Canad. Math. Bull. Vol. **60** (1), 2017 pp. 165–172 http://dx.doi.org/10.4153/CMB-2016-068-6 © Canadian Mathematical Society 2016

Cokernels of Homomorphisms from Burnside Rings to Inverse Limits

Masaharu Morimoto

Abstract. Let G be a finite group and let A(G) denote the Burnside ring of G. Then an inverse limit L(G) of the groups A(H) for proper subgroups H of G and a homomorphism res from A(G) to L(G) are obtained in a natural way. Let Q(G) denote the cokernel of res. For a prime p, let N(p) be the minimal normal subgroup of G such that the order of G/N(p) is a power of p, possibly 1. In this paper we prove that Q(G) is isomorphic to the cartesian product of the groups Q(G/N(p)), where p ranges over the primes dividing the order of G.

1 Introduction

Throughout this paper, let G be a finite group, let S(G) denote the set of all subgroups, and let \mathcal{F} be a conjugation-invariant lower-closed subset of $\mathcal{S}(G)$. Let $P(G, \mathcal{F})$ denote the cartesian product of the Burnside rings A(H) of H(cf. [3,4]), where H runs over \mathcal{F} , *i.e.*, $P(G, \mathcal{F}) = \prod_{H \in \mathcal{F}} A(H)$. For the sake of convenience, if \mathcal{F} is the empty set, then by $P(G, \mathcal{F})$ we mean the trivial group. Let res^G_{\mathcal{F}} denote the restriction homomorphism $:A(G) \to P(G,\mathcal{F}); \operatorname{res}_{\mathcal{F}}^G(x) = (\operatorname{res}_H^G x)_{H \in \mathcal{F}} \text{ for } x \in A(G).$ Let $B(G,\mathcal{F})$ denote the ring with unit obtained as the image of res^{*G*}_{\mathfrak{T}}: $A(G) \to P(G, \mathfrak{F})$. As free \mathbb{Z} -modules, A(G) and $B(G, \mathcal{F})$ are of rank $c_{S(G)}$ and $c_{\mathcal{F}}$, respectively, where $c_{S(G)}$ and $c_{\mathcal{F}}$ are the numbers of G-conjugacy classes of subgroups contained in S(G) and \mathcal{F} , respectively. Let V be a real G-module containing a G-submodule isomorphic to $\mathbb{R}[G] \oplus \mathbb{R}[G]$. Then there is a canonical one-to-one correspondence from the set of all G-homotopy classes of G-maps : $S(V) \rightarrow S(V)$ to the Burnside ring A(G) of G (cf. [3, p. 157], [8, §2]). For a set $\mathbf{f} = (f_H)_{H \in \mathcal{F}}$ consisting of *H*-maps $f_H: S(V) \to S(V)$, we wonder if there exists a *G*-map $f_G: S(V) \to S(V)$ such that $\operatorname{res}_H^G f_G$ is *H*-homotopic to f_H for all $H \in \mathcal{F}$. An obstruction group $O(G, \mathcal{F})$ of the existence problem is $P(G, \mathcal{F})/B(G, \mathcal{F})$. Let $L(G, \mathcal{F})$ denote the subgroup

 $\{x \in P(G, \mathcal{F}) \mid mx \in B(G, \mathcal{F}) \text{ for some positive integer } m\}.$

By definition, $L(G, \mathcal{F})$ is a ring with unit. By Corollary 2.2, we can describe $L(G, \mathcal{F})$ as an inverse limit of $\{A(H) \mid H \in \mathcal{F}\}$. Clearly, $P(G, \mathcal{F})/L(G, \mathcal{F})$ is a free \mathbb{Z} -module and $Q(G, \mathcal{F}) = L(G, \mathcal{F})/B(G, \mathcal{F})$ is a finite module. Note that the exact sequence

 $0 \longrightarrow Q(G, \mathcal{F}) \longrightarrow O(G, \mathcal{F}) \longrightarrow P(G, \mathcal{F})/L(G, \mathcal{F}) \longrightarrow 0$

Published electronically November 29, 2016.

This research was partially supported by JSPS KAKENHI Grant Number 26400090.

Received by the editors April 5, 2016; revised September 24, 2016.

AMS subject classification: 19A22, 57S17.

Keywords: Burnside ring, inverse limit, finite group.

splits, because $P(G, \mathcal{F})/L(G, \mathcal{F})$ is \mathbb{Z} -torsion free. We remark that $B(G, \mathcal{F})$, $L(G, \mathcal{F})$, $P(G, \mathcal{F})$, and $Q(G, \mathcal{F})$ are modules over A(G). Let $\mathcal{F}(G)$ denote the set of all proper subgroups of G, *i.e.*, $\mathcal{F}(G) = \mathcal{S}(G) \setminus \{G\}$, and set $P(G) = P(G, \mathcal{F}(G))$, $B(G) = B(G, \mathcal{F}(G))$, $L(G) = L(G, \mathcal{F}(G))$, and $Q(G) = Q(G, \mathcal{F}(G))$. Y. Hara and the author found that for a nontrivial nilpotent group G, Q(G) is trivial if and only if G is a cyclic group of which the order is a prime or a product of distinct primes (*cf.* [5, Theorem 1.4]). M. Sugimura showed that $Q(A_5)$ is trivial, where A_5 is the alternating group on five letters. Furthermore, we can show that Q(G) is trivial for any nontrivial perfect group G (*cf.* [9, Corollary 1.5]).

For a prime *p*, let $G^{\{p\}}$ denote the smallest normal subgroup of *G* with *p*-power index (*cf.* [7]). Let G^{nil} denote the intersection of the subgroups $G^{\{p\}}$, where *p* ranges the primes dividing |G|. Let k_G denote the product of the primes *p* such that $G^{\{p\}} \neq$ *G*. We can show that $k_G L(G) \subset B(G)$, *i.e.*, $k_G Q(G) = 0$ (*cf.* [9, Corollary 1.5]). For a \mathbb{Z} -module *M* and a prime *p*, let $M_{(p)}$ denote the localization of *M* at *p*, *i.e.*, $M_{(p)} = S^{-1}M$ for $S = \{m \in \mathbb{N} \mid (m, p) = 1\}$. It is remarkable that Q(G) is isomorphic to $\prod_p Q(G)_{(p)}$, where *p* ranges over the primes dividing k_G , and $Q(G)_{(p)}$ is an elementary abelian *p*-group, possibly the trivial group (*cf.* Corollary 3.7). In addition, we note that the canonical map $Q(G/G^{\{p\}}) \to Q(G/G^{\{p\}})_{(p)}$ is an isomorphism.

The next feature of Q(G) is interesting.

Theorem 1.1 Let G be a finite group. For an arbitrary prime p, the finite module $Q(G)_{(p)}$ is canonically isomorphic to $Q(G/G^{\{p\}})_{(p)}$. Therefore, the equalities

$$Q(G) = \prod_{p} Q(G)_{(p)} = \prod_{p} Q(G/G^{\{p\}})_{(p)} = \prod_{p} Q((G/G^{\text{nil}})/(G/G^{\text{nil}})^{\{p\}})_{(p)}$$
$$= \prod_{p} Q(G/G^{\text{nil}})_{(p)} = Q(G/G^{\text{nil}})$$

hold up to isomorphisms, where p ranges over the primes dividing k_G .

This theorem follows from Lemmas 4.1 and 4.2. Combining the theorem with [5, Theorem 1.4], we immediately obtain the next corollary.

Corollary 1.2 Let G be a finite group. The group Q(G) is trivial if and only if G/G^{nil} is a cyclic group of which the order is a prime or a product of distinct primes.

2 Preliminary

For a category \mathfrak{C} , let $Obj(\mathfrak{C})$ denote the totality of all objects in \mathfrak{C} ; for objects x, y in \mathfrak{C} , let $Mor_{\mathfrak{C}}(x, y)$ denote the set of all morphisms in \mathfrak{C} from x to y, and let $Mor(\mathfrak{C})$ denote the totality of all morphisms in \mathfrak{C} , *i.e.*,

$$\operatorname{Mor}(\mathfrak{C}) = \coprod_{x, y \in \operatorname{Obj}(\mathfrak{C})} \operatorname{Mor}_{\mathfrak{C}}(x, y).$$

Let $\mathfrak{S}(G)$ denote the category in which the objects are all elements in $\mathfrak{S}(G)$, the morphisms from objects *H* to *K* are all triples (H, a, K) such that $a \in G$ and $aHa^{-1} \subset$

K, and the compositions of morphisms are given by

$$(K, b, L) \circ (H, a, K) = (H, ba, L)$$
 for $(H, a, K), (K, b, L) \in Mor(\mathfrak{S}(G))$

(cf. [2]). For $(H, a, K) \in Mor(\mathfrak{S}(G))$, we have an associated homomorphism

$$\iota_{(H,a,K)}: H \longrightarrow K; \quad \iota_{(H,a,K)}(x) = axa^{-1} \quad \text{for } x \in H.$$

Let \mathcal{F} be a conjugation-invariant, lower-closed subset of $\mathcal{S}(G)$; *i.e.*, if $H \in \mathcal{F}$, then $(H) \subset \mathcal{F}$, where $(H) = \{gHg^{-1} \mid g \in G\}$, and if $H \in \mathcal{F}$, then $\mathcal{S}(H) \subset \mathcal{F}$. Let \mathfrak{F} denote the full subcategory of $\mathfrak{S}(G)$ such that $Obj(\mathfrak{F}) = \mathcal{F}$. By definition, $Mor(\mathfrak{F})$ consists of all triples (H, a, K) such that $H, K \in \mathcal{F}, a \in G$ satisfying $aHa^{-1} \subset K$. Let $\mathfrak{A}\mathfrak{b}$ denote the category of which the objects are all abelian groups and the morphisms are all group homomorphisms between objects.

Let $M: \mathfrak{S}(G) \to \mathfrak{Ab}$ be a contravariant functor such that

$$M((H, a, H)) = id_{M(H)}$$
 for all $H \in S(G)$ and $a \in H$.

In the sequel, we should read the notation $(H, a, K)^*$ as M((H, a, H)) and the expression $x = (x_H)_{H \in \mathcal{F}}$ for $x \in \prod_{H \in \mathcal{F}} M(H)$ as one satisfying $x_H \in M(H)$. Let $\lim_{K \to \infty} M(\star)$ denote the inverse limit defined in [1, p. 243], *i.e.*, $\lim_{K \to \infty} M(\star)$ consists of all elements $(x_H) \in \prod_{H \in \mathcal{F}} M(H)$ such that $x_H = f^* x_K$ for all $H, K \in \mathcal{F}$, and $f \in \operatorname{Mor}_{\mathfrak{F}}(H, K)$. There is a canonical restriction homomorphism

$$\operatorname{res}_{\mathcal{F}}^{G}: M(G) \longrightarrow \varprojlim_{\mathfrak{F}} M(\star); \quad x \longmapsto (\operatorname{res}_{H}^{G} x)_{H \in \mathcal{F}},$$

where res^{*G*}_{*H*} stands for $(H, e, G)^*$. For $K \in \mathcal{F}$, we have the restriction homomorphism

$$\operatorname{res}_{K}^{\mathcal{F}} : \varprojlim_{\widetilde{\mathfrak{F}}} M(\star) \longrightarrow M(K); \quad x = (x_{H})_{H \in \mathfrak{F}} \longmapsto x_{K}.$$

Let $A(G, \mathcal{F})$ denote the submodule of A(G) generated by $\{[G/H] | (H) \subset \mathcal{F}\}$. Then $A(G, \mathcal{F})$ is a direct summand of A(G) of rank $c_{\mathcal{F}}$. By definition, the inclusions

$$\operatorname{res}_{\mathcal{F}}^{G}(A(G,\mathcal{F})) \subset B(G,\mathcal{F}) \subset L(G,\mathcal{F}) \subset \varinjlim_{\mathfrak{F}} A(\star) \subset P(G,\mathcal{F})$$

hold, where $B(G, \mathcal{F}) = \operatorname{res}_{\mathcal{F}}^{G}(A(G))$ and $P(G, \mathcal{F}) = \prod_{H \in \mathcal{F}} A(H)$. For a finite CW complex C, let $\chi(C)$ denote the Euler characteristic of C. For $K \in \mathcal{F}$ and $x = (x_H)_{H \in \mathcal{F}} \in \lim_{\mathfrak{F}} \mathcal{A}(\star)$, we define $\chi_K(x)$ by $\chi_K(x) = \chi(X^K)$, where X is a finite K-CW complex representing x_K . We regard χ_K as a homomorphism from $\lim_{\mathfrak{F}} \mathcal{A}(\star)$ to \mathbb{Z} .

Lemma 2.1 For an arbitrary conjugation-invariant lower-closed set \mathcal{F} of subgroups of G, the homomorphism $\operatorname{res}_{\mathcal{F}}^G: A(G, \mathcal{F}) \to \varprojlim_{\mathfrak{F}} A(\star)$ is injective and the equalities

rank res^G_F(A(G, F)) = rank
$$B(G, F)$$
 = rank $\lim_{\mathfrak{F}} A(\star) = c_{\mathcal{F}}$

hold.

Proof We have the commutative diagram

By the Burnside congruence formula (cf. [3, IV, Theorem 5.7]), we readily see

$$|G|\prod_{(H)\in\mathcal{F}}\mathbb{Z} \subset (\prod_{(H)\in\mathcal{F}}\chi_H)(A(G,\mathcal{F})).$$

Therefore the rank of $(\prod_{(H) \in \mathcal{F}} \chi_H)(A(G, \mathcal{F}))$ is equal to $c_{\mathcal{F}}$. Since $A(G, \mathcal{F})$ is a free \mathbb{Z} -module of rank $c_{\mathcal{F}}$, the homomorphism $\prod_{(H) \in \mathcal{F}} \chi_H : A(G, \mathcal{F}) \to \prod_{(H) \in \mathcal{F}} \mathbb{Z}$ is injective. By the commutative diagram above, we obtain the lemma.

Corollary 2.2 The module $L(G, \mathcal{F})$ coincides with $\lim_{x \to \infty} A(*)$.

Proof The conclusion follows from the fact that $L(G, \mathcal{F}) \subset \lim_{\mathfrak{F}} A(\star)$, $L(G, \mathcal{F})$ is a direct summand of $P(G, \mathcal{F})$, $\lim_{\mathfrak{F}} A(\star)$ is a submodule of $P(G, \mathcal{F})$, and the two modules $L(G, \mathcal{F})$ and $\lim_{\mathfrak{F}} A(\star)$ have same rank, because $L(G, \mathcal{F})/B(G, \mathcal{F})$ is torsion.

Now let $M: \mathfrak{S}(G) \to \mathfrak{Ab}$ be a covariant functor such that

 $(H, a, H)_* = id_{M(H)}$ for all $H \in S(G)$ and $a \in H$,

where $(H, a, K)_*$ stands for M((H, a, K)). Let $\varinjlim_{\mathfrak{F}} M(\star)$ denote the colimit defined in [1, p. 243]. In order to understand the colimit, let \mathfrak{C} be the family of pairs $(V, (h_H)_{H \in \mathfrak{F}})$, where each V is an abelian group and each h_H is a homomorphism $M(H) \to V$, satisfying the following two conditions.

(C1) The set {h_H(x) | H ∈ 𝔅, x ∈ M(H)} generates V.
(C2) If (H, a, K)_{*}x = y for (H, a, K) ∈ Mor(𝔅), and x ∈ M(H), y ∈ M(K), then h_H(x) = h_K(y).

Let $(V_0, (h_{0,H})_{H \in \mathcal{F}})$ be a universal object in the family \mathcal{C} ; *i.e.*, for $(V, (h_H)_{H \in \mathcal{F}}) \in \mathcal{C}$, there exists a homomorphism $\varphi: V_0 \to V$ such that $h_H = \varphi \circ h_{0,H}$ for all $H \in \mathcal{F}$. Since we have a canonical epimorphism $k: \prod_{H \in \mathcal{F}} M(H) \to V_0$,

$$k(x) = \sum_{H\in\mathcal{F}} h_{0,H}(x_H),$$

where $x = (x_H)_{H\in\mathcal{F}} \in \prod_{H\in\mathcal{F}} M(H)$ with $x_H \in M(H)$, we can identify V_0 with a module consisting of equivalence classes of elements of $\prod_{H\in\mathcal{F}} M(H)$, which is the colimit $\varinjlim_{\mathfrak{F}} M(\star)$ defined in [1, p. 243]. Thus, we get a universal object in \mathcal{C} of the form $(\varinjlim_{\mathfrak{F}} M(\star), (\operatorname{ind}_{H}^{\mathcal{F}})_{H\in\mathcal{F}})$.

168

There is a canonical homomorphism

$$\operatorname{ind}_{\mathcal{F}}^{G}: \varinjlim_{\mathfrak{F}} A(\star) \longrightarrow A(G); \quad \sum_{H \in \mathcal{F}} \operatorname{ind}_{H}^{\mathfrak{F}} x_{H} \longmapsto \sum_{H \in \mathcal{F}} \operatorname{ind}_{H}^{G} x_{H},$$

where each x_H is an element of A(H) and ind_H^G stands for $(H, e, G)_*$. The image of this homomorphism is $A(G, \mathcal{F})$.

Proposition 2.3 For an arbitrary conjugation-invariant lower-closed set \mathcal{F} of subgroups of G, the homomorphism $\operatorname{ind}_{\mathcal{F}}^G: \varinjlim_{\mathfrak{F}} A(\star) \to A(G)$ is injective.

Proof It is readily seen that $\lim_{H \to \mathfrak{F}} A(\star)$ is a module generated by $c_{\mathcal{F}}$ elements $\operatorname{ind}_{H}^{\mathcal{F}}[H/H]$ with $(H) \subset \mathcal{F}$, where

$$\operatorname{ind}_{H}^{\mathcal{F}}:A(H)\longrightarrow \varinjlim_{\mathfrak{F}}A(\star)$$

and $c_{\mathcal{F}}$ is the number of the *G*-conjugacy classes of subgroups belonging to \mathcal{F} . Since $A(G, \mathcal{F})$ is a free \mathbb{Z} -module of rank $c_{\mathcal{F}}$, the homomorphism $\operatorname{ind}_{\mathcal{F}}^G$ is injective.

By the homomorphism $\operatorname{ind}_{\mathcal{F}}^{G}$ above, we can identify $\varinjlim_{\mathfrak{F}} A(\star)$ with the submodule $A(G, \mathcal{F})$ of A(G).

Let *N* be a normal subgroup of *G*. We have the homomorphism $\operatorname{fix}_{G,N}: A(G) \to A(G/N)$ that maps [X] to $[X^N]$ for finite *G*-sets *X*. Let $\operatorname{fix}_{\mathcal{F}(G),N}: L(G) \to L(G/N)$ be the homomorphism for which the diagram

commutes, where $\mathcal{G} = \{H \in \mathcal{S}(G) \mid N \subset H \neq G\}$. It is a ring homomorphism and induces a homomorphism $\overline{\operatorname{fix}}_{\mathcal{F}(G),N}: Q(G) \to Q(G/N)$.

3 Operation of $A(G, \mathcal{F})$ on $L(G, \mathcal{F})$

Recall that $L(G, \mathcal{F})$ is a module over A(G):

$$A(G) \times L(G, \mathcal{F}) \longrightarrow L(G, \mathcal{F}); \quad (\alpha, x) \longmapsto \left((\operatorname{res}_{H}^{G} \alpha) x_{H} \right)_{H \in \mathcal{F}^{+}}$$

where $\alpha \in A(G)$ and $x = (x_H)_{H \in \mathcal{F}} \in L(G, \mathcal{F})$.

Let α be an element of $A(G, \mathcal{F})$ (resp. $A(G, \mathcal{F})_{(p)}$ for a prime p) with

$$\alpha = \sum_{(H) \in \mathcal{F}} a_H [G/H]$$

where $a_H \in \mathbb{Z}$ (resp. $\mathbb{Z}_{(p)}$) and $x = (x_H)_{H \in \mathcal{F}} \in L(G, \mathcal{F})$ (resp. $L(G, \mathcal{F})_{(p)}$). Then we define an element $\alpha \circ x$ of $A(G, \mathcal{F})$ (resp. $A(G, \mathcal{F})_{(p)}$) by

$$\alpha \circ x = \sum_{(H) \subset \mathcal{F}} a_H \operatorname{ind}_H^G x_H.$$

Lemma 3.1 For $\alpha \in A(G, \mathcal{F})$ (resp. $A(G, \mathcal{F})_{(p)}$) and $x = (x_H)_{H \in \mathcal{F}} \in L(G, \mathcal{F})$ (resp. $L(G, \mathcal{F})_{(p)}$), the equality $\operatorname{res}_{\mathcal{F}}^G(\alpha \circ x) = \alpha x$ (= $(\operatorname{res}_{\mathcal{F}}^G\alpha)x$) holds, and therefore αx belongs to $B(G, \mathcal{F})$ (resp. $B(G, \mathcal{F})_{(p)}$).

Proof Let $K \in \mathcal{F}(G)$. Then we have the equalities

$$\operatorname{res}_{K}^{G}(\alpha \circ x) = \sum_{(H) \in \mathcal{F}} a_{H} \operatorname{res}_{K}^{G}(\operatorname{ind}_{H}^{G} x_{H})$$
$$= \sum_{(H) \in \mathcal{F}} a_{H} \Big(\sum_{KgH \in K \setminus G/H} \operatorname{ind}_{K \cap gHg^{-1}}^{K} (c_{g})_{*} (\operatorname{res}_{H \cap g^{-1}Kg}^{H} x_{H}) \Big)$$
$$= \sum_{(H) \in \mathcal{F}} a_{H} \Big(\sum_{KgH \in K \setminus G/H} \operatorname{ind}_{K \cap gHg^{-1}}^{K} x_{K \cap gHg^{-1}} \Big)$$

and

$$(\operatorname{res}_{K}^{G} \alpha)(\operatorname{res}_{K}^{\mathcal{F}} x) = \left(\sum_{(H) \in \mathcal{F}} a_{H} \operatorname{res}_{K}^{G}[G/H]\right) x_{K}$$
$$= \sum_{(H) \in \mathcal{F}} a_{H} \left(\operatorname{res}_{K}^{G}[G/H]\right) x_{K}$$
$$= \sum_{(H) \in \mathcal{F}} a_{H} \left(\sum_{KgH \in K \setminus G/H} \operatorname{ind}_{K \cap gHg^{-1}}^{K}(c_{g})_{*} \operatorname{res}_{H \cap g^{-1}Kg}^{H}[H/H]\right) x_{K}$$
$$= \sum_{(H) \in \mathcal{F}} a_{H} \left(\sum_{KgH \in K \setminus G/H} [K/K \cap gHg^{-1}]\right) x_{K}$$
$$= \sum_{(H) \in \mathcal{F}} a_{H} \left(\sum_{KgH \in K \setminus G/H} \operatorname{ind}_{K \cap gHg^{-1}}^{K} x_{K \cap gHg^{-1}}\right),$$

where $(c_g)_*$ stands for $(H \cap g^{-1}Kg, g, K \cap gHg^{-1})_*$. Hence we obtain the lemma.

The next fact can be obtained implicitly from R. Oliver [10, Lemma 8] and explicitly from C. Kratzer and J. Thévenaz [6, Proposition 3.2].

Lemma 3.2 ([9, Lemma 1.3], [8, Proposition 2.1]) For an arbitrary finite group G, there exists a unique element $\gamma_G \in A(G)$ such that $\chi_G(\gamma_G) = k_G$ and $\chi_H(\gamma_G) = 0$ for all $H \in \mathcal{F}(G)$.

This gives the following corollaries.

Corollary 3.3 For an arbitrary finite group G, there exists a unique element $\tau_G \in A(G)$ such that $\chi_G(\tau_G) = 0$ and $\chi_H(\tau_G) = k_G$ for all $H \in \mathcal{F}(G)$.

Corollary 3.4 ([9, Corollary 1.5]) For an arbitrary finite group G, $k_G L(G)$ is contained in B(G), and hence $k_G Q(G) = 0$.

Corollary 3.5 For an arbitrary finite group G and an arbitrary prime p, there exists $\gamma_{G,p} \in A(G)_{(p)}$ such that $\chi_G(\gamma_{G,p}) = p$ and $\chi_H(\gamma_{G,p}) = 0$ for all $H \in \mathcal{F}(G)$.

Corollary 3.6 For an arbitrary finite group G and an arbitrary prime p, there exists $\tau_{G,p} \in A(G)_{(p)}$ such that $\chi_G(\tau_{G,p}) = 0$ and $\chi_H(\tau_{G,p}) = p$ for all $H \in \mathcal{F}(G)$.

170

Corollary 3.7 For an arbitrary finite group G and an arbitrary prime p, $pL(G)_{(p)}$ is contained in $B(G)_{(p)}$, and hence $pQ(G)_{(p)} = 0$.

For a prime p, let $\mathcal{L}_p(G)$ denote the set of all subgroups of G containing $G^{\{p\}}$ and set $\mathcal{M}_p(G) = \mathcal{S}(G) \setminus \mathcal{L}_p(G)$. Let $\mathcal{L}(G)$ (resp. $\mathcal{M}(G)$) be the union of $\mathcal{L}_p(G)$ (resp. the intersection of $\mathcal{M}_p(G)$) for all primes p dividing |G|.

Lemma 3.8 ([7, Theorem 1.3]) For an arbitrary finite group G, there exists an element β_G of A(G) such that $\chi_G(\beta_G) = 1$ and $\chi_H(\beta_G) = 0$ for all $H \in \mathcal{M}(G)$.

Corollary 3.9 For an arbitrary finite group G and an arbitrary prime p, there exists an element $\beta_{G,p}$ of $A(G)_{(p)}$ such that $\chi_G(\beta_{G,p}) = 1$ and $\chi_H(\beta_{G,p}) = 0$ for all $H \in \mathcal{M}_p(G)$.

Proof Let $Q = G/G^{nil}$. Note that Q is isomorphic to the cartesian product of Sylow subgroups of Q. Let Q_p be the Sylow p-subgroup of Q and let $q: Q \to \overline{Q} = Q/Q_p$ denote the quotient homomorphism. There exists an element $u \in A(\overline{Q})_{(p)}$ such that $\chi_{\overline{Q}}(u) = 1$ and $\chi_T(u) = 0$ for all $T < \overline{Q}$. Set $\beta_{Q,p} = q^*u \in A(Q)_{(p)}$. Then $\chi_T(\beta_{Q,p}) = 1$ for $T \in \mathcal{L}_p(Q)$ and $\chi_T(\beta_{Q,p}) = 0$ for $T \in \mathcal{M}_p(Q)$. Let $f: G \to Q$ be the quotient homomorphism. Then the element $\beta_{G,p} = \beta_G \cdot f^* \beta_{Q,p}$ possesses the required properties.

Let *p* be a prime. The element $\alpha = [G/G] - \beta_{G,p} \in A(G)_{(p)}$ has the form

$$\alpha = \sum_{(H) \in \mathcal{F}(G)} a_H[G/H] \qquad (a_H \in \mathbb{Z}_{(p)})$$

and belongs to $A(G, \mathcal{F}(G))_{(p)}$.

4 Comparison of $Q(G)_{(p)}$ and $Q(G/G^{\{p\}})_{(p)}$

Throughout this section, let *N* stand for $G^{\{p\}}$. Let *p* be a prime, $\beta_{G,p}$ the element given in Corollary 3.9, and set $\alpha = [G/G] - \beta_{G,p}$.

Let $x = (x_H)_{H \in \mathcal{F}(G)}$ be an element of $L(G)_{(p)}$. Then we have $x = x - \alpha x + \alpha x$ and the last term $\alpha x = \operatorname{res}_{\mathcal{F}(G)}^G(\alpha \circ x)$ belongs to $B(G)_{(p)} = \operatorname{res}_{\mathcal{F}(G)}^G(A(G)_{(p)})$ by Lemma 3.1. In addition, we have $\operatorname{res}_{\mathcal{M}_p(G)}^{\mathcal{F}(G)}(x - \alpha x) = 0$. Recall the commutative diagram

Lemma 4.1 The homomorphism $\overline{\operatorname{fix}}_{\mathcal{F}(G),N}: Q(G)_{(p)} \to Q(G/N)_{(p)}$ is injective.

Proof Let $x \in L(G)_{(p)}$ such that $[\operatorname{fix}_{\mathcal{F}(G),N}(x)] = 0$ in $Q(G/N)_{(p)}$. Then the element $\operatorname{fix}_{\mathcal{F}(G),N}(x)$ belongs to $B(G/N)_{(p)}$. Therefore,

$$\operatorname{fix}_{\mathcal{F}(G),N}(x) = \operatorname{fix}_{\mathcal{F}(G),N}(\operatorname{res}^{G}_{\mathcal{F}(G)}(z))$$

holds for some $z \in A(G)_{(p)}$. It means that $v = x - \operatorname{res}_{\mathcal{F}(G)}^{G}(z)$ belongs to the kernel of $\operatorname{fix}_{\mathcal{F}(G),N}$. Set $w = v - \alpha v$. Since $\operatorname{fix}_{\mathcal{F}(G),N}(w) = 0$ and $\operatorname{res}_{\mathcal{M}_{p}(G)}^{\mathcal{F}(G)}(w) = 0$, we get w = 0 in $L(G)_{(p)}$. Clearly we have [x] = [v] = [w] in $Q(G)_{(p)}$. Therefore, we conclude that [x] = 0 in $Q(G)_{(p)}$, which shows the injectivity of $\operatorname{fix}_{\mathcal{F}(G),N}$.

Lemma 4.2 The homomorphism $\overline{\text{fix}}_{\mathcal{F}(G),N}$: $Q(G)_{(p)} \to Q(G/N)_{(p)}$ is surjective.

Proof Let $x = (x_K)_{K \in \mathcal{F}(G/N)}$ be an arbitrary element of $L(G/N)_{(p)}$. Define an element $y = (y_H)_{H \in \mathcal{F}(G)}$ of $P(G, \mathcal{F}(G))_{(p)}$, where $P(G, \mathcal{F}(G))_{(p)} = \prod_{H \in \mathcal{F}(G)} A(H)_{(p)}$, by

$$y_{H} = \begin{cases} f|_{H}^{*} x_{f(H)} & \text{if } H \supset N, \\ 0 & \text{otherwise} \end{cases} \quad (H \in \mathcal{F}(G)),$$

where $f: G \to G/N$ is the quotient map. Then the element $z = y - \alpha y$ belongs to $L(G)_{(p)}$, and the equalities

$$\begin{bmatrix} \operatorname{fix}_{\mathcal{F}(G),N}(z) \end{bmatrix} = \begin{bmatrix} (\operatorname{fix}_{H,N}(z_H))_H \end{bmatrix}$$
$$= \begin{bmatrix} (\operatorname{fix}_{H,N}(y_H - (\operatorname{res}_H^G \alpha)y_H))_H \end{bmatrix}$$
$$= \begin{bmatrix} (x_{f(H)} - (\operatorname{fix}_{H,N}(\operatorname{res}_H^G \alpha))x_{f(H)})_H \end{bmatrix}$$
$$= \begin{bmatrix} x - \operatorname{fix}_{G,N}(\alpha)x \end{bmatrix} = \begin{bmatrix} x \end{bmatrix}$$

hold in $Q(G/N)_{(p)}$, where *H* ranges over $\mathcal{L}_p(G) \cap \mathcal{F}(G)$. This shows the surjectivity of fix_{$\mathcal{F}(G),N$}.

References

- A. Bak, K-theory of forms. Annals of Mathematics Studies, 98, Princeton University Press, Princeton, NJ, 1981.
- [2] _____, Induction for finite groups revisited. J. Pure Appl. Algebra 104(1995), 235–241. http://dx.doi.org/10.1016/0022-4049(94)00137-5
- [3] T. tom Dieck, *Transformation groups*. De Gruyter Studies in Mathematics, 8, Walter de Gruyter, Berlin, 1987. http://dx.doi.org/10.1515/9783110858372.312
- [4] A. Dress, A characterization of solvable groups. Math. Z. 110(1969), 213–217. http://dx.doi.org/10.1007/BF01110213
- [5] Y. Hara and M. Morimoto, *The inverse limit of the Burnside ring for a family of subgroups of G*. Hokkaido Math. J., to appear.
- [6] C. Kratzer and J. Thévenaz, Fonction de Möbius d'un groupe fini et anneau de Burnside. Comment. Math. Helv. 59(1984), 425–438. http://dx.doi.org/10.1007/BF02566359
- [7] E. Laitinen and M. Morimoto, *Finite groups with smooth one fixed point actions on spheres*. Forum Math. 10(1998), 479–520. http://dx.doi.org/10.1515/form.10.4.479
- [8] M. Morimoto, *The Burnside ring revisited*. In: Current trends in transformation groups, K-Monogr. Math., 7, Kluwer Academic Publ., Dordrecht-Boston, 2002, pp. 129–145. http://dx.doi.org/10.1007/978-94-009-0003-5_9
- [9] _____, Direct limits and inverse limits of Mackey functors. J. Algebra 470(2017), 68–76. http://dx.doi.org/10.1016/j.jalgebra.2016.09.002
- [10] R. Oliver, Fixed point sets of groups on finite acyclic complexes. Comment. Math. Helv. 50(1975), 155–177. http://dx.doi.org/10.1007/BF02565743

Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Kitaku, Okayama, 700-8530 Japan

e-mail: morimoto@ems.okayama-u.ac.jp

172