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The Parabolic Littlewood—Paley Operator
with Hardy Space Kernels

Yanping Chen and Yong Ding

Abstract. In this paper, we give the L boundedness for a class of parabolic Littlewood—Paley g-func-
tion with its kernel function 2 is in the Hardy space H'(S"~1).

1 Introduction

Let R” be the Euclidean space with the routine norm |x| for each x € R". Denote
by "~ ! = {x € R" : |x| = 1} the unit sphere on R" equipped with the Lebesgue
measure o(x’). Let ay, ..., a, be fixed real numbers with a; > 1. It is easy to see
that for fixed x € R"”, the function

n 2

F(x,p) = Z al

204,'
i=1 P

is a strictly decreasing function of p > 0. Therefore, there exists a unique p(x) such
that F(x, p) = 1. It was proved in [7] that p(x) is a metric on R”. For x € R", set

X1 = p* COS Q] -+ COS Py_p COS Py

Xy = p™ CoS Py -+ COS Py SN P,

Xp—1 = pY"! cos gy sin @,
X, = p™ sin ;.

Then dx = p*~ ! J(x")dpdo(x"), and p*~!J(x’) is the Jacobian of the above trans-
form, where @ = Y7 | o and J(x') = aix{* + -+ + aux)?. It is easy to see that
J(x") € C>°(§" 1) with 1 < J(x") < M for some M > 1. Without loss of generality,
we may assume o, > Qp—1 > -+ > ap > 1.

Fort > 0, let A, = diag[t™,...,t*]. Suppose that Q(x) is a real valued and
measurable function defined on R". We say €2(x) is homogeneous of degree zero
with respect to Ay, if forany ¢ > 0 and x € R”

(1.1) Q(Ax) = Q(x).
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Moreover, we also assume that {2(x) satisfies the following cancellation condition:

(1.2) Qx")J(x")do(x") = 0.

snfl

In 1966, Fabes and Riviére [7] proved that if Q € C!(S"™!) satisfies (1.1) and (1.2),
then the parabolic singular integral operator T is bounded on L?(R") for 1 <
p < 00, where Tq is defined by

Toft) = p. [ 05— y)dy.

re P(Y)*

In 1976, Nagel, Riviere and Wainger [9] improved the above result. They showed Tq
is still bounded on L?(R") for 1 < p < oo if replacing € C'(S"~!) by a weaker
condition € LlogL(S"1).

On the other hand, in 1974, Madych considered the L boundedness with respect
to the transform A, of the Littlewood—Paley operator. Let ¢ € S(R") satisfy 1&(0) =
0, where and below, ¢ denotes the Fourier transform of . Let ¢, (x) = t~“t)(A,-1x)
for t > 0. Then the Littlewood—Paley operator related to A, is defined by

g6 = ([ o gr®)

Theorem A  [8] The Littlewood—Paley operator g, is of type (p, p) for 1 < p < oo.

Inspired by the works in [7-9], recently Ding, Xue and Yabuta [5] improved the
above result. More precisely, the authors in [5] proved that the parabolic Littlewood—
Paley operator is still bounded on L? if 9 (x)is replaced by a kernel function ¢(x) =
Q) p(x) X g0 <1} (%) with @ € LI(S"~1) (g > 1) satisfying (1.1) and (1.2).

Theorem B [5] If Q € L1(S"')(q > 1) satisfies (1.1) and (1.2), then g4 is of type
(p,p) forl < p < oo.

Notice that on the unit sphere S"~!, there are the following containing relation-
ships:
C*CL(qg>1)SLlog" LS H G LY,

where H' denotes the Hardy space on §"~! (see §2 for its definition). Hence, a natural
question is whether the size condition assumed on €2 can be weakened further. The
purpose of this paper is to give a positive answer to this question.

Theorem 1.1 IfQ) € H'(S" ') satisfies (1.1) and (1.2), then g, is of type (p, p) for
1 <p<oo.

Remark. If oy = -+ = o, = 1, then p(x) = |x| and o = n. In this case, gy = uq
and the latter is just the classical Marcinkiewicz integral, which was studied by many
authors. (See [1,4, 10], for example.) Moreover, note also that the {2 in Theorem 1.1
(also Theorem B) has no any smoothness on $" .
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2 Definitions and Lemmas

Let us begin with the definition of Hardy space H!(S"~!). For f € L!(S"!) and
x' € §"71, we denote

PTf(x") = sup fPu (") do(y")],
0<t<1 Sn—1
where P,/ (y') = ﬁ for y’ € §"7!. Then

H'(S" Y ={feLl' (") |P fllue-1 < oo},

and we define || f|| g1 (1) = [|P sy if £ € HY(S"1).

A very useful characterization of the space H!(S"!) is its atomic decomposition.
Let us first recall the definition of atoms. A regular H'(S"~!) atom is a function a(x’)
on L (8"~ 1) satisfying the following conditions:

(2.1)  supp(a) C S"!
N{yeR": |y —¢&'| <rforsome¢’ € S" 'andr e (0,2]};

(2.2) / a(x"Y,(x")do(x") =0
Snfl
for any spherical harmonic polynomial Y,, with degree m < N, where N is any fixed
integer;
(2.3) ||aHLoo(Sn—1) < Tlin.

An exceptional H'(S"~1) atom u(x’) is an L°°(S"~!) function bounded by 1.
From [3], we find that any 2 € H'(S"~!) has an atomic decomposition

o0 oo
Q= Z /\jaj + Z 5,‘1/!,‘,
j=1 i=1
where each a; is a regular H 1(§"=1) atom and each u; is an exceptional atom. More-

over,
o0 e3¢}
Z |)\J| + Z |61| S C”Q”Hl(sn—l),
j=1 i=1

We note that for any x’ € §"7!,

| 3 G
i=1

< Z|5i|-
i—1
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Without loss of generality, we can assume

]fj Siui(x')
i=1

< 2] 51y

Thus we write

D Giui(x) = |2 (s-nw(x),

i=1

withw(x’) = Y7, diui(x") /|| Q| i(sn-1). In this new definition, for x” € §"~,

(2.4) Q(x/):Z/\jaj(x')+|\Q|\H1(5n71)w(x') and  ||w]|gee(sry < 1.

=1
The following Lemmas 2.1 and 2.2 can be found in [6].
Lemma 2.1 [6] Suppose that n > 3 and b satisfies (2.1), (2.3), and
(2.5) b(y") da(y") = 0.
srtfl

Let

Fy(s) = (1 — )92y 1 1(s) b(s, (1 — s5)'?9)do (7),
Snfz

Gp(s) = (1 — )32y 1 1y(s) |b(s, (1 — s9)'29)|do (7).

Sn—2

Then there exists a constant C, independent of b, such that

(2.6) supp(Fy) C (& —2r(&"), & +2r(&")),
(2.7) supp(Gy) C (& —2r(&"), & +2r(¢")),
(2.8) [Fplloc < C/r(€"),  |Gplloe < C/r(E1),
(2.9) /Fb(s) ds =0,

R

where r(€') = |&| 7Y L,&| and L€ = (r2&1,1&s, ..., 1&y).
Lemma 2.2 [6] Suppose that n = 2 and b satisfies (2.1), (2.3) and (2.5). Let

Fy(s) = (1 = )7 2x () (b(s, (1 = )2 + b(s, —(1 = )'/2)),
Gy(s) = (1 = )iy ($) ([bs, (1 = s3] + [b(s, —(1 — s)'72)]).

Then Fy(s) satisfies (2.6) and (2.9), and ||Fy||, < C|L.(€")|71*V9. And Gy(s) satisfies
(2.7) and ||Gy||4 < CIL (&)~ for some q € (1,2).
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Lemma 2.3 [5] For Q € L'(S*™1), denote
o2 (%) = 27 Qx)p() " X <2} (%),

and o™ (f)(x) = sup,cp ||ox| * f(x)|. Then |[ox||; < C and ||o*(f)||, < C|fll, for
1 < p < oo, where the constant C is independent of f and t.

Lemma 2.4 [5] Suppose that m denotes the distinct numbers of {cj}. Then for any
xyeR,0<8<1

2 p
[t <oy
1 A

where C > 0 is independent of x and y.

3 Proof of Theorem 1.1

Since € H!'(S"™!) satisfies the cancellation condition (1.2), by (2.4) we can
write

Q) =Y Naj(x) + Q| s-nw(x),
j=1

where each a; is a regular H'($"~!) atom and ||w|| e (s»-1) < 1. Moreover,

o0
> Al <l (s
j=1

For y € R" (y # 0), we write

Q) = Nai(y) + Qs s-n@ (),

j=1

where d;(y) = a;(A,,)-1y) and O(y) = w(A,,)-1y). Itis easy to check that @(y’) =
w(y), aj(y’) = aj(y’") for y’ € §""! and @ and a; satisfy (1.1) for any ¢ > 0 and
y €R",

Noticing that ](ﬁ)|x|2 is a homogeneous polynomial of degree 2 on R" by [11,
Theorem 2.1], we can write

x
(g ) e = P20 + IxfPote),

where Py(x) is a harmonic polynomial of degree k (k = 0,2). Then J(x') = P(x’) +
Py(x’), where Pi(x') is a spherical harmonic polynomial of degree k (k = 0, 2). So by
(2.2), we have

(3.1) /S'ilaj(y’)](y’)da(y’)

_ / 0,y )Pa(y') do(y') + / a;(y")Po(y") do(y") = 0,
Sﬂ*l SYI*I
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forall j =1,2,.... Thus by (2.4) and (3.1), we know

(3.2) /S WD da(y) = o0.

Therefore,

(33 les(Hllp < fj sl Pl + 120l (Pl
where

wne= ([ re-nal )"

<t P! 2
o @(y) 24ty 1/2
@ =[]/ =y 4"
s/ ( 0 p(<t p(y)a_lf »e ts)
Since w(x’) € L°°(S"~!) and satisfies the cancellation condition (3.2), by Theorem B
we get
(34) 18.(Ollp < Cllfllp,

where C is independent of w and f. Thus, to prove Theorem 1.1, by (3.3) and (3.4)
it suffices to show that there exists C > 0, independent of the atoms a; and f, such
thatfor j =1,2,...,

(3.5) 8a;(Nlp < Cllfllp-

We only prove (3.5) for the case n > 2. The case for n = 2 can be dealt with using
the same method and Lemma 2.2. From now we denote simply a;, d; and g,; by a, 4,
and g,, respectively. Without loss of generality, we may also assume that supp(a) is
contained in B(1,r) N S"~!, where B(1,r) = {y : |y — 1] < r}and 1 = (1,0,...,0).

Choose a C§°(R") function ¢ such that p(x) = @(p(x)), 0 < ¢ < 1 satisfying
supp(e) C {y : 1/2 < p(y) < 2} and fooo o(t)/tdt = 1. Define functions ®
and A by E)(f) = p(p(L;£)) and ﬁ({) = @(p()), respectively, where L, is de-
fined in Lemma 2.1. If we denote ®;(x) = t " “®(A;-1x) and A;(x) =t “A(A,-1x),
then it is easy to check that a(ﬁ) = (tp(L;£)), /A\,(§) = @(tp(£)), and ;(x) =
rnlﬂ t~“A(L,-1A;-1x), where

LoiA—ix = (r 2 %y, r %, ).
Forany f € 8(R"), by taking Fourier transform we have
(36) f(x) = (1)21 * f(x)dt ~ (I)[ * f(x)?
—o00 0
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Define

ga(f)(x) = (/OOO |<1>,*f(x)|2?) L (/

— 00

o0

|, f(x)|2dt) "

Now we claim that

(3.7) llga(OIl, < Cllfllps

with C independent of r > 0. In fact, by the definition of ®,, we have

Pk f(x) =

1
= AL, 1A~ y)f(x— y)dy
R"

rn+1

=7 | AU L L,x— ) dy
R7

= At * h(L,—lX),

where h(x) = f(Lx). Since [, A(x) dx = A(0) = ¢(0) = 0, by Theorem A we get

el = ([ 120 r0p )

— {/R(/OOO |At*h(me)|2?) p/zdx} 1/p
— {rnﬂ /R((/Ooo |At*h(x)|z%)p/2dx}1/p

< Cf%Hth

/
—c(r [ Ifwor ) =clfl,.

R

This is (3.7). Now we denote o (y) = 2_’d(y)p(y)_““x{p(},)g,}(y). Then

B 0o aly) 24N 1/2
st = ([ | s o] g)

- (/ |02 >f<f(x)|2dt) "

By (3.6) and the Minkowski inequality, we obtain
T 2 N\ 1/2
&N ~ / | / Dyoo 0k ()| dt)

9] oo 1/2
< / (/ |y * Doere % f(x)|2dt) ds

— 00 — 00

_. / Q(f) () ds.

https://doi.org/10.4153/CMB-2009-053-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2009-053-8

528 Y. Chen and Y. Ding

Using Minkowski’s inequality again yields

o] 0
6o sl <c( [ 1@l [ 1),
By (3.8), it is easy to see that the proof of (3.5) can be reduced to show the following
estimates
C2=|f|l, fors>o0,
3.9 ) <
(39) 1Al {czv||f||p fors < 0,

where 7 and y are some positive constants, and C is independent s and f.
The proof of (3.9) will be completed in two steps.

Step 1: There exists C > 0, independent of s and f, such that

(3.10) 1N, < Clfll, forl < p < .

First we consider the case 1 < p < 2. Denote Gy (x) = P * f(x). Since a(x’) €
L(S"71), by Lemma 2.3, we know ||o||; < C, then

(3.11) H/_Z oy *GH,(-)dtHl < CH/_O:O Gt(-)dtHl.

On the other hand, for 1 < g < 00, also by Lemma 2.3, we get

(3.12) [['sup o2 % Goralllq < flo™ (sup |Gi])]l4 < C[ sup [Gil[l-
teER tER tER

If we define TG+ (x) = 0 * Ggy(x), then (3.11) and (3.12) show that T is a bounded
operator on L} (L (R), R") and L1(L>°(IR), R"), respectively. Since 1 < p < 2, we can
take g > 1 such that 1/q = 2/p — 1. Then by using the operator interpolation
theorem between (3.11) and (3.12), we know that the operator T is also bounded on
LP(L*(R), R™). That is

[([ e wcmiora) ™) <l (] _iaora) ™

From this and (3.7), we prove (3.10) for 1 < p < 2. Moreover, by (3.7) and the L?
boundedness of o, (3.10) holds for the case p = 2. Now let us deal with the case
p>2.Letq=(p/2)’. Then

||st|\f] = sup‘ /1/ oy % ®oere x f()|*v(x) dt dx|
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where the supremum is taken over all v(x) € Li(R") with ||v||; < 1. Applying
Holder’s inequality and noting the fact ||ox |1 < C,

’/ / |oa % @yer % f(x)[Pv(x) dt dx’

L)

1/2Y 2
><( |02r(x—y)|dy) } I(x)| dx dt
R®
< HO'Zle/ / / |(I)25+r * f(y)|2|02,(x—y)||y(x)|dydxdt
—oo JR" JR?
< C/ | f(3) o™ ([v)(y) dy dt
—oo JR"

e / / 1B % f() dit o (W) (7) dy,
R* J —o0

where C is independent of s, f and v. Using Holder’s inequality again and (3.7),
Lemma 2.3, we obtain

Q15 < Csup liga (N lle™ (I Dlly < ClIFI5-

Thus we have (3.10) for p > 2. From the proof of (3.10) above, it is easy to check
that the constant C is independent of s and f.

Step 2: There exists C > 0, independent of f and s, such that

C27Ifll. fors>o0,

(3.13) QN2 < {Czﬁs/m”f”z fors < 0,

where 0 < 3 < ﬁ and m denotes the distinct numbers of {c;}.
By Plancherel’s theorem,

G149  QflE < / PP p(LE) 155 (O dedt,
—oco JR
where

2f
F(E) = 2 / / a(y") Iy )e A do(y")dp
0o Jot

and a is a regular H!(S"~!) atom supported in B(1,7) NS"~!,where 1 = (1,0,...,0).
We first give the estimate of |6 (). Let n(y’) = a(y")J(y")/||J||1s(s»-1)- By (3.1)
and J(y') € C5°(S" 1), we know 7(y’) satisfies (2.3) and (2.5), and supp(n) C
B(1,r) N §"!. Then

- ([P A
615 ao= ey / / n(y"e €N da(y"dp.
0 Sn—1
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In the following, we want to prove |55 (€)| < C min{|L,Ax&|, |L,Ax&|~%/"}, where
0 < f < 5, and m denotes the distinct numbers of {aj}. Forany { # 0, denote

Ij:ﬂgl = C (CI,C*) € §"!, where (, € R""!. We choose a rotation O in R” such

that O(¢) = 1. Since O~! = O, where O~! and O denote the inverse and transpose

of O, respectively, it is easy to check that ¢ is the first row vector of O. Thus, we have

O*() = (¢/,7«), where v, € R""!. Now, we take a rotation Q,_; in R"~! such

that Q,—1(Cx) = 74 Set R = (o, ); then R is a rotation in R, such that for any
"=y, . ) in ST (1, Ry’) = L. Thus

_ s [* _ o ,
7(e) = Uz ”Lz,‘s : / / (O~ (Ry")e AR o (4 dp.
0 Jgn—1

Now n(O~1(Ry’)) also satisfies (2.3) and (2.5), and is supported in B(,r) N S"~1.
Thus we have

— ] oo (gn—1 g i
0'2’(5): H Hth(S )AA{FH(K)e 2 |A/,§\Zd€dp7

where F,(¢) is the function defined in Lemma 2.1. By Lemma 2.1, we know that F,
is supported in (—2r(¢) + &1, 2r(¢) + 1), where r(¢) = |L‘AA2‘£‘ and §; = |A 2“ Thus
N(f) = r(Q)F,(r(¢)¢) is a function with support in the interval (=2 + 25,2 + -5 )
and ||N||oc < C (C is independent of n and p) and [, N(¢) d¢ = 0. After changmg a

variable we have

ot
6’;(5) — ||]||L;°[(S”’l) / N(6)6727Ti[\L,A/,§| dédp
R

So by the cancellation property of N, we obtain that

||]||L;° (Sn—1) //N(f) _27r1|LrAp£w e‘“’pl&]dﬁdp

<[]

< 2N()|IL A,,§|‘

(3.16) |62 ()] =

/ 1L, A €| dp

< C|LAx¢|.
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On the other hand, using Holder’s inequality and (3.15), we have
—~ 2 ||]||L°°(s"*1) ? 1y, —2mi&-Ayy’ / 2
G17)ox(OF = | =5 — n(y"e do(y') dp
0 Srlfl

1 [? o 2
0 sn—l

s j

0
. 1 o
—=C yi—1__~ ’/ Ne=2TEAY dor(y!
]—Zoo t+j—1 or+j—11 Jgn—1 77()/ Je U(}’ )

2
dp

ot j 2 dp

<C ZO: 21'—1/

jzfoo tHj—1

/ n(y" e mEAY do(y")
snfl

0
=C > 217'B,;(9),

j=—o0

where .
otti

B, () = / |
ot+j—1

oMt j

B,j(€) = / / / 0y GTYe A = () dor () 22
or+j—1 Sn—1lygn—1 14

<c / / (") ()]
$r=1x§n—1

By Lemma 2.4, we know

2{+j d 2 d
‘/ efzmA/,(ny’).g_P‘ _ ‘/ e—Z?TiAZHj,lp(y/—xl).g_p‘
24—l P 1 P

—28/m
<C(|(y/ —x') - Agure]) 2,

a7 2d
/ n(y/)eflfrtf-A/,y dO’()//) _p
§1=1 p

Then we get

2r+j
/ e—ZWiAp(y/—x/)f@’ do(y")do(x").
5 P

t+j—1

where 0 < 8 < 5 and m denotes the distinct numbers of {c;}. Then by the above

2a,
inequality we get

(318) By (&) <C / / () )

—26/m

X (|(y" —x') - Ageii€]) do(y")do(x") = CI,(€),

where

L) = / / OGO (G =) - Axoii€]) ™ do(y Yo ().
S1—1x §1—1
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As was done above, for any £ # 0, we choose a rotation O in R” such that
O(A21+j—1§) - |A2t+j—1€|1 — |A21+;’—1€|(1, 0, e ,0)
Thus, we may take another rotation R in R" such that for any
V' =000y €S

(1,Ry") = y{ = (1,y"). Now, let y' = (s, ¥3, 75, -, yp) x' = (0,x3,x%,...,x,).
Then it is easy to see that

L) = / / (O~ (Ry")In(O~ (Rx"))
Sn—1xgn—1

—283/m
< (1" = x) - JAgesa€1]) " do(y")do (),
where O~ is the inverse of O. Now n(O~!(Ry’)) satisfies (2.3) and (2.5), and is

supported in B(¢, r) N S"~! where ¥ = Iﬁz”jfi;.
tj—

L) = / / 690Gy (8) (Ao 1€]ls — o) "™ dsds,
RxR

where G, (s) is the function defined in Lemma 2.1. By Lemma 2.1, we know

Thus we have

supp(G,) C (=2r(19) +10;, 2r(19) +19; ), where r(¥) = H and ¥, = H
Thus ¢(s) = r(¥)G,, ( r(9)(s — r'j—q;))) is a function supported in the interval (-2, 2),

and ||¢||c < C (C is independent of , ¢, j and ¥ ). Since 23/m < 1, we get

2 2 8/m
11(5):/ / @(5)p(8) (L Ayi—1€]|s — 8)) —20Im dsds
—2J2

2 2
< C|L Ay £ 720/m / / |s — 8| 729/m dsds
—2J-2

< C|L Ay &) 20/,
This together with (3.18) gives
(3.19) B, j(€) < C|L,Ay-€| 72/,
Since 0 < 8 < ﬁ and m > 1, then by (3.17) and (3.19), we get

0
(3.20) G2 <C Y 2 LA g

j=—o0

0
<C Z 2]’(1—2/3an/M)|LrA2{§|—2/9/m

j=—o0

0
<C Z 2]’(1—2/3an/M)|LrA2{§|—2/9/m

j=—o0

< C|L Ay €|,
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By (3.16) and (3.20), we have
72(©)] < Cmin{|LAx¢], [LAzE[~7"}.

Now we give the estimates ||Qs(f)||>. Fors > 0, by (3.14) and the properties of ¢,
using the estimate |75 (£)| < C|L,Ax£| and the Plancherel theorem, we get

lAIE <C / / FOPIL Ave Pdede
—00 J275 I < p(L A E) <2741

1 > ~
—c L / / HEN LA )P Ap A € 2o do (€'Y dpdt
r — 00 27571S2fp§275+1 Snfl

< Crnlﬂ / ](§I)|J?(Lr*1Ap§/)|2((Z_SH)MI 4t (2—s+1)2u,,>

—oo J§—1

x (/SHW dt) o do(€)dp

’ 1 NI T /! o— /!
<G / JEf (LA " do(€)dp
Sn—1

— 00

el [ s
<crron [ opa
R

< C27¥| fl5-
So we have ||Qs(f)||2 < C27*||f]|, for s > 0. Using the estimate
152 (9)] < CILAzg|

and the same idea, we have || Q,(f)||, < C2%/"||f||, for s < 0. Thus we get (3.13),
and obviously, the constant C is independent of s and f.

Applying the Riesz-Thorin interpolation theorem of sub-linear operators [2] be-
tween (3.10) and (3.13), we know that there exist two constants v, 7 > 0 such that

QNI < C277 £l fors>0,1< p < oo,
1Q(Nlp < C27(| [, fors < 0,1 < p < oc.

Thus, we obtain (3.9) and (3.5) follows.
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