Cokernels of Homomorphisms from Burnside Rings to Inverse Limits

Masaharu Morimoto

Abstract

Let G be a finite group and let $A(G)$ denote the Burnside ring of G. Then an inverse limit $L(G)$ of the groups $A(H)$ for proper subgroups H of G and a homomorphism res from $A(G)$ to $L(G)$ are obtained in a natural way. Let $Q(G)$ denote the cokernel of res. For a prime p, let $N(p)$ be the minimal normal subgroup of G such that the order of $G / N(p)$ is a power of p, possibly 1 . In this paper we prove that $Q(G)$ is isomorphic to the cartesian product of the groups $Q(G / N(p))$, where p ranges over the primes dividing the order of G.

1 Introduction

Throughout this paper, let G be a finite group, let $\mathcal{S}(G)$ denote the set of all subgroups, and let \mathcal{F} be a conjugation-invariant lower-closed subset of $\mathcal{S}(G)$. Let $P(G, \mathcal{F})$ denote the cartesian product of the Burnside rings $A(H)$ of $H(c f .[3,4])$, where H runs over \mathcal{F}, i.e., $P(G, \mathcal{F})=\prod_{H \in \mathcal{F}} A(H)$. For the sake of convenience, if \mathcal{F} is the empty set, then by $P(G, \mathcal{F})$ we mean the trivial group. Let res $\mathcal{F}_{\mathcal{F}}^{G}$ denote the restriction homomorphism $: A(G) \rightarrow P(G, \mathcal{F}) ; \operatorname{res}_{\mathcal{F}}^{G}(x)=\left(\operatorname{res}_{H}^{G} x\right)_{H \in \mathcal{F}}$ for $x \in A(G)$. Let $B(G, \mathcal{F})$ denote the ring with unit obtained as the image of $\operatorname{res}_{\mathcal{F}}^{G}: A(G) \rightarrow P(G, \mathcal{F})$. As free \mathbb{Z}-modules, $A(G)$ and $B(G, \mathcal{F})$ are of $\operatorname{rank} c_{\mathcal{S}(G)}$ and $c_{\mathcal{F}}$, respectively, where $c_{\mathcal{S}(G)}$ and $c_{\mathcal{F}}$ are the numbers of G-conjugacy classes of subgroups contained in $\mathcal{S}(G)$ and \mathcal{F}, respectively. Let V be a real G-module containing a G-submodule isomorphic to $\mathbb{R}[G] \oplus \mathbb{R}[G]$. Then there is a canonical one-to-one correspondence from the set of all G-homotopy classes of G-maps : $S(V) \rightarrow S(V)$ to the Burnside ring $A(G)$ of G (cf. [3, p. 157], [8, §2]). For a set $f=\left(f_{H}\right)_{H \in \mathcal{F}}$ consisting of H-maps $f_{H}: S(V) \rightarrow S(V)$, we wonder if there exists a G-map $f_{G}: S(V) \rightarrow S(V)$ such that $\operatorname{res}_{H}^{G} f_{G}$ is H-homotopic to f_{H} for all $H \in \mathcal{F}$. An obstruction group $O(G, \mathcal{F})$ of the existence problem is $P(G, \mathcal{F}) / B(G, \mathcal{F})$. Let $L(G, \mathcal{F})$ denote the subgroup

$$
\{x \in P(G, \mathcal{F}) \mid m x \in B(G, \mathcal{F}) \text { for some positive integer } m\}
$$

By definition, $L(G, \mathcal{F})$ is a ring with unit. By Corollary 2.2, we can describe $L(G, \mathcal{F})$ as an inverse limit of $\{A(H) \mid H \in \mathcal{F}\}$. Clearly, $P(G, \mathcal{F}) / L(G, \mathcal{F})$ is a free \mathbb{Z}-module and $Q(G, \mathcal{F})=L(G, \mathcal{F}) / B(G, \mathcal{F})$ is a finite module. Note that the exact sequence

$$
0 \longrightarrow Q(G, \mathcal{F}) \longrightarrow O(G, \mathcal{F}) \longrightarrow P(G, \mathcal{F}) / L(G, \mathcal{F}) \longrightarrow 0
$$

[^0]splits, because $P(G, \mathcal{F}) / L(G, \mathcal{F})$ is \mathbb{Z}-torsion free. We remark that $B(G, \mathcal{F}), L(G, \mathcal{F})$, $P(G, \mathcal{F})$, and $Q(G, \mathcal{F})$ are modules over $A(G)$. Let $\mathcal{F}(G)$ denote the set of all proper subgroups of G, i.e., $\mathcal{F}(G)=\mathcal{S}(G) \backslash\{G\}$, and set $P(G)=P(G, \mathcal{F}(G)), B(G)=$ $B(G, \mathcal{F}(G)), L(G)=L(G, \mathcal{F}(G))$, and $Q(G)=Q(G, \mathcal{F}(G))$. Y. Hara and the author found that for a nontrivial nilpotent group $G, Q(G)$ is trivial if and only if G is a cyclic group of which the order is a prime or a product of distinct primes ($c f$. [5, Theorem 1.4]). M. Sugimura showed that $Q\left(A_{5}\right)$ is trivial, where A_{5} is the alternating group on five letters. Furthermore, we can show that $Q(G)$ is trivial for any nontrivial perfect group G (cf. [9, Corollary 1.5]).

For a prime p, let $G^{\{p\}}$ denote the smallest normal subgroup of G with p-power index (cf. [7]). Let $G^{\text {nil }}$ denote the intersection of the subgroups $G^{\{p\}}$, where p ranges the primes dividing $|G|$. Let k_{G} denote the product of the primes p such that $G^{\{p\}} \neq$ G. We can show that $k_{G} L(G) \subset B(G)$, i.e., $k_{G} Q(G)=0(c f$. [9, Corollary 1.5]). For a \mathbb{Z}-module M and a prime p, let $M_{(p)}$ denote the localization of M at p, i.e., $M_{(p)}=S^{-1} M$ for $S=\{m \in \mathbb{N} \mid(m, p)=1\}$. It is remarkable that $Q(G)$ is isomorphic to $\prod_{p} Q(G)_{(p)}$, where p ranges over the primes dividing k_{G}, and $Q(G)_{(p)}$ is an elementary abelian p-group, possibly the trivial group ($c f$. Corollary 3.7). In addition, we note that the canonical map $Q\left(G / G^{\{p\}}\right) \rightarrow Q\left(G / G^{\{p\}}\right)_{(p)}$ is an isomorphism.

The next feature of $Q(G)$ is interesting.
Theorem 1.1 Let G be a finite group. For an arbitrary prime p, the finite module $Q(G)_{(p)}$ is canonically isomorphic to $Q\left(G / G^{\{p\}}\right)_{(p)}$. Therefore, the equalities

$$
\begin{aligned}
Q(G) & =\prod_{p} Q(G)_{(p)}=\prod_{p} Q\left(G / G^{\{p\}}\right)_{(p)}=\prod_{p} Q\left(\left(G / G^{\mathrm{nil}}\right) /\left(G / G^{\mathrm{nil}}\right)^{\{p\}}\right)_{(p)} \\
& =\prod_{p} Q\left(G / G^{\mathrm{nil}}\right)_{(p)}=Q\left(G / G^{\mathrm{nil}}\right)
\end{aligned}
$$

hold up to isomorphisms, where p ranges over the primes dividing k_{G}.
This theorem follows from Lemmas 4.1 and 4.2. Combining the theorem with [5, Theorem 1.4], we immediately obtain the next corollary.

Corollary 1.2 Let G be a finite group. The group $Q(G)$ is trivial if and only if $G / G^{\text {nil }}$ is a cyclic group of which the order is a prime or a product of distinct primes.

2 Preliminary

For a category \mathfrak{C}, let $\operatorname{Obj}(\mathfrak{C})$ denote the totality of all objects in \mathfrak{C}; for objects x, y in \mathfrak{C}, let $\operatorname{Mor}_{\mathfrak{C}}(x, y)$ denote the set of all morphisms in \mathfrak{C} from x to y, and let $\operatorname{Mor}(\mathfrak{C})$ denote the totality of all morphisms in \mathfrak{C}, i.e.,

$$
\operatorname{Mor}(\mathfrak{C})=\coprod_{x, y \in \operatorname{Obj}(\mathfrak{C})} \operatorname{Mor}_{\mathfrak{C}}(x, y)
$$

Let $\mathfrak{S}(G)$ denote the category in which the objects are all elements in $\mathcal{S}(G)$, the morphisms from objects H to K are all triples (H, a, K) such that $a \in G$ and $a H a^{-1} \subset$
K, and the compositions of morphisms are given by

$$
(K, b, L) \circ(H, a, K)=(H, b a, L) \quad \text { for }(H, a, K),(K, b, L) \in \operatorname{Mor}(\mathfrak{S}(G))
$$

(cf. [2]). For $(H, a, K) \in \operatorname{Mor}(\mathfrak{S}(G))$, we have an associated homomorphism

$$
\iota_{(H, a, K)}: H \longrightarrow K ; \quad \iota_{(H, a, K)}(x)=a x a^{-1} \quad \text { for } x \in H
$$

Let \mathcal{F} be a conjugation-invariant, lower-closed subset of $\mathcal{S}(G)$; i.e., if $H \in \mathcal{F}$, then $(H) \subset \mathcal{F}$, where $(H)=\left\{g H g^{-1} \mid g \in G\right\}$, and if $H \in \mathcal{F}$, then $\mathcal{S}(H) \subset \mathcal{F}$. Let \mathfrak{F} denote the full subcategory of $\mathfrak{S}(G)$ such that $\operatorname{Obj}(\mathfrak{F})=\mathcal{F}$. By definition, $\operatorname{Mor}(\mathfrak{F})$ consists of all triples (H, a, K) such that $H, K \in \mathcal{F}, a \in G$ satisfying $a H a^{-1} \subset K$. Let $\mathfrak{A b}$ denote the category of which the objects are all abelian groups and the morphisms are all group homomorphisms between objects.

Let $M: \mathfrak{S}(G) \rightarrow \mathfrak{A b}$ be a contravariant functor such that

$$
M((H, a, H))=\operatorname{id}_{M(H)} \quad \text { for all } H \in \mathcal{S}(G) \text { and } a \in H .
$$

In the sequel, we should read the notation $(H, a, K)^{*}$ as $M((H, a, H))$ and the expression $x=\left(x_{H}\right)_{H \in \mathcal{F}}$ for $x \in \prod_{H \in \mathcal{F}} M(H)$ as one satisfying $x_{H} \in M(H)$. Let $\lim _{\widetilde{2}} M(\star)$ denote the inverse limit defined in [1, p. 243], i.e., $\lim M(\star)$ consists of all elements $\left(x_{H}\right) \in \prod_{H \in \mathcal{F}} M(H)$ such that $x_{H}=f^{*} x_{K}$ for all $H, K \in \mathcal{F}$, and $f \in \operatorname{Mor}_{\mathfrak{F}}(H, K)$. There is a canonical restriction homomorphism

$$
\operatorname{res}_{\mathcal{F}}^{G}: M(G) \longrightarrow \underset{\mathfrak{F}}{\lim _{\overleftrightarrow{F}}} M(\star) ; \quad x \longmapsto\left(\operatorname{res}_{H}^{G} x\right)_{H \in \mathcal{F}},
$$

where $\operatorname{res}_{H}^{G}$ stands for $(H, e, G)^{*}$. For $K \in \mathcal{F}$, we have the restriction homomorphism

$$
\operatorname{res}_{K}^{\mathfrak{F}}: \underset{\mathscr{F}}{\lim } M(\star) \longrightarrow M(K) ; \quad x=\left(x_{H}\right)_{H \in \mathcal{F}} \longmapsto x_{K}
$$

Let $A(G, \mathcal{F})$ denote the submodule of $A(G)$ generated by $\{[G / H] \mid(H) \subset \mathcal{F}\}$. Then $A(G, \mathcal{F})$ is a direct summand of $A(G)$ of rank $c_{\mathcal{F}}$. By definition, the inclusions

$$
\operatorname{res}_{\mathcal{F}}^{G}(A(G, \mathcal{F})) \subset B(G, \mathcal{F}) \subset L(G, \mathcal{F}) \subset{\underset{\mathfrak{F}}{\leftrightarrows}}_{\underset{\lim }{ }} A(\star) \subset P(G, \mathcal{F})
$$

hold, where $B(G, \mathcal{F})=\operatorname{res}_{\mathcal{F}}^{G}(A(G))$ and $P(G, \mathcal{F})=\prod_{H \in \mathcal{F}} A(H)$. For a finite CW complex C, let $\chi(C)$ denote the Euler characteristic of C. For $K \in \mathcal{F}$ and $x=\left(x_{H}\right)_{H \in \mathcal{F}} \in \lim _{\longleftarrow} A(\star)$, we define $\chi_{K}(x)$ by $\chi_{K}(x)=\chi\left(X^{K}\right)$, where X is a finite K-CW complex representing x_{K}. We regard χ_{K} as a homomorphism from $\lim _{\longleftarrow} A(\star)$ to \mathbb{Z}.

Lemma 2.1 For an arbitrary conjugation-invariant lower-closed set \mathcal{F} of subgroups of G, the homomorphism $\operatorname{res}_{\mathcal{F}}^{G}: A(G, \mathcal{F}) \rightarrow \lim _{\longleftarrow} A(\star)$ is injective and the equalities
hold.

Proof We have the commutative diagram

By the Burnside congruence formula (cf. [3, IV, Theorem 5.7]), we readily see

$$
|G| \Pi_{(H) \subset \mathcal{F}} \mathbb{Z} \subset\left(\Pi_{(H) \subset \mathcal{F}} \chi_{H}\right)(A(G, \mathcal{F}))
$$

Therefore the rank of $\left(\prod_{(H) \subset \mathcal{F}} \chi_{H}\right)(A(G, \mathcal{F}))$ is equal to $c_{\mathcal{F}}$. Since $A(G, \mathcal{F})$ is a free \mathbb{Z}-module of rank $\mathcal{c}_{\mathcal{F}}$, the homomorphism $\prod_{(H) \subset \mathcal{F}} \chi_{H}: A(G, \mathcal{F}) \rightarrow \prod_{(H) \subset \mathcal{F}} \mathbb{Z}$ is injective. By the commutative diagram above, we obtain the lemma.

Corollary 2.2 The module $L(G, \mathcal{F})$ coincides with $\lim _{\mathfrak{F}} A(\star)$.
Proof The conclusion follows from the fact that $L(G, \mathcal{F}) \subset \lim _{\overparen{F}} A(\star), L(G, \mathcal{F})$ is a direct summand of $P(G, \mathcal{F}), \lim _{\widetilde{F}} A(\star)$ is a submodule of $\overleftarrow{P(G, \mathcal{F})}$, and the two modules $L(G, \mathcal{F})$ and $\lim _{\leftrightarrows} A(\star)$ have same rank, because $L(G, \mathcal{F}) / B(G, \mathcal{F})$ is torsion.

Now let $M: \mathfrak{S}(G) \rightarrow \mathfrak{A} \mathfrak{b}$ be a covariant functor such that

$$
(H, a, H)_{*}=\operatorname{id}_{M(H)} \quad \text { for all } H \in \mathcal{S}(G) \text { and } a \in H
$$

where $(H, a, K)_{*}$ stands for $M((H, a, K))$. Let $\lim _{\tau} M(\star)$ denote the colimit defined in [1, p. 243]. In order to understand the colimit, let \mathcal{C} be the family of pairs $\left(V,\left(h_{H}\right)_{H \in \mathcal{F}}\right)$, where each V is an abelian group and each h_{H} is a homomorphism $M(H) \rightarrow V$, satisfying the following two conditions.
(C1) The set $\left\{h_{H}(x) \mid H \in \mathcal{F}, x \in M(H)\right\}$ generates V.
(C2) If $(H, a, K)_{*} x=y$ for $(H, a, K) \in \operatorname{Mor}(\mathfrak{F})$, and $x \in M(H), y \in M(K)$, then $h_{H}(x)=h_{K}(y)$.
Let $\left(V_{0},\left(h_{0, H}\right)_{H \in \mathcal{F}}\right)$ be a universal object in the family \mathcal{C}; i.e., for $\left(V,\left(h_{H}\right)_{H \in \mathcal{F}}\right) \in \mathcal{C}$, there exists a homomorphism $\varphi: V_{0} \rightarrow V$ such that $h_{H}=\varphi \circ h_{0, H}$ for all $H \in \mathcal{F}$. Since we have a canonical epimorphism $k: \prod_{H \in \mathcal{F}} M(H) \rightarrow V_{0}$,

$$
k(x)=\sum_{H \in \mathcal{F}} h_{0, H}\left(x_{H}\right),
$$

where $x=\left(x_{H}\right)_{H \in \mathcal{F}} \in \prod_{H \in \mathcal{F}} M(H)$ with $x_{H} \in M(H)$, we can identify V_{0} with a module consisting of equivalence classes of elements of $\prod_{H \in \mathcal{F}} M(H)$, which is the colimit $\lim _{\longrightarrow} M(\star)$ defined in [1, p. 243]. Thus, we get a universal object in \mathcal{C} of the form $\left(\underset{\longrightarrow}{\lim } M(\star),\left(\operatorname{ind}_{H}^{\mathcal{F}}\right)_{H \in \mathcal{F}}\right)$.

There is a canonical homomorphism

$$
\operatorname{ind}_{\mathcal{F}}^{G}: \underset{\mathfrak{F}}{\lim } A(\star) \longrightarrow A(G) ; \quad \sum_{H \in \mathcal{F}} \operatorname{ind}_{H}^{\mathcal{F}} x_{H} \longmapsto \sum_{H \in \mathcal{F}} \operatorname{ind}_{H}^{G} x_{H},
$$

where each x_{H} is an element of $A(H)$ and ind ${ }_{H}^{G}$ stands for $(H, e, G)_{*}$. The image of this homomorphism is $A(G, \mathcal{F})$.

Proposition 2.3 For an arbitrary conjugation-invariant lower-closed set \mathcal{F} of subgroups of G, the homomorphism $\operatorname{ind}_{\mathcal{F}}^{G}: \lim _{\mathfrak{F}} A(\star) \rightarrow A(G)$ is injective.

Proof It is readily seen that $\lim _{\mathfrak{F}} A(\star)$ is a module generated by $c_{\mathcal{F}}$ elements $\operatorname{ind}_{H}^{\mathcal{F}}[H / H]$ with $(H) \subset \mathcal{F}$, where

$$
\operatorname{ind}_{H}^{\mathcal{F}}: A(H) \longrightarrow \underset{\mathfrak{F}}{\lim } A(\star)
$$

and $c_{\mathcal{F}}$ is the number of the G-conjugacy classes of subgroups belonging to \mathcal{F}. Since $A(G, \mathcal{F})$ is a free \mathbb{Z}-module of rank $c_{\mathcal{F}}$, the homomorphism $\operatorname{ind}_{\mathcal{F}}^{G}$ is injective.

By the homomorphism ind ${ }_{\mathcal{F}}^{G}$ above, we can identify $\lim _{\mathfrak{F}} A(\star)$ with the submodule $A(G, \mathcal{F})$ of $A(G)$.

Let N be a normal subgroup of G. We have the homomorphism fix $_{G, N}: A(G) \rightarrow$ $A(G / N)$ that maps $[X]$ to $\left[X^{N}\right]$ for finite G-sets X. Let fix $\mathcal{F}_{(G), N}: L(G) \rightarrow L(G / N)$ be the homomorphism for which the diagram

commutes, where $\mathcal{G}=\{H \in \mathcal{S}(G) \mid N \subset H \neq G\}$. It is a ring homomorphism and induces a homomorphism $\overline{\operatorname{fix}}_{\mathcal{F}(G), N}: Q(G) \rightarrow Q(G / N)$.

3 Operation of $A(G, \mathcal{F})$ on $L(G, \mathcal{F})$

Recall that $L(G, \mathcal{F})$ is a module over $A(G)$:

$$
A(G) \times L(G, \mathcal{F}) \longrightarrow L(G, \mathcal{F}) ; \quad(\alpha, x) \longmapsto\left(\left(\operatorname{res}_{H}^{G} \alpha\right) x_{H}\right)_{H \in \mathcal{F}},
$$

where $\alpha \in A(G)$ and $x=\left(x_{H}\right)_{H \in \mathcal{F}} \in L(G, \mathcal{F})$.
Let α be an element of $A(G, \mathcal{F})$ (resp. $A(G, \mathcal{F})_{(p)}$ for a prime p) with

$$
\alpha=\sum_{(H) \subset \mathcal{F}} a_{H}[G / H],
$$

where $a_{H} \in \mathbb{Z}$ (resp. $\left.\mathbb{Z}_{(p)}\right)$ and $x=\left(x_{H}\right)_{H \in \mathcal{F}} \in L(G, \mathcal{F})$ (resp. $\left.L(G, \mathcal{F})_{(p)}\right)$. Then we define an element $\alpha \circ x$ of $A(G, \mathcal{F})$ (resp. $\left.A(G, \mathcal{F})_{(p)}\right)$ by

$$
\alpha \circ x=\sum_{(H) \subset \mathcal{F}} a_{H} \operatorname{ind}_{H}^{G} x_{H} .
$$

Lemma 3.1 For $\alpha \in A(G, \mathcal{F})\left(\right.$ resp. $\left.A(G, \mathcal{F})_{(p)}\right)$ and $x=\left(x_{H}\right)_{H \in \mathcal{F}} \in L(G, \mathcal{F})$ (resp. $\left.L(G, \mathcal{F})_{(p)}\right)$, the equality $\operatorname{res}_{\mathcal{F}}^{G}(\alpha \circ x)=\alpha x\left(=\left(\operatorname{res}_{\mathcal{F}}^{G} \alpha\right) x\right)$ holds, and therefore αx belongs to $B(G, \mathcal{F})\left(\right.$ resp. $\left.B(G, \mathcal{F})_{(p)}\right)$.

Proof Let $K \in \mathcal{F}(G)$. Then we have the equalities

$$
\begin{aligned}
\operatorname{res}_{K}^{G}(\alpha \circ x) & =\sum_{(H) \subset \mathcal{F}} a_{H} \operatorname{res}_{K}^{G}\left(\operatorname{ind}_{H}^{G} x_{H}\right) \\
& =\sum_{(H) \subset \mathcal{F}} a_{H}\left(\sum_{K g H \in K \backslash G / H} \operatorname{ind}_{K \cap g H g^{-1}}^{K}\left(c_{g}\right)_{*}\left(\operatorname{res}_{H \cap g^{-1} K g}^{H} x_{H}\right)\right) \\
& =\sum_{(H) \subset \mathcal{F}} a_{H}\left(\sum_{K g H \in K \backslash G / H} \operatorname{ind}_{K \cap g H g^{-1}}^{K} x_{K \cap g H g^{-1}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\operatorname{res}_{K}^{G} \alpha\right)\left(\operatorname{res}_{K}^{\mathcal{F}} x\right) & =\left(\sum_{(H) \subset \mathcal{F}} a_{H} \operatorname{res}_{K}^{G}[G / H]\right) x_{K} \\
& =\sum_{(H) \subset \mathcal{F}} a_{H}\left(\operatorname{res}_{K}^{G}[G / H]\right) x_{K} \\
& =\sum_{(H) \subset \mathcal{F}} a_{H}\left(\sum_{K g H \in K \backslash G / H} \operatorname{ind}_{K \cap g H g^{-1}}^{K}\left(c_{g}\right)_{*} \operatorname{res}_{H \cap g^{-1} K g}^{H}[H / H]\right) x_{K} \\
& =\sum_{(H) \subset \mathcal{F}} a_{H}\left(\sum_{K g H \in K \backslash G / H}\left[K / K \cap g H g^{-1}\right]\right) x_{K} \\
& =\sum_{(H) \subset \mathcal{F}} a_{H}\left(\sum_{K g H \in K \backslash G / H} \operatorname{ind}_{K \cap g H g^{-1}}^{K} x_{K \cap g H g^{-1}}\right)
\end{aligned}
$$

where $\left(c_{g}\right)_{*}$ stands for $\left(H \cap g^{-1} K g, g, K \cap g H g^{-1}\right)_{*}$. Hence we obtain the lemma.
The next fact can be obtained implicitly from R. Oliver [10, Lemma 8] and explicitly from C. Kratzer and J. Thévenaz [6, Proposition 3.2].

Lemma 3.2 ([9, Lemma 1.3], [8, Proposition 2.1]) For an arbitrary finite group G, there exists a unique element $\gamma_{G} \in A(G)$ such that $\chi_{G}\left(\gamma_{G}\right)=k_{G}$ and $\chi_{H}\left(\gamma_{G}\right)=0$ for all $H \in \mathcal{F}(G)$.

This gives the following corollaries.
Corollary 3.3 For an arbitrary finite group G, there exists a unique element $\tau_{G} \in$ $A(G)$ such that $\chi_{G}\left(\tau_{G}\right)=0$ and $\chi_{H}\left(\tau_{G}\right)=k_{G}$ for all $H \in \mathcal{F}(G)$.

Corollary 3.4 ([9, Corollary 1.5]) For an arbitrary finite group $G, k_{G} L(G)$ is contained in $B(G)$, and hence $k_{G} Q(G)=0$.

Corollary 3.5 For an arbitrary finite group G and an arbitrary prime p, there exists $\gamma_{G, p} \in A(G)_{(p)}$ such that $\chi_{G}\left(\gamma_{G, p}\right)=p$ and $\chi_{H}\left(\gamma_{G, p}\right)=0$ for all $H \in \mathcal{F}(G)$.

Corollary 3.6 For an arbitrary finite group G and an arbitrary prime p, there exists $\tau_{G, p} \in A(G)_{(p)}$ such that $\chi_{G}\left(\tau_{G, p}\right)=0$ and $\chi_{H}\left(\tau_{G, p}\right)=p$ for all $H \in \mathcal{F}(G)$.

Corollary 3.7 For an arbitrary finite group G and an arbitrary prime $p, p L(G)_{(p)}$ is contained in $B(G)_{(p)}$, and hence $p Q(G)_{(p)}=0$.

For a prime p, let $\mathcal{L}_{p}(G)$ denote the set of all subgroups of G containing $G^{\{p\}}$ and set $\mathcal{M}_{p}(G)=\mathcal{S}(G) \backslash \mathcal{L}_{p}(G)$. Let $\mathcal{L}(G)$ (resp. $\left.\mathcal{M}(G)\right)$ be the union of $\mathcal{L}_{p}(G)$ (resp. the intersection of $\left.\mathcal{M}_{p}(G)\right)$ for all primes p dividing $|G|$.

Lemma 3.8 ([7, Theorem 1.3]) For an arbitrary finite group G, there exists an element β_{G} of $A(G)$ such that $\chi_{G}\left(\beta_{G}\right)=1$ and $\chi_{H}\left(\beta_{G}\right)=0$ for all $H \in \mathcal{M}(G)$.

Corollary 3.9 For an arbitrary finite group G and an arbitrary prime p, there exists an element $\beta_{G, p}$ of $A(G)_{(p)}$ such that $\chi_{G}\left(\beta_{G, p}\right)=1$ and $\chi_{H}\left(\beta_{G, p}\right)=0$ for all $H \in \mathcal{M}_{p}(G)$.

Proof Let $Q=G / G^{\text {nil }}$. Note that Q is isomorphic to the cartesian product of Sylow subgroups of Q. Let Q_{p} be the Sylow p-subgroup of Q and let $q: Q \rightarrow \bar{Q}=Q / Q_{p}$ denote the quotient homomorphism. There exists an element $u \in A(\bar{Q})_{(p)}$ such that $\chi_{\bar{Q}}(u)=1$ and $\chi_{T}(u)=0$ for all $T<\bar{Q}$. Set $\beta_{Q, p}=q^{*} u \in A(Q)_{(p)}$. Then $\chi_{T}\left(\beta_{Q, p}\right)=1$ for $T \in \mathcal{L}_{p}(Q)$ and $\chi_{T}\left(\beta_{Q, p}\right)=0$ for $T \in \mathcal{M}_{p}(Q)$. Let $f: G \rightarrow Q$ be the quotient homomorphism. Then the element $\beta_{G, p}=\beta_{G} \cdot f^{*} \beta_{Q, p}$ possesses the required properties.

Let p be a prime. The element $\alpha=[G / G]-\beta_{G, p} \in A(G)_{(p)}$ has the form

$$
\alpha=\sum_{(H) \subset \mathcal{F}(G)} a_{H}[G / H] \quad\left(a_{H} \in \mathbb{Z}_{(p)}\right)
$$

and belongs to $A(G, \mathcal{F}(G))_{(p)}$.

4 Comparison of $Q(G)_{(p)}$ and $Q\left(G / G^{\{p\}}\right)_{(p)}$

Throughout this section, let N stand for $G^{\{p\}}$. Let p be a prime, $\beta_{G . p}$ the element given in Corollary 3.9, and set $\alpha=[G / G]-\beta_{G, p}$.

Let $x=\left(x_{H}\right)_{H \in \mathcal{F}(G)}$ be an element of $L(G)_{(p)}$. Then we have $x=x-\alpha x+\alpha x$ and the last term $\alpha x=\operatorname{res}_{\mathcal{F}(G)}^{G}(\alpha \circ x)$ belongs to $B(G)_{(p)}=\operatorname{res}_{\mathcal{F}(G)}^{G}\left(A(G)_{(p)}\right)$ by Lemma 3.1. In addition, we have $\operatorname{res}_{\mathcal{M}_{p}(G)}^{\mathcal{F}(G)}(x-\alpha x)=0$. Recall the commutative diagram

Lemma 4.1 The homomorphism $\overline{\operatorname{fix}}_{\mathcal{F}(G), N}: Q(G)_{(p)} \rightarrow Q(G / N)_{(p)}$ is injective.
Proof Let $x \in L(G)_{(p)}$ such that $\left[\mathrm{fix}_{\mathcal{F}(G), N}(x)\right]=0$ in $Q(G / N)_{(p)}$. Then the element fix $\mathcal{F}_{(G), N}(x)$ belongs to $B(G / N)_{(p)}$. Therefore,

$$
\operatorname{fix}_{\mathcal{F}(G), N}(x)=\operatorname{fix}_{\mathcal{F}(G), N}\left(\operatorname{res}_{\mathcal{F}(G)}^{G}(z)\right)
$$

holds for some $z \in A(G)_{(p)}$. It means that $v=x-\operatorname{res}_{\mathcal{F}(G)}^{G}(z)$ belongs to the kernel of $\mathrm{fix}_{\mathcal{F}(G), N}$. Set $w=v-\alpha v$. Since $\operatorname{fix}_{\mathcal{F}(G), N}(w)=0$ and $\operatorname{res}_{\mathcal{M}_{p}(G)}^{\mathcal{F}(G)}(w)=0$, we get $w=0$ in $L(G)_{(p)}$. Clearly we have $[x]=[v]=[w]$ in $Q(G)_{(p)}$. Therefore, we conclude that $[x]=0$ in $Q(G)_{(p)}$, which shows the injectivity of $\overline{f i x}_{\mathcal{F}(G), N}$.

Lemma 4.2 The homomorphism $\overline{\operatorname{fix}}_{\mathcal{F}(G), N}: Q(G)_{(p)} \rightarrow Q(G / N)_{(p)}$ is surjective.
Proof Let $x=\left(x_{K}\right)_{K \in \mathcal{F}(G / N)}$ be an arbitrary element of $L(G / N)_{(p)}$. Define an element $y=\left(y_{H}\right)_{H \in \mathcal{F}(G)}$ of $P(G, \mathcal{F}(G))_{(p)}$, where $P(G, \mathcal{F}(G))_{(p)}=\prod_{H \in \mathcal{F}(G)} A(H)_{(p)}$, by

$$
y_{H}=\left\{\begin{array}{ll}
\left.f\right|_{H}{ }^{*} x_{f(H)} & \text { if } H \supset N, \\
0 & \text { otherwise }
\end{array} \quad(H \in \mathcal{F}(G))\right.
$$

where $f: G \rightarrow G / N$ is the quotient map. Then the element $z=y-\alpha y$ belongs to $L(G)_{(p)}$, and the equalities

$$
\begin{aligned}
{\left[\operatorname{fix}_{\mathcal{F}(G), N}(z)\right] } & =\left[\left(\operatorname{fix}_{H, N}\left(z_{H}\right)\right)_{H}\right] \\
& =\left[\left(\operatorname{fix}_{H, N}\left(y_{H}-\left(\operatorname{res}_{H}^{G} \alpha\right) y_{H}\right)\right)_{H}\right] \\
& =\left[\left(x_{f(H)}-\left(\operatorname{fix}_{H, N}\left(\operatorname{res}_{H}^{G} \alpha\right)\right) x_{f(H)}\right)_{H}\right] \\
& =\left[x-\operatorname{fix}_{G, N}(\alpha) x\right]=[x]
\end{aligned}
$$

hold in $Q(G / N)_{(p)}$, where H ranges over $\mathcal{L}_{p}(G) \cap \mathcal{F}(G)$. This shows the surjectivity of fix $_{\mathcal{F}(G), N}$.

References

[1] A. Bak, K-theory of forms. Annals of Mathematics Studies, 98, Princeton University Press, Princeton, NJ, 1981.
[2] —. Induction for finite groups revisited. J. Pure Appl. Algebra 104(1995), 235-241. http://dx.doi.org/10.1016/0022-4049(94)00137-5
[3] T. tom Dieck, Transformation groups. De Gruyter Studies in Mathematics, 8, Walter de Gruyter, Berlin, 1987. http://dx.doi.org/10.1515/9783110858372.312
[4] A. Dress, A characterization of solvable groups. Math. Z. 110(1969), 213-217. http://dx.doi.org/10.1007/BF01110213
[5] Y. Hara and M. Morimoto, The inverse limit of the Burnside ring for a family of subgroups of G. Hokkaido Math. J., to appear.
[6] C. Kratzer and J. Thévenaz, Fonction de Möbius d'un groupe fini et anneau de Burnside. Comment. Math. Helv. 59(1984), 425-438. http://dx.doi.org/10.1007/BF02566359
[7] E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point actions on spheres. Forum Math. 10(1998), 479-520. http://dx.doi.org/10.1515/form.10.4.479
[8] M. Morimoto, The Burnside ring revisited. In: Current trends in transformation groups, K-Monogr. Math., 7, Kluwer Academic Publ., Dordrecht-Boston, 2002, pp. 129-145. http://dx.doi.org/10.1007/978-94-009-0003-5_9
[9] , Direct limits and inverse limits of Mackey functors. J. Algebra 470(2017), 68-76. http://dx.doi.org/10.1016/j.jalgebra.2016.09.002
[10] R. Oliver, Fixed point sets of groups on finite acyclic complexes. Comment. Math. Helv. 50(1975), 155-177. http://dx.doi.org/10.1007/BF02565743
Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Kitaku, Okayama, 700-8530 Japan
e-mail: morimoto@ems.okayama-u.ac.jp

[^0]: Received by the editors April 5, 2016; revised September 24, 2016
 Published electronically November 29, 2016.
 This research was partially supported by JSPS KAKENHI Grant Number 26400090.
 AMS subject classification: 19A22, 57S17.
 Keywords: Burnside ring, inverse limit, finite group.

