RATIO LIMIT THEOREMS

A. G. MUCCI

Introduction. Let $\left\{f_{n}, \mathscr{B}_{n}, n \geqq 1\right\}$ be an adapted sequence of integrable random variables on the probability space (Ω, \mathscr{B}, P). Let us set $\sigma^{2}\left(f_{n+m} \mid \mathscr{B}_{n}\right)=$ $E\left(f_{n+m}{ }^{2} \mid \mathscr{B}_{n}\right)-E^{2}\left(f_{n+m} \mid \mathscr{B}_{n}\right)$. The following result can be immediately derived from Brown [2]:

Theorem 1. If
(1) $\int f_{n}>0 \quad$ and $\quad E\left(f_{n} \mid \mathscr{B}_{n-1}\right) \geqq 0 \quad$ for all $n \geqq 1$, and
(2) $\sup _{n \geq 1} \frac{\sigma^{2}\left(f_{n+m} \mid \mathscr{B}_{n-1}\right)}{E\left(f_{n+m} \mid \mathscr{B}_{n-1}\right)} \in \mathscr{L}_{1}$, for all $m \geqq 0$
then we have
($\overline{1})$ There exists, modulo a set of measure zero, a partition of Ω into two sets:

$$
\Omega_{0}=\bigcap_{m=0}^{\infty}\left\{\sum_{1}^{\infty} E\left(f_{n+m} \mid \mathscr{B}_{n}\right) \text { exists and is finite }\right\}
$$

and

$$
\Omega_{\infty}=\bigcap_{m=0}^{\infty}\left\{\sum_{1}^{\infty} E\left(f_{n+m} \mid \mathscr{B}_{n}\right)=\infty\right\} .
$$

($\overline{2})$ On Ω_{∞} and for each $m \geqq 0$:
(*) $\lim _{N \rightarrow \infty} \frac{\sum_{1}^{N} E\left(f_{n+m} \mid \mathscr{B}_{n}\right)}{\sum_{1}^{N} E\left(f_{n+m} \mid \mathscr{B}_{n-1}\right)}=1$.
This result is readily extracted from Brown's Theorem (1) and Corollary (2). Our condition (2) requires that $E\left(f_{n+m} \mid \mathscr{B}_{n}\right)=0 \Rightarrow \sigma^{2}\left(f_{n+m} \mid \mathscr{B}_{n}\right)=0$; whenever this occurs we will interpret the ratio in (2) as equal to the value one. We also impose, for normalization purposes, the condition $\mathscr{B}_{0}=\{\emptyset, \Omega\}$. Our objective in this paper is to derive a sharper form of the theorem above by imposing a mixing condition on the variables. This condition is one possible generalization of $\left(^{*}\right)$-mixing (see Stout [5]) and will have the following form:

Received May 6, 1975 and in revised form, October 15, 1975.

There exists f_{∞} such that, given $\epsilon>0$, there exists n_{0} where $n \geqq n_{0}$ implies

$$
\left|\frac{E\left(f_{n+m} \mid \mathscr{B}_{n}\right)}{\int f_{n+m}}-f_{\infty}\right| \leqq \epsilon+\phi(m)
$$

where $\phi(m)$ is a sequence of constants, $\phi(m) \downarrow 0$.
This condition will be written
$\left({ }^{* *}\right) \frac{E\left(f_{n+m} \mid \mathscr{B}_{n}\right)}{\int f_{n+m}} \rightarrow f_{\infty}$.
This kind of mixing is met in the following circumstances. Suppose there exists a sequence of reals $\{\phi(m)\}$ where $\phi(m) \downarrow 0$ and suppose there exists an adapted sequence $\left\{\bar{f}_{n}, \mathscr{B}_{n}\right\}$ with

$$
\left|\frac{E\left(f_{n+m} \mid \mathscr{B}_{n}\right)}{\int f_{n+m}}-\bar{f}_{n}\right| \leqq \phi(m)
$$

It is then easy to see that $\left\{\bar{f}_{n}, \mathscr{B}_{n}\right\}$ is a positive supermartingale converging to some f_{∞} satisfying (**).

Theorems and corollaries.

Theorem 2. Let the adapted sequence $\left\{f_{n}, \mathscr{B}_{n}\right\}$ on (Ω, \mathscr{B}, P) satisfy the following conditions:
(1) $\int f_{n}>0$ and $E\left(f_{n} \mid \mathscr{B}_{n-1}\right) \geqq 0$, for all $n \geqq 1$.
(2) For all integers $m \geqq 1: \sup _{n \geqq 0} \frac{\sigma^{2}\left(f_{n+m} \mid \mathscr{B}_{n}\right)}{E\left(f_{n+m} \mid \mathscr{B}_{n}\right)} \in \mathscr{L}_{1}$.
(3) $\frac{E\left(f_{n+m} \mid \mathscr{B}_{n}\right)}{\int f_{n+m}} \rightarrow f_{\infty}>0$.
(4) For all $m \geqq 1: \lim _{N \rightarrow \infty} \frac{E\left(f_{N+m} \mid \mathscr{B}_{N}\right)}{\sum_{1}^{N} E\left(f_{n+m} \mid \mathscr{B}_{n}\right)} \rightarrow 0$.

Then we can conclude
(I) $P\left\{\sum f_{n}=\infty\right\}=1 \Leftrightarrow \sum \int f_{n}=\infty$, and $P\left\{\sum f_{n}\right.$ exists and is finite $\}=$ $1 \Leftrightarrow \sum \int f_{n}<\infty$.
(II) If $\sum \int f_{n}=\infty$, then

$$
\frac{\sum_{1}^{N} f_{n}}{\sum_{i}^{N} \int f_{n}} \rightarrow f_{\infty} P \text { a.e. }
$$

Proof. From Condition (3), we can find n_{0}, m_{0} so large that $m \geqq m_{0}$ implies

$$
0<f_{\infty}-\epsilon \leqq \frac{\sum_{n_{0}}^{N} E\left(f_{n+m} \mid \mathscr{B}_{n}\right)}{\sum_{n_{0}}^{N} \int f_{n+m}} \leqq f_{\infty}+\epsilon<\infty
$$

From this it follows that $\sum_{1}^{\infty} \int f_{n}=\infty \Leftrightarrow \sum_{1}^{\infty} E\left(f_{n+m} \mid \mathscr{B}_{n}\right)=\infty$, and then using Theorem 1 we see that (I) obtains. Let us now assume $\sum \int f_{n}=\infty$. Returning to the inequality above, we can choose N so large that

$$
0<(1-\epsilon) f_{\infty}-3 \epsilon \leqq \frac{\sum_{1}^{N} E\left(f_{n+m} \mid \mathscr{B}_{n}\right)}{\sum_{1}^{N} \int f_{n+m}} \leqq(1+\epsilon) f_{\infty}+3 \epsilon<\infty
$$

since all individual terms $E\left(f_{n+m} \mid \mathscr{B}_{n}\right), \int f_{n+m}$ are finite. Now

$$
\frac{\sum_{1}^{N} f_{n}}{\sum_{1}^{N} \int f_{n}}=\left[\prod^{m-1} \frac{\sum_{1}^{N} E\left(f_{n+k} \mid \mathscr{B}_{n}\right)}{\sum_{1}^{N} E\left(f_{n+k+1} \mid \mathscr{B}_{n}\right)}\right] \cdot \frac{\sum_{1}^{N} E\left(f_{n+m} \mid \mathscr{B}_{n}\right)}{\sum_{1}^{N} \int f_{n+m}} .
$$

Given our last inequality, the ratio on the left will be close to f_{∞} provided the product in brackets above is close to one, and for this it suffices that for each fixed k we have

$$
\frac{\sum_{1}^{N} E\left(f_{n+k} \mid \mathscr{B}_{n}\right)}{\sum_{1}^{N} E\left(f_{n+k+1} \mid \mathscr{B}_{n}\right)} \rightarrow 1
$$

and given $\left(^{*}\right)$ from Theorem 1, this will happen provided

$$
\frac{E\left(f_{N+k} \mid \mathscr{B}_{N}\right)}{\sum_{1}^{N} E\left(f_{n+k} \mid \mathscr{B}_{n}\right)} \rightarrow 0
$$

which is our Condition (4). This completes the proof.
Remarks. Note that

$$
\frac{E\left(f_{n+m}^{2} \mid \mathscr{B}_{n}\right)}{E\left(f_{n+m} \mid \mathscr{B}_{n}\right)}=\frac{\sigma^{2}\left(f_{n+m} \mid \mathscr{B}_{n}\right)}{E\left(f_{n+m} \mid \mathscr{B}_{n}\right)}+E\left(f_{n+m} \mid \mathscr{B}_{n}\right)
$$

Therefore, if we were to replace Condition (2) of our theorem by
(2') $\sup _{n} \frac{E\left(f_{n+m}{ }^{2} \mid \mathscr{B}_{n}\right)}{E\left(f_{n+m} \mid \mathscr{B}_{n}\right)} \in \mathscr{L}_{1} \quad$ for all $m \geqq 1$,
then Condition (4) would be automatically satisfied, given II.
Corollary 1. (Borel-Cantelli type result). Let $\left\{B_{n}, \mathscr{B}_{n}\right\}$ be an adapted sequence of sets on (Ω, \mathscr{B}, P) where
(1) $P\left(B_{n}\right) \geqq 0$ for all $n \geqq 1$, and
(2) $\frac{P\left(B_{n+m} \mid \mathscr{B}_{n}\right)}{P\left(B_{n+m}\right)} \rightarrow f_{\infty}>0$.

Then
(I) $P\left\{\sum I_{B_{n}}=\infty\right\}=1 \Leftrightarrow \sum P\left(B_{n}\right)=\infty$, and

$$
P\left\{\sum I_{B n}<\infty\right\}=1 \Leftrightarrow \sum P(B n)<\infty .
$$

(II) If $\sum P\left(B_{n}\right)=\infty$, then

$$
\frac{\sum_{1}^{N} I_{B_{n}}}{\sum_{1}^{N} P\left(B_{n}\right)} \rightarrow f_{\infty}
$$

Corollary 2. (A probabilistic L'Hospital's Rule). Let $\left\{f_{n}, \mathscr{B}_{n}\right\},\left\{g_{n}, \mathscr{B}_{n}\right\}$ be adapted sequences on (Ω, \mathscr{B}, P) which satisfy conditions (1) through (4) of Theorem 2. Then if $\sum \int f_{n}=\sum \int g_{n}=\infty$, we have

$$
\overline{\lim _{N}} \frac{\sum_{1}^{N} f_{n}}{\sum_{1}^{N} g_{n}}=\overline{\lim _{N}} \frac{\sum_{1}^{N} \int f_{n}}{\sum_{1}^{N} \int g_{n}} \cdot \frac{f_{\infty}}{g_{\infty}}
$$

and

$$
\frac{\lim }{N} \frac{\sum_{1}^{N} f_{n}}{\sum_{1}^{N} g_{n}}=\frac{\lim }{N} \frac{\sum_{1}^{N} \int f_{n}}{\sum_{1}^{N} \int g_{n}} \cdot \frac{f_{\infty}}{g_{\infty}} .
$$

An application. Suppose the adapted sequence $\left\{f_{n}, \mathscr{B}_{n}\right\}$ where $\int f_{n}>0$ is $\left(^{*}\right)$ mixing in the following sense: There exists $\{\phi(m)\}$, a sequence of constants with $1>\phi(m) \downarrow 0$ and

$$
\left|P\left\{f_{n+m} \in A \mid \mathscr{B}_{n}\right\}-P\left\{f_{n+m} \in A\right\}\right| \leqq \phi(m) P\left\{f_{n+m} \in A\right\}
$$

for all Borel sets A. Then, provided second moments exist, one has, for $l=1,2$:

$$
\left|\frac{E\left(f_{n+m}{ }^{l} \mid \mathscr{B}_{n}\right)}{\int f_{n+m}^{l}}-1\right| \leqq \phi(m)
$$

This observation leads to
Corollary 3. Let $\left\{f_{n}, \mathscr{B}_{n}\right\}$ be $\left(^{*}\right)$ mixing as defined above. A ssume the following conditions:
(1) $\int f_{n}>0, \int f_{n}{ }^{2}<\infty \quad$ for all n, and
(2) $\sup _{n} \frac{\int f_{n}{ }^{2}}{\int f_{n}}<\infty$.

Then we can conclude:
(I) $P\left\{\sum f_{n}=\infty\right\}=1 \Leftrightarrow \sum \int f_{n}=\infty$, and
$P\left\{\sum f_{n}\right.$ exists and is finite $\}=1 \Leftrightarrow \sum \int f_{n}<\infty$.
(II) If $\sum \int f_{n}=\infty$, then

$$
\frac{\sum_{1}^{N} f_{n}}{\sum_{1}^{N} \int f_{n}} \rightarrow 1 P \text { a.e. }
$$

References

1. L. Breiman, Optimal gambling systems for favorable games, Fourth Berkeley Symposium on Probability and Mathematical Statistics, Vol. 1 (1961), 65-78.
2. B. M. Brown, A conditional setting for some theorems associated with the strong law, Z. Wahrscheinlichkeitstheorie 19 (1971), 274-280.
3. L. E. Dubins and D. A. Freedman, A sharper form of the Borel-Cantelli lemma and the strong law, Annals of Mathematical Statistics 36 (1965), 800-807.
4. D. A. Freedman, Another note of the Borel-Cantelli lemma and the strong law with the Poisson approximation as a by-product, Annals of Probability 1 (1973), 910-925.
5. W. F. Stout, Almost sure convergence (Academic Press, 1974).

University of Maryland, College Park, Maryland

