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ON A RELATION BETWEEN A THEOREM OF 
HARTMAN AND A THEOREM OF SHERMAN 

BY 

A. C. PETERSONC) 

1. Introduction. We are concerned with the «th-order linear differential equation 

(1) y{n) + lpk{x)y{k)^0 

where the coefficients are assumed to be continuous. Hartman [1] proved that (see 
Definition 2) the first conjugate point rj^t) of t satisfies 

(2) Ut) = r1...1(t). 

Hartman actually proved a more general result which has very important applica
tions in nonlinear differential equations. Opial [2] gives a shorter proof of 
Hartman's result in the context of (1). Sherman [3], then improved Opial's result 
by showing that given any £>0, there is a nontrivial solution of (1) with n zeros 
on [t, ^ ( O + s ] the first n of which are simple zeros with the first zero being at t. 
Most recently, Kim [4] gave a shorter proof of this result of Sherman's. Theorem 
4 in this paper is an analogue of this result. Another very interesting result which 
is due to Sherman [5] is that 

(3) ih(0 = min{rn_1>1(0, rn_2>2(t),..., rltn^(t)}. 

From Hartman's result (2) and Sherman's result (3) we obtain 

(4) rv. .x(0 = min{ r n _ M (0 , . . . , r^^t)}. 

Theorem 3 gives an interesting analogue of (4). Corollary 5 is the analogue of 
rj^t) being a continuous function of t, and Corollary 6 is the analogue of rj1 being 
a continuous function of the coefficients of (1). Theorem 1 generalizes some of 
the results in [6], 

2. Definitions and main results. Before we define the boundary value functions 
*i . • .< (0? w e nee<i t n e following definition. 

DEFINITION 1. A nontrivial solution y{x) of (1) is said to have an (iu . . . , ik)-
distribution of zeros, 0<im<n9 2iLi zm==w> o n ['» b] provided there are numbers 
t<h<- ' -<tk<b such thaty(x) has a zero at each tm9 \<m<k, with multiplicity 
at least im. 
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DEFINITION 2. Let R={r>t: there is a nontrivial solution of (1) having an 
0"i> • • • 5 /^-distribution of zeros, 0<im<n, 2m=i *m=w> o n [U **]}• If -R?^» set 
\ . . .<Jfc(0=inf U. If *=<£, set r<r . .Î&(0= oo. 

REMARK 1. If, in Definition 2, £ = 2 and - R ^ , then r{ t {t)=mmR. If £>2 
this is not true in general (see e.g. [7]). 

REMARK 2. If ^<^i<- • - < ^ < r z . . .t (O^ 0 0 ? then t r l e r e *s a unique solution 
of (1) satisfying 

where ^fwi is a constant,7=1, . . . , & , rn^O,. . . , / , — 1 . 

DEFINITION 3. If r w _ l f l (0= '" , = ^ , W - A ; ( 0 = O 0 w e s e t Pki*)—00- Otherwise 

pk(t) = min{rw_lfl(0, rn_2>2(t)9. . . , rktn_k(t)} 
k=l, . . . , 72—1. 

The identity (4) can now be written as 

(5) Pi(0 = r1...1(0. 

Before we prove the analogue of (5) we need the following theorem and lemma. 
Theorem 1 generalizes the first two parts of Theorem 5, [6]. See also Theorem 
3.3, [7]. 

THEOREM 1. For fc=l,... , / i—l, 

riv..im(t)>Pk(t) 
as long as i±>k. 

Proof. Assume rt . . 4 (t)<pk(t), h>k. Then there is a nontrivial solution v(x) 
of (1) with an (il9.. . , im) distribution of zeros on [t, pk(t)). Let (t<)x1<x2<- • • 
<xm(<pk(t)) be the points at which these zeros of v(x) occur. Define a fundamental 
set of solutions {uj(x9 xx)} of (1) by the initial conditions at x—x1 

uf(xl9 xx) = on i, j = 0, . . . , n - 1. 

Then define the (n—/J-order operator Q by 

I y Utl(x9 XO • • • Wn_i(>, X±) I 

2M = ... 
l y ^ , M(n-û)(x?Xi) . . . tt^i>(x,Xl)| 

Since r{ §n_f (t)>pk(t)9 Q[y]=0 is a nonsingular linear differential equation on 
(*i> Pft(0)- Note that solutions of Q[y]=0 on (xl9 pk(t)) are solutions of (l) with 
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zeros of order ^z^ at x± restricted to the interval (xl9 pk{t)). But since JV,n_,(0^> 
Pk(t)>j=n—l> n~-2> • • • > h(>k), {un^{x, xx)9... , uh(x, xj} forms (except for 
signs) a system of solutions of Q[y]=0 with Polya's ^-property [8] on (xl9 pk(t)). 
Hence [8] Q[y]=0 is disconjugate on (xl9 pk(t)). This contradicts the fact that v(x) 
is nontrivial solution of Q[y]=0 with at least n—ix zeros on (xl9 pk(t)). 

In analogy with the definition of an extremal solution of (1) for rj±(t) we make 
the definition. 

DEFINITION 4. If pk(t)< oo, then any nontrivial solution of (1) with a zero at t of 
order at least k and a total of « zeros on [t9pk(t)] is called an extremal solution of 
(1) for Pk(t). 

REMARK 3. It follows from Theorem 1 that every extremal solution of (1) for 

Pk(t) has a zero at pk(t). 
The following lemma will be used in the proof of Theorem 3. 

LEMMA 2. 

\ . . .,m(0 > min[r v . . .^f), r^^p)]. 

Proof. Let é=min[r, i l . . #1(f), riin_{i(t)]<oo9 and let .s* G [t9 b). In Theorem (I) 
([1, p. 124]) take F to be the set of all solutions of (1) with a zero at s of order > 
to it. It follows from Theorem (I) that no nontrivial solution of (1) has a zero of 
order i± at s and a distribution of zeros on (s9 b) whose multiplicities add up to a 
number >̂ to n—i^ Since s is arbitrary in [t9 b)9 no nontrivial solution of (1) has 
an (il9... , fw)-distribution of zeros on [t9 b). 

In the proof of Theorem 3 we will use notation used by Kim [4]. Let yx{x)9... „ 
yn(x) be n linearly independent solutions of (1). Define 

w(x;xl\ » ^m ) 

yi(x) y2(x) 

yîM yfci) 

yP^Xxù ^ W 
yi(x2) 

yx(xj 

y*(*ù 

y&j 

Ja -*w /2 yxm) 

yn(x) 

yjxj 

y'n(*i) 

y^-'Xxi) 

yn(Xfd 

yn(xm) 

y^-'Kxj 

l<m<n—l9 kx-\ \-km=n—l. If no superscript appears on one of the JC/S it 
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is assumed to be a one. Note, as Kim points out [4], that w(x; x\x, . . . , x^m) is a 
continuous function of the terms, e.g., y^^ixi), appearing in the determinant. 

THEOREM 3. If pk(t)<rktn_k(t), then 

rkv• -i(0 = pk(t), k = 1,. . . , n-2. 

Proof. By Theorem 1, rkl,. ,i(t)>pk(t). Assume Theorem 3 is false, then 
rki.. . i (0> A(0- Since pk+1(t)=pk(t)<rk>n_k(t), there is an x0 e [t, pk(t)) such that 
there is an extremal solution u(x) of (1) for pk+1(x0) (see Remark 1). Also note that 
Pic+ii^—PAt)- Let A be the set of all extremal solutions of (1) for pk+1(x0). Note 
A ?É<f) as u G A. Let p be the maximum number of distinct zeros on (xQ, pk{t)) of a 
member of A. Let y eA with/? distinct zeros at ( /<)x 1<- • '<xp(<pk(t)) of 
multiplicities ki9 z = l , . . . ,/?, respectively. Let k+k0(k0>\) and A:P+1(>1) denote 
the multiplicities of the zeros of y at x0 and xp+1=pk(t) respectively. The xi9 

/ = 0 , . . . 9p+l9 will remain fixed in the remainder of this proof. Let 

M = n - l - f c - f kt (so 0 < M < kv+1) 

and define 
Wl(x) = w(x; xk

0
+\ x\\ . . . , xk/, x ^ ) . 

Let Ki be the exact multiplicity of the zero of w±(x) at xi9 / = 0 , . . . 9p+l. It is 
easy to see that K0>k+k0, Ki>ki9 z = l , . . . , / ?+ l . Because of the maximality 
of /?, wx(x) and j(x) have no other zeros on (x0, xp+1). The claim is that wx(x) 
and j(x) are linearly dependent. Assume they are linearly independent, then there 
are two possibilities. One possibility is that at least one of the zeros, say xl9 of 
wx(x) and y(x) has the same multiplicity. In this case there is a nontrivial linear 
combination of the two solutions with a zero of order at least Kt+1 at xv But then 
it follows from Cramer's rule that wx{x) has a zero of order Kt+l at xl which is a 
contradiction. The second possibility is that K0>k+k09 Ki>ki9 i=l, . . . 9p+l. 
But then it is easy to see that there is a nontrivial linear combination of y(x) and 
wx(x) which is a member of A with more than/? zeros on (x0, xp+1) which contra
dicts the maximality of/?. 

Now let 

w2(x) = w(x; xl+k0~\ xk\ . . . , x£", x£+1) 

where P = M + 1 (so l < P < ^ + i ) . If k0>2, then w2(x)^0 by the maximality of/?, 
and if A:0=l, then w2(x)^=0 by Lemma 2. By Cramer's rule w2(x) has zeros of 
order k+k0, kl9. . . , ^ + 1 at x 0 , . . . , x^+1 respectively. Hence, by above 
argument with r(x)=w2(x), we see that wx(x) and w2(x) are linearly dependent. We 
now consider two cases. 

Case 1. kv+1 and P have the same parity: In this case define 

W3(x) == W(X1X0> §01> • • • > §Ofco> *1> $12? • * • > ^lfci» X 2> * • • > X j)J §2)2) • • • > §pkp> §2?+l,l» * * * > § M / 
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where x0<§oi<' • •<§0&0<^i<§i2<- • • < § 3 , M < ^ + I - Since rkl.. .1(0>§P ir , 
w3(x)=£0. It follows from looking at the Taylor's formula with remainder and the 
continuity of w±(x) with respect to elements in its determinate that 

w3(x) -> Aw±(x) (A>0) 

uniformly on [x09 xp+1+l] as §«.1-**<, / = 0 , . . . , / > , and §P+ltl-+xP+1. (For the 
details of writing down the value of A and hence more details on the validity of this 
statement see [4, p. 559].) Since r{ ..,- >xp+1 for h>k (Theorem 1), w3(x) has 
exactly a zero of order k at x0, simple zeros at the n—k— 1 points §01,. . . , §0fc , 
*i> • • • ? §*>M anc* no other zeros on [x0, xp+1). Since ^ + 1 and P have the same 
parity, kp+1 and M have the opposite parity. Hence for §^., §0+1,1 sufficiently close 
to xi9 xp+1 respectively, wz(x) has another (odd ordered) zero in [xp+1, rkl.. ^(t)) 
which is a contradiction. 

Case 2. k3>+1 and P have opposite parity: In this case consider 

w4(x) = w(x; xg, §01,.. . , §0i*0-i, xl9 §1 2 , . . . , §Ul, 

X2, . . . , Xp9 §2,2, . . . , §pkp, §2>+l.l» • • • > Sp+l.P/ 

where x0<§0 1<§0 2<- • '<§P+i>P<xp+v Similar to above 

w4(x) -> Lw2(x) (L > 0) 

uniformly on [x0, x^+ 1+l] as §0,*0_i->Xo> §<*<-***' /==1> • • • >/>> a n d W 1-^+1* 
Similar to above w4(x) is a nontrivial solution of (1) with a zero at x0 of order 
exactly k, simple zeros at the «—k— 1 points § 0 1 , . . . , §P+ltp, and no other zeros 
on [x09 xp+1). But kP+1 and P have the opposite parity and so w4(x) must have a 
(odd ordered) zero in [xp+l9 rkl.. .x(f)) which is a contradiction. Hence pk(t)= 
rki.. .i(0-

REMARK 4. Theorem 3 could have been stated: If pk+i(t)<rkn_k(t)9 then 
pk+1(t)=rkl.. ml(t). If one lets £ = 0 in this statement one obtains (since r0n(/)=oo) 
the result (5) of Hartman and Sherman. 

EXAMPLE. It is well known (e.g. Theorem 3.2, [9]) that if p(x) is continuous and 
positive, then for 

(6) y{n)~p(x)y = 0, 

rij(t)= 00 if y is odd, and for 

(7) yin)+p(x)y = 0 

rij(t)=co if y is even. Hence for (6) we have pk(t)=rkl.. ^(t) if n and k have the 
opposite parity. For equation (7) we have that pk(t)=rkl.. ^(t) if n and k have the 
same parity. 
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THEOREM 4. If pk(t)<rkn_k(t), then for any e>0 there is a nontrivial solution of 
(1) with a zero of order exactly k at some point x0e [t, pk(t)), exactly n—k—l 
simple zeros in (x0, pk(t)) and an odd order zero in [pk(t), pk(t) + e). 

Proof. This theorem follows from a closer examination of the proof of Theorem 
3. Theorem 3 was proved by contradiction. The only place the assumption 
rTci- • i(0>Pft(0 w a s needed was to show w2(x) =|=0 when k0=l. We now show that 
the assumption 

(8) w2(x) = w(x; 4 , A\ • • • , 49> *£n) = ° 

leads to a contradiction. It follows from (7) that there is an extremal solution of (1) 
for pk(t) with at least/?+1 zeros on (x0, xJ)+1=pk(t)). Let B be the set of all extremal 
solutions of (1) for pk(x0). Let q be the maximum number of distinct zeros on 
(x0, xp+1) of a member of B. Note that q>p+l. Since q>p, every extremal solu
tion of (1) for pk(t) with q distinct zeros on (x0, pk(t)) has a zero of order exactly 
k at xQ. Hence there are points zl9... , zq such that 

w5(x) = w(x; zl z[\ . . . , zj«, z?+1), 
where 

Of 

*0 = *0> Z«+l = f>*(0, k+ 2 *m + Ô = H - l , 

is a nontrivial solution (by the maximality of q) with n zeros on [z0, zQ+1]. Assume 
4 > 1 for some i e { 1 , . . . , q}. Let 

W6(x) = W(x; X0, Zi, §12, • • , §1,1V Z2,..., Zi9 §<2, . . . , § i t ï i _ 1 , . . . , §flIfl, § a + i , i , . . • , § « + I . Q ) 

where *0<*i<§i2<* • •<§a +i ,Q<za + 1 . It follows for § 1 > v . . . , §^ z ._ l 5 . . . , 
§«. V §<i+i.i sufficiently close to z l 5 . . . , zi9... , zQ, zq+1 respectively, w6(x) is a 
nontrivial solution of (1) with a zero of order k at x0 and »—k zeros on (z0, Zg+1). 
This contradicts Theorem 1. Hence l1=- • -=lq=l and 

w5(x) = w(x; z% zl9..., zq, z£+1). 

Since rfc>w_fc(20)>za+1 for £>0 sufficiently small we can define a set of nontrivial 
solutions {ue(x)} of (1) by the boundary conditions 

tii '^o) = 0, j = 0 , . . . , f c - l 

wi l )(^+i-e) = w(
5
l)<X+1), / = 0 , . . . , n - f c - 1 . 

Then 

"eW -* w6(x) 

uniformly on |>0, zff+1] as e-^0. Since w5(x) has simple zeros in (z0, z ^ ) we have 
for £>0, sufficiently small, w£(x) is a nontrivial solution of (1) with a zero of order 
k at z0 and «—A: zeros on [z0, zQ+1—e], This contradicts Theorem 1. 

REMARK 5. By using the type of argument that appears at the end of the proof 
of Theorem 4 one can show that no extremal solution of (1) for pk(t) has an 
(«—A:, 1, . . . , l)-distribution of zeros on [t, pk(t)]. 
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Two very interesting corollaries follow from Theorem 4. 

COROLLARY 5. For those values of t for which Pk(t)<rk>n_k(t)9 pk(t) is a continuous 

function of t. 

Proof. The proof of this theorem follows easily from Theorem 4 and the con

tinuous dependence of solutions on the initial point. 

REMARK 6. Corollary 5 could have been stated: For those values of t for which 

Pk+iitXfjc+iit)' Pk+i(t) is a continuous function of t. This statement with k=0 is 

the well known fact that rj^t) is a continuous function of /. 

COROLLARY 6. If pk(t)<rkn_k(t), then pk(t) is a continuous function of the 

coefficients of (I). 

Proof. This theorem follows from Theorem 4 and the use of the continuous 

dependence of solutions with respect to the coefficients of the differential equation. 

See the proof of Theorem 3 [10]. 

REMARK 7. Corollary 6 could have been stated: If pk+i(t)<rkin_k(t), then 

pk+1(t) is a continuous function of the coefficients of (1). This statement with 

k=0 is the fact that rj^t) is a continuous function of the coefficients of (1) (see 

[3, Theorem 3]). 
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