ON A RELATION BETWEEN A THEOREM OF HARTMAN AND A THEOREM OF SHERMAN

BY
A. C. PETERSON(${ }^{1}$)

1. Introduction. We are concerned with the n th-order linear differential equation

$$
\begin{equation*}
y^{(n)}+\sum_{k=0}^{n-1} p_{k}(x) y^{(k)}=0 \tag{1}
\end{equation*}
$$

where the coefficients are assumed to be continuous. Hartman [1] proved that (see Definition 2) the first conjugate point $\eta_{1}(t)$ of t satisfies

$$
\begin{equation*}
\eta_{1}(t)=r_{1} \cdots_{1}(t) . \tag{2}
\end{equation*}
$$

Hartman actually proved a more general result which has very important applications in nonlinear differential equations. Opial [2] gives a shorter proof of Hartman's result in the context of (1). Sherman [3], then improved Opial's result by showing that given any $\varepsilon>0$, there is a nontrivial solution of (1) with n zeros on $\left[t, \eta_{1}(t)+\varepsilon\right]$ the first n of which are simple zeros with the first zero being at t. Most recently, Kim [4] gave a shorter proof of this result of Sherman's. Theorem 4 in this paper is an analogue of this result. Another very interesting result which is due to Sherman [5] is that

$$
\begin{equation*}
\eta_{1}(t)=\min \left\{r_{n-1,1}(t), r_{n-2,2}(t), \ldots, r_{1, n-1}(t)\right\} \tag{3}
\end{equation*}
$$

From Hartman's result (2) and Sherman's result (3) we obtain

$$
\begin{equation*}
r_{1 \cdots 1}(t)=\min \left\{r_{n-1,1}(t), \ldots, r_{1, n-1}(t)\right\} . \tag{4}
\end{equation*}
$$

Theorem 3 gives an interesting analogue of (4). Corollary 5 is the analogue of $\eta_{1}(t)$ being a continuous function of t, and Corollary 6 is the analogue of η_{1} being a continuous function of the coefficients of (1). Theorem 1 generalizes some of the results in [6].
2. Definitions and main results. Before we define the boundary value functions $r_{i_{1} \ldots i_{k}}(t)$, we need the following definition.

Definition 1. A nontrivial solution $y(x)$ of (1) is said to have an $\left(i_{1}, \ldots, i_{k}\right)$ distribution of zeros, $0 \leq i_{m} \leq n, \sum_{n=1}^{k} i_{m}=n$, on $[t, b]$ provided there are numbers $t \leq t_{1}<\cdots<t_{k} \leq b$ such that $y(x)$ has a zero at each $t_{m}, 1 \leq m \leq k$, with multiplicity at least i_{m}.

[^0]${ }^{(1)}$) This work was supported, in part, by NSF Grant GP-17321.

Defintion 2. Let $R=\{r>t$: there is a nontrivial solution of (1) having an $\left(i_{1}, \ldots, i_{k}\right)$-distribution of zeros, $0 \leq i_{m} \leq n, \sum_{m=1}^{k} i_{m}=n$, on $[t, r]$]. If $R \neq \phi$, set $r_{i_{1} \cdots i_{k}}(t)=\inf R$. If $R=\phi$, set $r_{i_{1} \cdots i_{k}}(t)=\infty$.

Remark 1. If, in Definition 2, $k=2$ and $R \neq \phi$, then $r_{i_{1} i_{2}}(t)=\min R$. If $k>2$ this is not true in general (see e.g. [7]).

Remark 2. If $t \leq t_{1}<\cdots<t_{k}<r_{i_{1} \ldots i_{k}}(t) \leq \infty$, then there is a unique solution of (1) satisfying

$$
y^{\left(m_{j}\right)}\left(t_{j}\right)=A_{m_{j} j}
$$

where $A_{m_{j} j}$ is a constant, $j=1, \ldots, k, m_{j}=0, \ldots, i_{j}-1$.
Definition 3. If $r_{n-1,1}(t)=\cdots=r_{k, n-k}(t)=\infty$ we set $\rho_{k}(t)=\infty$. Otherwise

$$
\rho_{k}(t)=\min \left\{r_{n-1,1}(t), r_{n-2,2}(t), \ldots, r_{k, n-k}(t)\right\}
$$

$k=1, \ldots, n-1$.
The identity (4) can now be written as

$$
\begin{equation*}
\rho_{1}(t)=r_{1} \ldots_{1}(t) \tag{5}
\end{equation*}
$$

Before we prove the analogue of (5) we need the following theorem and lemma. Theorem 1 generalizes the first two parts of Theorem 5, [6]. See also Theorem 3.3, [7].

Theorem 1. For $k=1, \ldots, n-1$,
as long as $i_{1} \geq k$.

$$
r_{i_{1} \cdots i_{m}}(t) \geq \rho_{k}(t)
$$

Proof. Assume $r_{i_{1} \ldots i_{m}}(t)<\rho_{k}(t), i_{1} \geq k$. Then there is a nontrivial solution $v(x)$ of (1) with an $\left(i_{1}, \ldots, i_{m}\right)$ distribution of zeros on [$t, \rho_{k}(t)$). Let $(t \leq) x_{1}<x_{2}<\cdots$ $<x_{m}\left(<\rho_{k}(t)\right)$ be the points at which these zeros of $v(x)$ occur. Define a fundamental set of solutions $\left\{u_{j}\left(x, x_{1}\right)\right\}$ of (1) by the initial conditions at $x=x_{1}$

$$
u_{j}^{(i)}\left(x_{1}, x_{1}\right)=\delta_{i j} \quad i, j=0, \ldots, n-1 .
$$

Then define the $\left(n-i_{1}\right)$-order operator Q by

$$
Q[y]=\left|\begin{array}{cccc}
y & u_{i_{1}}\left(x, x_{1}\right) & \cdots & u_{n-1}\left(x, x_{1}\right) \\
y^{\prime} & u_{i_{1}}^{\prime}\left(x, x_{1}\right) & \cdots & u_{n-1}^{\prime}\left(x, x_{1}\right) \\
\cdots & & & \cdots \\
y^{\left(n-i_{1}\right)} & u_{i 1}^{\left(n-i_{1}\right)}\left(x, x_{1}\right) & \cdots & u_{n-1}^{\left(n-i_{1}\right)}\left(x, x_{1}\right)
\end{array}\right|
$$

Since $r_{i_{1}, n-i_{1}}(t) \geq \rho_{k}(t), Q[y]=0$ is a nonsingular linear differential equation on $\left(x_{1}, \rho_{k}(t)\right)$. Note that solutions of $Q[y]=0$ on $\left(x_{1}, \rho_{k}(t)\right)$ are solutions of (1) with
zeros of order $\geq i_{1}$ at x_{1} restricted to the interval $\left(x_{1}, \rho_{k}(t)\right)$. But since $r_{j, n-j}(t) \geq$ $\rho_{k}(t), j=n-1, n-2, \ldots, i_{1}(\geq k),\left\{u_{n-1}\left(x, x_{1}\right), \ldots, u_{i_{1}}\left(x, x_{1}\right)\right\}$ forms (except for signs) a system of solutions of $Q[y]=0$ with Polya's w-property [8] on $\left(x_{1}, \rho_{k}(t)\right.$). Hence $[8] Q[y]=0$ is disconjugate on $\left(x_{1}, \rho_{k}(t)\right)$. This contradicts the fact that $v(x)$ is nontrivial solution of $Q[y]=0$ with at least $n-i_{1}$ zeros on $\left(x_{1}, \rho_{k}(t)\right)$.

In analogy with the definition of an extremal solution of (1) for $\eta_{1}(t)$ we make the definition.

Definition 4. If $\rho_{k}(t)<\infty$, then any nontrivial solution of (1) with a zero at t of order at least k and a total of n zeros on $\left[t, p_{k}(t)\right]$ is called an extremal solution of (1) for $\rho_{k}(t)$.

Remark 3. It follows from Theorem 1 that every extremal solution of (1) for $\rho_{k}(t)$ has a zero at $\rho_{k}(t)$.
The following lemma will be used in the proof of Theorem 3.

Lemma 2.

$$
r_{i_{1} \cdots i_{m}}(t) \geq \min \left[r_{i_{1} \cdots 1} \cdots(t), r_{i_{1}, n-i_{1}}(t)\right] .
$$

Proof. Let $b=\min \left[r_{i_{1} 1 \ldots 1}(t), r_{i_{1} n-i_{1}}(t)\right] \leq \infty$, and let $s \in[t, b)$. In Theorem (I) ([1, p. 124]) take F to be the set of all solutions of (1) with a zero at s of order \geq to \boldsymbol{i}_{1}. It follows from Theorem (I) that no nontrivial solution of (1) has a zero of order i_{1} at s and a distribution of zeros on (s, b) whose multiplicities add up to a number \geq to $n-i_{1}$. Since s is arbitrary in $[t, b)$, no nontrivial solution of (1) has an $\left(i_{1}, \ldots, i_{m}\right)$-distribution of zeros on $[t, b)$.

In the proof of Theorem 3 we will use notation used by Kim [4]. Let $y_{1}(x), \ldots$, $y_{n}(x)$ be n linearly independent solutions of (1). Define

$$
w\left(x ; x_{1}^{k_{1}}, \ldots, x_{m}^{k_{m}}\right)=\left|\begin{array}{cccc}
y_{1}(x) & y_{2}(x) & \cdots & y_{n}(x) \\
y_{1}\left(x_{1}\right) & y_{2}\left(x_{1}\right) & \cdots & y_{n}\left(x_{1}\right) \\
y_{1}^{\prime}\left(x_{1}\right) & y_{2}^{\prime}\left(x_{1}\right) & \cdots & y_{n}^{\prime}\left(x_{1}\right) \\
\cdots & & \cdots & \cdots \\
y_{1}^{\left(k_{1}-1\right)}\left(x_{1}\right) & y_{2}^{\left(k_{1}-1\right)}\left(x_{1}\right) & \cdots & y_{n}^{\left(k_{1}-1\right)}\left(x_{1}\right) \\
y_{1}\left(x_{2}\right) & y_{2}\left(x_{2}\right) & \cdots & y_{n}\left(x_{2}\right) \\
\cdots & & \cdots & \cdots \\
y_{1}\left(x_{m}\right) & y_{2}\left(x_{m}\right) & \cdots & y_{n}\left(x_{m}\right) \\
\cdots & & \cdots & \cdots \\
\left.y_{1}^{\left(k_{m}-1\right)} x_{m}\right) & y_{2}^{\left(k_{m}-1\right)}\left(x_{m}\right) & \cdots & y_{n}^{\left(k_{m-1}\right)}\left(x_{m}\right)
\end{array}\right|
$$

$1 \leq m \leq n-1, k_{1}+\cdots+k_{m}=n-1$. If no superscript appears on one of the $x_{i}{ }^{\prime}$ s it
is assumed to be a one. Note, as Kim points out [4], that $w\left(x ; x_{1}^{k_{1}}, \ldots, x_{m}^{k_{m}}\right)$ is a continuous function of the terms, e.g., $y_{2}^{\left(k_{1}-1\right)}\left(x_{1}\right)$, appearing in the determinant.

Theorem 3. If $\rho_{k}(t)<r_{k, n-k}(t)$, then

$$
r_{k 1 \cdots 1}(t)=\rho_{k}(t), \quad k=1, \ldots, n-2 .
$$

Proof. By Theorem 1, $r_{k 1 \ldots 1}(t) \geq \rho_{k}(t)$. Assume Theorem 3 is false, then $r_{k 1 . . .1}(t)>\rho_{k}(t)$. Since $\rho_{k+1}(t)=\rho_{k}(t)<r_{k, n-k}(t)$, there is an $x_{0} \in\left[t, \rho_{k}(t)\right)$ such that there is an extremal solution $u(x)$ of (1) for $\rho_{k+1}\left(x_{0}\right)$ (see Remark 1). Also note that $\rho_{k+1}\left(x_{0}\right)=\rho_{k}(t)$. Let A be the set of all extremal solutions of (1) for $\rho_{k+1}\left(x_{0}\right)$. Note $A \neq \phi$ as $u \in A$. Let p be the maximum number of distinct zeros on $\left(x_{0}, \rho_{k}(t)\right)$ of a member of A. Let $y \in A$ with p distinct zeros at $(t<) x_{1}<\cdots<x_{p}\left(<\rho_{k}(t)\right)$ of multiplicities $k_{i}, i=1, \ldots, p$, respectively. Let $k+k_{0}\left(k_{0} \geq 1\right)$ and $k_{p+1}(\geq 1)$ denote the multiplicities of the zeros of y at x_{0} and $x_{p+1} \equiv \rho_{k}(t)$ respectively. The x_{i}, $i=0, \ldots, p+1$, will remain fixed in the remainder of this proof. Let

$$
M=n-1-k-\sum_{i=0}^{p} k_{i} \quad\left(\text { so } 0 \leq M<k_{p+1}\right)
$$

and define

$$
w_{1}(x)=w\left(x ; x_{0}^{k+k_{0}}, x_{1}^{k_{1}}, \ldots, x_{p}^{k_{p}}, x_{p+1}^{M}\right) .
$$

Let K_{i} be the exact multiplicity of the zero of $w_{1}(x)$ at $x_{i}, i=0, \ldots, p+1$. It is easy to see that $K_{0} \geq k+k_{0}, K_{i} \geq k_{i}, i=1, \ldots, p+1$. Because of the maximality of $p, w_{1}(x)$ and $y(x)$ have no other zeros on $\left(x_{0}, x_{p+1}\right)$. The claim is that $w_{1}(x)$ and $y(x)$ are linearly dependent. Assume they are linearly independent, then there are two possibilities. One possibility is that at least one of the zeros, say x_{l}, of $w_{1}(x)$ and $y(x)$ has the same multiplicity. In this case there is a nontrivial linear combination of the two solutions with a zero of order at least $K_{l}+1$ at x_{l}. But then it follows from Cramer's rule that $w_{1}(x)$ has a zero of order $K_{l}+1$ at x_{l} which is a contradiction. The second possibility is that $K_{0}>k+k_{0}, K_{i}>k_{i}, i=1, \ldots, p+1$. But then it is easy to see that there is a nontrivial linear combination of $y(x)$ and $w_{1}(x)$ which is a member of A with more than p zeros on $\left(x_{0}, x_{p+1}\right)$ which contradicts the maximality of p.

Now let

$$
w_{2}(x)=w\left(x ; x_{0}^{k+k_{0}-1}, x_{1}^{k_{1}}, \ldots, x_{p}^{k_{p}}, x_{p+1}^{p}\right)
$$

where $P=M+1$ (so $1 \leq P \leq k_{p+1}$). If $k_{0} \geq 2$, then $w_{2}(x) \not \equiv 0$ by the maximality of p, and if $k_{0}=1$, then $w_{2}(x) \not \equiv 0$ by Lemma 2. By Cramer's rule $w_{2}(x)$ has zeros of order $k+k_{0}, k_{1}, \ldots, k_{p+1}$ at x_{0}, \ldots, x_{p+1} respectively. Hence, by above argument with $v(x)=w_{2}(x)$, we see that $w_{1}(x)$ and $w_{2}(x)$ are linearly dependent. We now consider two cases.

Case 1. k_{p+1} and P have the same parity: In this case define

$$
w_{3}(x)=w\left(x ; x_{0}^{k}, \S_{01}, \ldots, \S_{0 k_{0}}, x_{1}, \S_{12}, \ldots, \S_{1 k_{1}}, x_{2}, \ldots, x_{p}, \S_{p 2}, \ldots, \S_{p k_{p}}, \S_{p+1,1}, \ldots, \S_{M}\right)
$$

where $\quad x_{0}<\S_{01}<\cdots<\oint_{0 k_{0}}<x_{1}<\S_{12}<\cdots<\S_{p M}<x_{p+1}$. Since $\quad r_{k 1 \cdots 1}(t)>\S_{p M}$, $w_{3}(x) \not \equiv 0$. It follows from looking at the Taylor's formula with remainder and the continuity of $w_{1}(x)$ with respect to elements in its determinate that

$$
w_{3}(x) \rightarrow A w_{1}(x) \quad(A>0)
$$

uniformly on $\left[x_{0}, x_{p+1}+1\right]$ as $\S_{i k_{1}} \rightarrow x_{i}, i=0, \ldots, p$, and $\S_{p+1,1} \rightarrow x_{p+1}$. (For the details of writing down the value of A and hence more details on the validity of this statement see [4, p. 559].) Since $r_{i_{1} \ldots i_{m} \geq x_{p+1}}$ for $i_{1} \geq k$ (Theorem 1), $w_{3}(x)$ has exactly a zero of order k at x_{0}, simple zeros at the $n-k-1$ points $\S_{01}, \ldots, \S_{0 k_{0}}$, $x_{1}, \ldots, \S_{p M}$ and no other zeros on $\left[x_{0}, x_{p+1}\right)$. Since k_{p+1} and P have the same parity, k_{p+1} and M have the opposite parity. Hence for $\S_{i k_{i}}, \S_{p+1,1}$ sufficiently close to x_{i}, x_{p+1} respectively, $w_{3}(x)$ has another (odd ordered) zero in $\left[x_{p+1}, r_{k 1} \ldots 1(t)\right)$ which is a contradiction.

Case 2. k_{p+1} and P have opposite parity: In this case consider

$$
\begin{aligned}
& w_{4}(x)=w\left(x ; x_{0}^{k}, \S_{01}, \ldots, \S_{0, k_{0}-1}, x_{1}, \S_{12}, \ldots, \S_{1 k_{1}},\right. \\
&\left.x_{2}, \ldots, x_{p}, \S_{p 2}, \ldots, \S_{p k_{p}}, \S_{p+1,1}, \ldots, \S_{p+1, P}\right)
\end{aligned}
$$

where $x_{0}<\S_{01}<\S_{02}<\cdots<\S_{p+1, P}<x_{p+1}$. Similar to above

$$
w_{4}(x) \rightarrow L w_{2}(x) \quad(L>0)
$$

uniformly on $\left[x_{0}, x_{p+1}+1\right]$ as $\S_{0, k_{0}-1} \rightarrow x_{0}, \S_{i k_{i}} \rightarrow x_{i}, i=1, \ldots, p$, and $\S_{p+1,1} \rightarrow x_{p+1}$. Similar to above $w_{4}(x)$ is a nontrivial solution of (1) with a zero at x_{0} of order exactly k, simple zeros at the $n-k-1$ points $\S_{01}, \ldots, \S_{p+1, P}$, and no other zeros on $\left[x_{0}, x_{p+1}\right)$. But k_{p+1} and P have the opposite parity and so $w_{4}(x)$ must have a (odd ordered) zero in $\left[x_{p+1}, r_{k 1 \ldots 1}(t)\right.$) which is a contradiction. Hence $\rho_{k}(t)=$ $r_{k 1 \ldots 1}(t)$.

Remark 4. Theorem 3 could have been stated: If $\rho_{k+1}(t)<r_{k, n-k}(t)$, then $\rho_{k+1}(t)=r_{k 1 \ldots 1}(t)$. If one lets $k=0$ in this statement one obtains (since $\left.r_{0 n}(t)=\infty\right)$ the result (5) of Hartman and Sherman.

Example. It is well known (e.g. Theorem 3.2, [9]) that if $p(x)$ is continuous and positive, then for

$$
\begin{equation*}
y^{(n)}-p(x) y=0, \tag{6}
\end{equation*}
$$

$r_{i j}(t)=\infty$ if j is odd, and for

$$
\begin{equation*}
y^{(n)}+p(x) y=0 \tag{7}
\end{equation*}
$$

$r_{i j}(t)=\infty$ if j is even. Hence for (6) we have $\rho_{k}(t)=r_{k 1 \ldots 1}(t)$ if n and k have the opposite parity. For equation (7) we have that $\rho_{k}(t)=r_{k 1 \ldots 1}(t)$ if n and k have the same parity.

Theorem 4. If $\rho_{k}(t)<r_{k, n-k}(t)$, then for any $\varepsilon>0$ there is a nontrivial solution of (1) with a zero of order exactly k at some point $x_{0} \in\left[t, \rho_{k}(t)\right)$, exactly $n-k-1$ simple zeros in $\left(x_{0}, \rho_{k}(t)\right)$ and an odd order zero in $\left[\rho_{k}(t), \rho_{k}(t)+\varepsilon\right)$.

Proof. This theorem follows from a closer examination of the proof of Theorem 3. Theorem 3 was proved by contradiction. The only place the assumption $r_{k 1 \ldots 1}(t)>\rho_{k}(t)$ was needed was to show $w_{2}(x) \neq 0$ when $k_{0}=1$. We now show that the assumption

$$
\begin{equation*}
w_{2}(x)=w\left(x ; x_{0}^{k}, x_{1}^{k_{1}}, \ldots, x_{p}^{k_{p}}, x_{p+1}^{p}\right) \equiv 0 \tag{8}
\end{equation*}
$$

leads to a contradiction. It follows from (7) that there is an extremal solution of (1) for $\rho_{k}(t)$ with at least $p+1$ zeros on $\left(x_{0}, x_{p+1}=\rho_{k}(t)\right)$. Let B be the set of all extremal solutions of (1) for $\rho_{k}\left(x_{0}\right)$. Let q be the maximum number of distinct zeros on $\left(x_{0}, x_{p+1}\right)$ of a member of B. Note that $q \geq p+1$. Since $q>p$, every extremal solution of (1) for $\rho_{k}(t)$ with q distinct zeros on $\left(x_{0}, \rho_{k}(t)\right)$ has a zero of order exactly k at x_{0}. Hence there are points z_{1}, \ldots, z_{q} such that
where

$$
w_{5}(x)=w\left(x ; z_{0}^{k}, z_{1}^{l_{1}}, \ldots, z_{q}^{l_{q}}, z_{\alpha+1}^{Q}\right),
$$

$$
z_{0} \equiv x_{0}, \quad z_{a+1} \equiv \rho_{k}(t), \quad k+\sum_{m=1}^{q} l_{m}+Q=n-1,
$$

is a nontrivial solution (by the maximality of q) with n zeros on $\left[z_{0}, z_{q+1}\right]$. Assume $l_{i}>1$ for some $i \in\{1, \ldots, q\}$. Let

$$
w_{6}(x)=w\left(x ; x_{0}^{k}, z_{1}, \S_{12}, \ldots, \S_{1, l_{1}}, z_{2}, \ldots, z_{i}, \S_{i 2}, \ldots, \S_{i, l_{i-1}}, \ldots, \S_{q l_{a}}, \S_{\alpha+1,1}, \ldots, \S_{q+1, Q}\right)
$$

where $x_{0}<z_{1}<\S_{12}<\cdots<\S_{\alpha+1, Q}<z_{\alpha+1}$. It follows for $\S_{1, l_{1}}, \ldots, \S_{i, l_{i}-1}, \ldots$, $\S_{\alpha, l_{q}}, \S_{\alpha+1,1}$ sufficiently close to $z_{1}, \ldots, z_{i}, \ldots, z_{q}, z_{\alpha+1}$ respectively, $w_{6}(x)$ is a nontrivial solution of (1) with a zero of order k at x_{0} and $n-k$ zeros on $\left(z_{0}, z_{q+1}\right)$. This contradicts Theorem 1. Hence $l_{1}=\cdots=l_{q}=1$ and

$$
w_{5}(x)=w\left(x ; z_{0}^{k}, z_{1}, \ldots, z_{q}, z_{q+1}^{Q}\right)
$$

Since $r_{k, n-k}\left(z_{0}\right)>z_{\alpha+1}$ for $\varepsilon>0$ sufficiently small we can define a set of nontrivial solutions $\left\{u_{\varepsilon}(x)\right\}$ of (1) by the boundary conditions

$$
\begin{gathered}
u_{\varepsilon}^{(j)}\left(z_{0}\right)=0, \quad j=0, \ldots, k-1 \\
u_{\varepsilon}^{(l)}\left(z_{q+1}-\varepsilon\right)=w_{5}^{(l)}\left(x_{q+1}\right), \quad l=0, \ldots, n-k-1 .
\end{gathered}
$$

Then

$$
u_{\varepsilon}(x) \rightarrow w_{5}(x)
$$

uniformly on $\left[z_{0}, z_{q+1}\right]$ as $\varepsilon \rightarrow 0$. Since $w_{5}(x)$ has simple zeros in $\left(z_{0}, z_{q+1}\right)$ we have for $\varepsilon>0$, sufficiently small, $u_{\varepsilon}(x)$ is a nontrivial solution of (1) with a zero of order k at z_{0} and $n-k$ zeros on $\left[z_{0}, z_{q+1}-\varepsilon\right]$. This contradicts Theorem 1.

Remark 5. By using the type of argument that appears at the end of the proof of Theorem 4 one can show that no extremal solution of (1) for $\rho_{k}(t)$ has an $(n-k, 1, \ldots, 1)$-distribution of zeros on $\left[t, \rho_{k}(t)\right]$.

Two very interesting corollaries follow from Theorem 4.
Corollary 5. For those values of t for which $\rho_{k}(t)<r_{k, n-k}(t), \rho_{k}(t)$ is a continuous function of t.

Proof. The proof of this theorem follows easily from Theorem 4 and the continuous dependence of solutions on the initial point.

Remark 6. Corollary 5 could have been stated: For those values of t for which $\rho_{k+1}(t)<r_{k+1}(t), \rho_{k+1}(t)$ is a continuous function of t. This statement with $k=0$ is the well known fact that $\eta_{1}(t)$ is a continuous function of t.

Corollary 6. If $\rho_{k}(t)<r_{k, n-k}(t)$, then $\rho_{k}(t)$ is a continuous function of the coefficients of (1).

Proof. This theorem follows from Theorem 4 and the use of the continuous dependence of solutions with respect to the coefficients of the differential equation. See the proof of Theorem 3 [10].

Remark 7. Corollary 6 could have been stated: If $\rho_{k+1}(t)<r_{k, n-k}(t)$, then $\rho_{k+1}(t)$ is a continuous function of the coefficients of (1). This statement with $k=0$ is the fact that $\eta_{1}(t)$ is a continuous function of the coefficients of (1) (see [3, Theorem 3]).

References

1. P. Hartman, Unrestricted n-parameter families, Rend. Circ. Mat. Palermo (2) 7 (1958), 123-142.
2. Z. Opial, On a theorem of O. Arama, J. Differential Equations 3 (1967), 88-91.
3. T. L. Sherman, Conjugate points and simple zeros for ordinary differential equations, Trans. Amer. Math. Soc. 146 (1969), 397-411.
4. W. J. Kim, Simple zeros of solutions of nth-order linear differential equations, Proc. Amer. Math. Soc. (2) 28 (1971), 557-561.
5. T. L. Sherman, Properties of solutions of nth order linear differential equations, Pacific J. Math. 15 (1965), 1045-1060.
6. A. C. Peterson, On the ordering of multi-point boundary value functions, Canad. Math. Bull. (4) 13 (1970), 507-513.
7. -, Distribution of zeros of solutions of a fourth order differential equation, Pacific J. Math. 30 (1969), 751-764.
8. G. Polya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1922), 312-324.
9. Z. Nehari, Disconjugate linear differential operators, Trans. Amer. Math. Soc. 129 (1967), 500-516.
10. A. C. Peterson, The distribution of zeros of extremal solutions of a fourth order differential equation for the nth conjugate point, J. Differential Equations 8 (1970), 502-511.
University of Nebraska,
Lincoln, Nebraska

[^0]: Received by the editors July 29, 1971.

