of S(M).

We have finished the proof.

3.5. Let (Eo, gι,...,gn,..., gVy. . ., gnd be an orthonormal moving frame

on M such that Eo is the position vector and that g1 and gv form an orthonormal

frame of the tangent space to the surface, adapted to the orientation. We denote by

{ωv ωv) the dual basis of {gv gv). The second fundamental form II is given by

(3.5.1) Σf gλ(hmω1ω1 + hnvωxωv + hn,1ωvω1 + hλVVωvωv),

where in the summation the index λ runs through 2 , . . ., n> 2\.. ., n\ and hλVι =

hχιv
We put

Then, m = (Eo, Ev . . . , En, Ev, . . . , En,) is a G-valued moving frame on M.
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Obviously, any G-valued moving frame m — (Eo, Elf.. ., En, Ey,. . . , Enr) on M

such that EQ(p) = p and that Ex is a tangent vector field of bidegree (1.0), is con-

structed in the above manner.

We use the same notations as in 3.1 and 3.2. From ddE0 — 0, it follows that

dΩλQ + Σu Ωλu A Ωu0 = 0 for λ = 1,Γ, and

(3.5.2) Ωλι Λ Ωlo + ΩλV Λ Ωyo = 0 for λ = 2 , . . . , w, 2 ' , . . . , w'.

Put

^ i — HλnΩ10 + HnifΩVOf ΩλV — HλV1Ω10 + HλvyΩyo.

By (3.5.2), i / , i r = # , r i , U. = 2,. . . , w, 2 r , . . . ,n ') .

In terms of the moving frame m, the second fundamental form II is written as

Z-( h'χ\Ilχ11Ω1Ω1 ~Γ ΐlχγyΩyΩγ I ΓlχyγΩ]Ωy I HχyyΩyΩy) .

Comparing this expression of the second fundamental form with (3.5.1), we have

Hjn, = (lΛ/2HAm + hjyv) + v ^ T ^ π + hfyy)}f H,,n, = HJn,

for; = 2 , . . . , w.

Thus, a surface is minimal, that is, the mean curvature vector

vanishes, if and only if Hny = Hλyi = 0 for λ = 2,. . ., n, 2',. . ., ή, or equivalent-

ly if and only if the I-form Ωλι is of bidegree (1,0) for j = 2,. . . , n, 2r,.. ., n' ([8]).

By Lemma 3.1, if an oriented surface M immersed in S (n ^ 2) admits an

anti-holomorphic lift φ whose image φ(M) is tangent to Ύ, then M is minimal ([2]).

The quartic form Q defined by Bryant [2] is the (4,0)-component of the covar-

ίant symmetric 4-tensor JS(Π, II) and is written as

Q = B(ll(Eu EJ, I1(EU E^Ω&Ω.Ω,.

He shows that if a surface is oriented and minimal, Q is a holomorphic tensor field

with respect to the complex structure on the surface. He calls a minimal surface in

S n with vanishing Q superminimal [2]. From the above expression, it is clear that

the superminimality means that the vector II(E ί f EJ is isotropic with respect to

B.

By definition,

Thus, if M admits an anti-holomorphic lift φ whose image φ(M) is tangent to Ύ, then

M is not only minimal but also superminimal in virtue of Lemma 3.1 ([2]).
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LEMMA 3.5 Suppose that a minimal surface on S is contained a hyperplane of

dimension 2n — linJl . Then, the hyperplane must contain the origin ofϋn

Proof Let ieλ) be the basis of C n+ defined in 1.1. In virtue of homogeneity

of the Riemann metric on 5 w, it suffices to prove the lemma in the case where the

hyperplane is perpendicular to the vectors en and enr. As before, we choose a local

moving frame m, in which Ex and Ey are tangent to the surface and hence ortho-

gonal to en and en,. Since the surface is minimal. Ωj and Ωyι are of bidegree (1,0)

for; = 2 , . . . , w. Thus,

Since Ex is orthogonal to en and en,, the n-th and the w'-th components of Eh

as well as, of dEι are zero. From the above equality, it follows that the ^-th and

the «'-th components of the position vector Eo are zero. Thus, the surface is lying

on the hyperplane xn = xnr = 0.

3.6. DEFINITION. A surface immersed in S n is said to be in general position

if no (2n ~ 1)-plane contains the surface.

LEMMA 3.6. Suppose that a surface M immersed in S admits an anti-

holomorphic lift φ of the immersion such that the image under φ is tangent to the dis-

tribution T.

(1) The image of M in S is not in general position if and only if there is a

non-zero isotropic vector contained in all the maximal isotropic subspaces φ(p), p ^ M.

(2) // the surface M is not in general position in S , then c(φ(M)) is also not in
2n—\

general position in P

Proof (1) Suppose that M lies in a (2n — 1)-plane P. Since a surface satis-

fying the assumption is minimal (3.5), the plane P passes the origin of R by

Lemma 3.5. Let U be the 2-plane perpendicular to P. Clealy, at each point p ^

M, U c Sp. Thus, for any u ^ U, the section p ^ u ^ Sp is parallel by Lemma

3.3.

Let F be an S(M) -valued section on M such that F(p) is orthogonal to

TP(M) at each point p ^ M. Then, F is parallel if and only if F is a constant

R n -valued function by Lemma 3.3. Thus, the vector space Γ of all parallel

S(M) -valued sections on M orthogonal to T(M) may be regarded as a subspace

R 2W+1

Under the assumption, the complex vector bundle structure / on S(M)
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associated to the lift φ is parallel with respect to the connection ω, and T(M)

is a complex sub-bundle of S(M) by Lemma 3.4. Hence, / commutes with the

covariant differentiation V and leaves T(M) invariant. As a consequence, the vec-

tor space Γ of sections is invariant by /. If a vector v e R n belongs to Γ, p ^

Jp (v) is again a constant vector belonging to Γ, that is, the restriction of Jp to JΓ is

a complex structure / ' independent on p.

The subspace U is contained in Γ, but may not be invariant by the complex

structure / ' . Choose a subspace U' of real dimension 2 in Γ which is invariant

under / ' . Since Ur c: Sp at every p ^ M, M is contained in the (2n — 1)-plane

through the origin, perpendicular to U'.

The maximal isotropy subspace φ(p) is the (l,0)-component of (Sp)c, and con-

tains an isotropic non-zero vector (u — J'.u)> u ^ U\ which is common for all

points p in M.

The converse is obvious. Indeed, if a non-zero isotropic vector υ is contained

in φ{p) for all p e M, υ and its complex conjugate are orthogonal to p. Therefore,

M is contained in the hyperplane perpendicular to the real and imaginary compo-

nents of v, which are linealy independent.

(2) If M is not in general position, there is an isotropic vector of unit length

contained in all φ{p), p ^ M by the above result (1). By homogeneity, we may

assume that this isotropic vector is en.

Consider the subset V7 of V consisting of all maximal isotropic subspaces

containing en. From 1.5, it follows easily that in the open subset Vo, Vo Π V is

defined by the equations ξn = 0, ξιn = 0 (i — 1,. . ., n — 1). Therefore, the image
2n— 1

of V under the imbedding c is contained in the linear submanifold in P defined

by the homogeneous linear equations

zAc = 0, where A = {ilt..., ik_v n) e N,

and is not in general position.

Since φ(M) c V , t{φ(M)) is not in general position. We have finished the

proof of the statement (2).

4. Conformal immersions

4.1. THEOREM. Given a compact Riemann surface, there always exists conformal

minimal immersion into S (n ^ 2), whose

contained in any 2n — 1 dimensional hyperplane.

and minimal immersion into S (n ^ 2), whose image is in general position, i.e. not
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In the rest of the paper, we prove the theorem. We begin with the following

remark: Suppose that a Riemann surface M admits an anti-holomorphic immersion

φ into V and that the image φ(M) is tangent to the distribution T. Then, π.φ:

M-* S n is an immersion. Obviously, ψ is a lift of the immersion π.φ, and hence

the immersion π.φ is minimal by 3.5. Moreover, the new complex structure on M

determined by the orientation of M and the first fundamental form induced by π.φ

coincides with the original one.

Indeed, since φ is anti-holomorphic, φ is conformal with respect to any

hermitian metric on M and the G-invariant hermitian metric on V indroduced in

1.7. As mentioned in 1.7, the differential of π is isometric on T at each point.

Hence, the immersion π.φ is conformal and the conclusion follows.

Thus, in order to construct a conformal and minimal immersion of a given

compact Riemann surface M into 5 n, it suffices to find an anti-holomorphic im-

mersion of M into the complex manifold V such that the image of M is tangent to

the distribution T at each point ([2]). In what follows, we will work on the

Riemann surface M, the real manifold M endowed with its conjugate complex

structure, and find a holomorphic immersion of M into V tangent to the distribu-

tion T.

4.2. Suppose that a set of n(n + l ) /2 meromorphic functions f{ (1 < i

< n), fjk(l < j , k < n) on a compact Riemann surface M satisfies equalities

(4.2.1) dftj- (l/2)(fidfj-fjdft) = 0 ( 1 < i<j<n).

We define /• _, in terms of the //s and fjk's in the same way as in 2.3, and
— ntl 1

denote by φ the holomorphic map of M into P given by

If fi (1 < i < n), fjk (1 < j , k < n) are all holomorphic at a point p e M,

the point φ(p) in the complex projective space P belongs to the submanifold V

by Lemma 2.1, and the image of the differential (φ*)p is contained in Tφ{p) by

Lemma 1.1. Since the set of points where these n(n + l )/2 functions are all holo-

morphic is dense in M, φ{M) is contained in V and tangent to the distribution T.

Next, we require that

(4.2.2) φ is an immersion.

On account of Lemma 3.6. (2), in order that the immersed surface π.φ(M) in

S n is in general position, it is sufficient that the image φ(M) is in general posi-

tion in P , namely that the 2n functions 1,. . ., fif. . ., fijf. . . , f{ Λ , . . . are-

linearly independent over C. For this purpose, we impose the following condition:
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(4.2.3) There is a point pQ on M where ordp^f^ i}) = Σ ordPo(fia) and the

orders of these 2 functions 1 , . . . , / , , . . . , /,-,,..., fi^..ik> at />0 are all distinct.

Thus, the proof is reduced to find a set of n(n + l ) /2 meromorphic function

fi (1 < i < n), fjk(X < j < k < n) on M satisfying the above three conditions

(4.2.1), (4.2.2) and (4.2.3). This will be done by induction on n ( > 2). (It is ob-

vious that we have to exclude the case where n = 1.)

4.3. Before we proceed further, we formulate some criteria for the differen-

tial of a holomorphic curve in the complex projective space not to vanish at a

point, which will be used frequently.

Take arbitrary meromorphic functions zl9. . . , zm on a Riemann surface and

denote by φ the holomorphic map into the projective space P w which assigns to a

point p the point in P w with homogeneous coordinates [1, zx(p),. . ., zm(p)]. We

assume that at least one of zv . . ., zm is non-constant so that the map is not tri-

vial. We are concerned with the differential (φ*)p at a pointy.

Let v be the minimum of the orders of 1 = z0, zlf...,zm at p. Let ζ be a local

holomorphic coordinate centered at p, ζ(p) = 0. Put wi — z{ζ , ί = 0, . . . , m

then [w0, . . . , wm] defines φ in a neighborhood of p. We denote by φA(p) the

point (wo(p),..., wm{p)) in Cm+\

The image of (d/dζ)p under the differential (φ*)p is the tangent vector to

P m given by the projection of the vector φA (p) = (w^p), . . . , w'm(p)) in C m + \

Thus, (<£>*)£ = 0 if and only if

(w'0(p),..., w'm(p)) = λ(wo(p),..., wm(p)) for some λ e C.

If one of 20, £ x,. . ., zm is of order v + 1 at p, no such /ί exists and ((p*)^ is

injective.

4.4. When n — 2, Bryant shows the existence of a holomorphic map φ :

Λf—* P 3 whose image is in general position. His holomorphic map is not only im-

mersion but also imbedding ([2], Theorem G). Nevertheless, as the first step of in-

duction, we shall construct a holomorphic immersion φ of M into P subject to

(4.2.1-3).

Take a finite number of distinct points pίt . . . , pk on an arbitrary Riemann

surface M, and assign to each point a non-zero integer μ{. Then, there exists a

meromorphic function f on M whose order at p{ is μ{ (1 < i < k). To see this,

write μt = v{ — v[ with integers vif v\ < — 2. In virtue of the existence theorem

of abelian differentials on a Riemann surface ([10] II. 5.), we can choose meromor-

phic 1-forms Cϋj and Q)\ holomorphic everywhere except p{ and of the orders v{
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and v\ at pt respectively, for each i The meromorphic function / determined by

/ ( Σ oo>ϊ) — Σ Cΰi serves the purpose.

We start with a meromorphic function fγ on a compact Riemann surface M,

having a zero of order 2 at a point p0. Let p0,. . ., pk be the distinct zeros of the

differential dfv and let vQ{= 2), v2,. . .,vk be the orders of dfx at these zeros. Let

Qv - - t Qm t>e the distinct poles of fv and let μlf..., βm be the orders of fx at these

poles. We choose a meromorphic function F on M such that the orders of F at p0,

. . . , pk are v0,..., 14 and that the orders at qίf..., #m are μx — 1 , . . . , μm — 1.

We put /2 = dF/dfv Then, ord^(/2) = — 1 for 1 = 0, . . . , A, and

ord9.(/2) = - 1 for = 1, . . . , m. If we put fu = F + (1/2)fj2, the relation

(4.2.1) is satisfied.

At the point p0, ord^C/i) = 2, ord^^.F) = 1, ord^ί/,) = — 1. In terms of a

local holomorphic coordinate ζ such that ζ(p0) = 0, /x = α2ζ + . . . (̂ 2 ̂  0),

Λ = ^-iζ" 1 + * * * (b-i Φ0),F = 2a2b_,ζ + and /12 = ( 3 / 2 ) ^ ^ ^ + .

Thus ord ,̂ (/12) = 1. We have shown that^ 0 is the point satisfying (4.2.3).

The next step is to show that the map φ defined by (4.2.1) is regular at each

point p. We divide the proof into three cases, depending on the order of dfλ at p.

First, suppose that (i) ordpidfj = 0. If further ordp(f2) > 0, then ordp(f12) > 0.

Therefore, (dfyp Φ 0 implies that (φ*)p does not vanish.

Suppose that orάp(df^) = 0 and ordp(f2) < 0. Then ordp(f2) > - 1, as

ordp(dF) = ordp(f2). In terms of a local holomorphic coordinate ζ vanishing at p,

/ l = * 0 + * l C + '", (^ΦO),

Λ = b-vC + K+ιC+l + , (6-, * 0, y > 1),

_ y ζ " v + 1 + ••• and

~u+1+ (1/2)[{(1 + v)/(l - v)}axb_v - aob_v+1]ζ

From these, one concludes that φ* does not vanish at p. Indeed, if a0 = 0, the

minimum of the orders of 1, fv f2, and fl2 at the point is — v and the order of fl2

is — v + 1 and hence φ* does not vanish at p by (4.2). If a0 Φ 0,

φA(p) = (0,0, b_v, (l/2)a0b_v),

φAf(p) = (0,0, b_v+1, (1/2)[{(1 + v)/(l - v)}aλb_v - aob_v+1]).

The latter is not a scalar multiple of the former.

Suppose that (ii) ordp(dfι)p > 0. The point p is not of pQ, . . . , pk. By our

choice, ordp(F) > ordp(df^) = v{ > 0. As is mentioned above, ordp(f2) = — 1.

We put i^ = y. In terms of a local holomorphic coordinate ζ such that ζ(̂ >) = 0,
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/i = «o + «,+iCv + 1 + , (y > 0, au+1 Φ 0),

F= {(v + v+11ζ

/i2 = - (1 /2)α 0 δ_ 1 ζ" 1 + , if a0 Φ 0. and

/i2 = « * + i M ( 2 + v)/2v)C + • , if a0 = 0.

In both cases, the minimum of the orders of 1, flt /2, and /12 at the point is

— 1 and the order of 1 is 0 at the point. By 4.3. 0* does not vanish at p.

Finally, suppose that (iii) ord^W/Ί) < 0. Obviously, ordpify < 0, and the

point p is one of qίf. . . yqm. By our choice of F, ordp(F) = ordpif^ — 1 < 0 and

ord,(/2) = - 1.

fi = <*»C+ '", (avΦ0,v<0),

F={l/(v-l)}avb_1ζ
u-1 +

/i2 = avb_M~ v + 3)/2(v - D l ζ ' " 1 + .

Clearly, v — 1 is the minimum value of the orders of 1, fv f2 and f12 at p and

ovdpif^ ^ v. Again by 4.3, we conclude that φ* does not vanish at p. We have

completed the case where n = 2.

4.5. The induction hypothesis is that we have a set of (n — l)n/2 mero-

morphic functions fit fjk (1 < i, j < k < n — 1) on M satisfying (4.2.1-3). Let p0

be the point asserted in (4.2.3). The first task is to find a meromorphic function fn

suth that the differential form fndfι is exact for every i = 1 , . . . ,n — 1.

From M, we exclude the point p0 and all zeros and poles of these functions

and their differentials and obtain an open dense subset. In this open dense subset,

we choose a finite number of distinct points pv... ,pp.

Let 2) be a divisor on M given by p0 p± . . . .pλ with a positive integer ZΛ

The integers p and y will be determined later. Let L(5) ) be the vector space

spanned by meromorphic functions f on M such that div (/) > ®~ . If / is not

identcally zero and belongs to L(2) ), / has a zero of order at least v at p0, and

all poles of/ are in the subset {pv..., pp}, and their orders are at least ~ ZΛ

Let ipp+lf. . . ,Pp+σ} be the subset of points in M each of which is a pole of

one of the functions /• (1 < i < n — 1). By choice, the points pu..., pp, pp+i,. . . ,

Pp+σ a r e aU distinct. We take p + σ small circles ^ centered at pk (k = 1, . . . ,

p + σ)so that the disks encircled by them are mutually disjoint.

We denote by g the genus of the Riemann surface M. Let {alf βι / = 1,. . .,
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g) be a set of loops forming a system of generators for the fundamental group of

M. We choose these loops not intersecting with any circle yk.

To each / ^L(Ί) ), we assign

f fdf,, f fdf,, f fdf,,
Ja, Jβ, Jyk

for each i (1 < i < n — 1), /(I < / < g) and k (1 < k <, p + σ), and obtain

(p + σ + 2g) (n - 1)

linear functions on L(© ).

The Riemann-Roch theorem implies that

dim/,®" 1 ) > deg$)-g+ 1

([10] III. 4). In our case, deg 35 = v(p — 1). We will choose v and p sufficiently

large so that dimL(S) ) is larger than the number of the linear functions above,

and consequently there exists a non-constant meromorphic function fn annihilated

by all these linear functions.

The inequality in question is v(p — 1 ) — < g " + l > ( p + σ + 2g) {n — 1), or

equivalents, v > (n - 1) + {(σ + 1)(n - 1) + g(2n - 1 ) - \}(p - I ) " 1 . It

suffices to choose v > n and p > (σ + 1) (n — 1) + g(2n — 1).

If this is done, fndfi = dF{ with a meromorphic function Ft on M for each

i (1 < i < n — 1) where F{ is unique up to an additional constant. Put fin = — F{

+ ( l / 2 ) / / n for each i (1 < i < n - 1). Then, the relations in (4.2.1) are valid.

Next, we will choose v so large that the condition (4.2.3) is satisfied.

4.6. By induction hypothesis, at the point p0, the orders of the meromorphic

functions fiv.jk, 1 ^ i\ < . . . < ίA ^ w — 1, are all distinct. First, we choose v

larger than the absolute value of the order at p0 of any one of these functions. Put

i/ = ord^(/w), which is larger than or equal to v.

In terms of a local holomorphic coordinate ζ vanishing at pQ,

f, = c, C + • • • (v, = ord ί 0(/ t) Φ 0, ct Φ 0, 1 ^ i < n - 1),

fn = CnC' + -(cnΦ0).

Hence, the order of dF{ at p0 is v{ + vf — 1. If the power series expansion of F{ at

?̂0 has the non-zero constant term, we subtract the constant from F{ and use the

result as F( without affecting our argument. Then,
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and ordPQ(fin) = v( + i/.

By induction hypothesis, if 1 < ^ < < ik < n — 1, the order of fil...ik at

£0 is Σ via. We denote by c^...^ the leading coefficient in its power series expan-

sion in ζ. The non-zero constants cti ik(l <* ix <... < ik < n ~ 1) are subject to

the relations (2.3.1) and (2.3.2).

Now, we examine the order of f{ Λ n at pQ. From the definition of f{ Λ n given

in 2.3, it is obvious that

orάH(fh..Λtn) > V + Σ i v

Using the formulas (2.3.1) and (2.3.2), we determine the coefficient civ ikfl of

the (1/ + Σ y ί α)-th power of ζ in the power series expansion of fiχ ΛkYl at p0. If k

is odd,

with some constants Bib Φ 0 (1< b ^ k).

If /c is even,

ch..Λkn = Σ , < c B ί | ί e { ^ / ( i / + *,,) - v<e f c Λ l . . , f c ,

w i t h J 5 M c ^ 0 ( 1 < δ < c < Λ).

In both cases, the constant term — (1/2) cnCj Λ if k is odd, cnc{ Λ if /c is

even, is not zero by induction hypothesis and by the inequality cn Φ 0. Therefore,

we can choose a large positive integer v so that if 1/ > v, the coefficient c^ ikn

does not vanish for every f^ ik%.

We have seen that

^ ( 4 . . . ^ ) = 1/ + Σ via for {^,.. .,iΛ, w} e N,

and hence the condition (4.2.3) is verified at the pointy .

4.7. We shall show that the holomorphic map φ defined by (4.2.2) is regular

at each point. Take an arbitrary point p in M.

We first take up the case where orάpiQ > 0. If orάp(F^) Φ 0, form the

equality fndf{ = dFiy ord,(F,) > ord,(/<), and hence ord^ί/J > o r d ^ φ . If

ord/F,) = 0, either orάp(fin) > 0 and ord,(/,) > 0, or 0 > ordp(fin) >

θΐdp(ft). Therefore, the minimum of the orders of the functions at p does not de-

crease by adding the fiχ...f fcW's to the old family ί^...^}, which contains the constant

function 1. The induction hypothesis immediately yields that ψ is regular dXp.
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Suppose that ordp(fn) < 0. Then, p is one of pv . . . , pp and — v

< ordp(fn) < 0. Moreover, by the choice of the pointy, ord^C/J) = ordp{.df^) = 0

(1 < i < n — 1), and fυ is holomorphic (1 < i < j < n — 1) at the point Since

fndfi = dF{. ordp(dFt) = ordp(fn) < - 1, and ord/F,) < - 1. In terms of a loc-

al holomorphic coordinate ζ vanishing at p,

fi = ai0 + anζ + - (β ί 0, an Φ 0),

fn = b.uζ-u + b_u+ιζ-β+ι + (b.u Φ 0, μ > 2) and

fin = - a/2)(aiob_βζ-u + ίanb_u((μ + l)/(μ - 1)} + a^b.^K'^ +'").

It follows that — μ is the minimum of the orders of the functions fit, ίί'i,. . .,

ik) e N, at p. As in 4.3, we multiply each function by ζu and form φ (p) and

φ '(p). We look at the ίn}-th and the {i> n}-th coordinates of these two vectors

in C2M.

φA(p) = [ 0 , . . . , & _ „ . . . , - ( 1 / 2 ) 0 , 0 ^ , . . . ] , and

φA'(p) = [ 0 , . . . , 6 . ^ , . . . , - a/2)(anb_u{(μ + l)/(μ- 1)} + aiob_u+1),...].

Suppose that ^^(/ί) = 0. Then, λφA(p) = φA'(p) for some λ e C. Thus,

A6_^ = ft-^+i, and λ(aiob_u) = aab_β{(μ + l)/(μ - 1)} + aiob_u+ί

= anb_u{(μ + l)/(μ - 1)} + λ(aiob_u),

yielding that aab_u{(μ + l)/(μ — 1)} = 0. This is a contradiction. We have

shown that φ satisfies (4.2.2), completing the proof of the theorem.
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