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Cokernels of Homomorphisms from
Burnside Rings to Inverse Limits

Masaharu Morimoto

Abstract. Let G be a ûnite group and let A(G) denote the Burnside ring of G. _en an inverse limit
L(G) of the groups A(H) for proper subgroups H of G and a homomorphism res from A(G) to
L(G) are obtained in a natural way. Let Q(G) denote the cokernel of res. For a prime p, let N(p)
be theminimal normal subgroup of G such that the order of G/N(p) is a power of p, possibly 1. In
this paper we prove that Q(G) is isomorphic to the cartesian product of the groups Q(G/N(p)),
where p ranges over the primes dividing the order of G.

1 Introduction

_roughout this paper, letG be a ûnite group, let S(G) denote the set of all subgroups,
and letF be a conjugation-invariant lower-closed subset of S(G). Let P(G ,F) denote
the cartesianproduct of the Burnside ringsA(H) ofH (cf. [3,4]),whereH runs overF,
i.e., P(G ,F) =∏H∈F A(H). For the sake of convenience, ifF is the empty set, then by
P(G ,F) we mean the trivial group. Let resGF denote the restriction homomorphism
∶A(G) → P(G ,F); resGF(x) = (resGH x)H∈F for x ∈ A(G). Let B(G ,F) denote the
ring with unit obtained as the image of resGF ∶A(G) → P(G ,F). As free Z-modules,
A(G) and B(G ,F) are of rank cS(G) and cF , respectively, where cS(G) and cF are the
numbers of G-conjugacy classes of subgroups contained in S(G) and F, respectively.
Let V be a real G-module containing a G-submodule isomorphic to R[G] ⊕ R[G].
_en there is a canonical one-to-one correspondence from the set of all G-homotopy
classes of G-maps ∶ S(V) → S(V) to the Burnside ring A(G) of G (cf. [3, p. 157],
[8, §2]). For a set fff = ( fH)H∈F consisting ofH-maps fH ∶ S(V)→ S(V),wewonder if
there exists aG-map fG ∶ S(V)→ S(V) such that resGH fG is H-homotopic to fH for all
H ∈ F. An obstruction group O(G ,F) of the existence problem is P(G ,F)/B(G ,F).
Let L(G ,F) denote the subgroup

{x ∈ P(G ,F) ∣ mx ∈ B(G ,F) for some positive integer m}.

By deûnition, L(G ,F) is a ring with unit. By Corollary 2.2, we can describe L(G ,F)

as an inverse limit of {A(H) ∣ H ∈ F}. Clearly, P(G ,F)/L(G ,F) is a free Z-module
and Q(G ,F) = L(G ,F)/B(G ,F) is a ûnitemodule. Note that the exact sequence

0Ð→ Q(G ,F)Ð→ O(G ,F)Ð→ P(G ,F)/L(G ,F)Ð→ 0
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splits, because P(G ,F)/L(G ,F) is Z-torsion free. We remark that B(G ,F), L(G ,F),
P(G ,F), and Q(G ,F) aremodules over A(G). Let F(G) denote the set of all proper
subgroups of G, i.e., F(G) = S(G) ∖ {G}, and set P(G) = P(G ,F(G)), B(G) =

B(G ,F(G)), L(G) = L(G ,F(G)), and Q(G) = Q(G ,F(G)). Y. Hara and the au-
thor found that for a nontrivial nilpotent group G, Q(G) is trivial if and only if G is a
cyclic group of which the order is a prime or a product of distinct primes (cf. [5,_e-
orem 1.4]). M. Sugimura showed that Q(A5) is trivial, where A5 is the alternating
group on ûve letters. Furthermore, we can show that Q(G) is trivial for any nontriv-
ial perfect group G (cf. [9, Corollary 1.5]).
For a prime p, let G{p} denote the smallest normal subgroup of G with p-power

index (cf. [7]). Let Gnil denote the intersection of the subgroupsG{p},where p ranges
the primes dividing ∣G∣. Let kG denote the product of the primes p such that G{p} /=

G. We can show that kG L(G) ⊂ B(G), i.e., kG Q(G) = 0 (cf. [9, Corollary 1.5]).
For a Z-module M and a prime p, let M(p) denote the localization of M at p, i.e.,
M(p) = S−1M for S = {m ∈ N ∣ (m, p) = 1}. It is remarkable that Q(G) is isomorphic
to ∏p Q(G)(p), where p ranges over the primes dividing kG , and Q(G)(p) is an el-
ementary abelian p-group, possibly the trivial group (cf. Corollary 3.7). In addition,
we note that the canonical map Q(G/G{p})→ Q(G/G{p})(p) is an isomorphism.

_e next feature of Q(G) is interesting.

_eorem 1.1 Let G be a ûnite group. For an arbitrary prime p, the ûnite module
Q(G)(p) is canonically isomorphic to Q(G/G{p})(p). _erefore, the equalities

Q(G) =∏
p

Q(G)(p) =∏
p

Q(G/G{p})(p) =∏
p

Q((G/Gnil
)/(G/Gnil

)
{p}

)(p)

=∏
p

Q(G/Gnil
)(p) = Q(G/Gnil

)

hold up to isomorphisms, where p ranges over the primes dividing kG .

_is theorem follows from Lemmas 4.1 and 4.2. Combining the theorem with [5,
_eorem 1.4], we immediately obtain the next corollary.

Corollary 1.2 Let G be a ûnite group. _e group Q(G) is trivial if and only if G/Gnil

is a cyclic group of which the order is a prime or a product of distinct primes.

2 Preliminary

For a category C, let Obj(C) denote the totality of all objects in C; for objects x, y in
C, let MorC(x , y) denote the set of all morphisms in C from x to y, and let Mor(C)
denote the totality of all morphisms in C, i.e.,

Mor(C) = ∐
x ,y∈Obj(C)

MorC(x , y).

Let S(G) denote the category in which the objects are all elements in S(G), the
morphisms from objects H to K are all triples (H, a,K) such that a ∈ G and aHa−1 ⊂
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K, and the compositions ofmorphisms are given by

(K , b, L) ○ (H, a,K) = (H, ba, L) for (H, a,K), (K , b, L) ∈ Mor(S(G))

(cf. [2]). For (H, a,K) ∈ Mor(S(G)), we have an associated homomorphism

ι(H ,a ,K)∶H Ð→ K; ι(H ,a ,K)(x) = axa−1 for x ∈ H.

Let F be a conjugation-invariant, lower-closed subset of S(G); i.e., if H ∈ F, then
(H) ⊂ F, where (H) = {gHg−1 ∣ g ∈ G}, and if H ∈ F, then S(H) ⊂ F. Let F denote
the full subcategory of S(G) such that Obj(F) = F. By deûnition, Mor(F) consists
of all triples (H, a,K) such that H, K ∈ F, a ∈ G satisfying aHa−1 ⊂ K. LetAb denote
the category of which the objects are all abelian groups and the morphisms are all
group homomorphisms between objects.

Let M∶S(G)→ Ab be a contravariant functor such that

M((H, a,H)) = idM(H) for all H ∈ S(G) and a ∈ H.

In the sequel, we should read the notation (H, a,K)∗ as M((H, a,H)) and the ex-
pression x = (xH)H∈F for x ∈ ∏H∈F M(H) as one satisfying xH ∈ M(H). Let
lim
←ÐF

M(⋆) denote the inverse limit deûned in [1, p. 243], i.e., lim
←ÐF

M(⋆) consists
of all elements (xH) ∈ ∏H∈F M(H) such that xH = f ∗xK for all H, K ∈ F, and
f ∈ MorF(H,K). _ere is a canonical restriction homomorphism

resGF ∶M(G)Ð→ lim
←Ð
F

M(⋆); x z→ (resGH x)H∈F ,

where resGH stands for (H, e ,G)∗. For K ∈ F, we have the restriction homomorphism

resFK ∶ lim←Ð
F

M(⋆)Ð→ M(K); x = (xH)H∈F z→ xK .

Let A(G ,F) denote the submodule of A(G) generated by {[G/H] ∣ (H) ⊂ F}.
_en A(G ,F) is a direct summand of A(G) of rank cF . By deûnition, the inclusions

resGF(A(G ,F)) ⊂ B(G ,F) ⊂ L(G ,F) ⊂ lim
←Ð
F

A(⋆) ⊂ P(G ,F)

hold, where B(G ,F) = resGF(A(G)) and P(G ,F) = ∏H∈F A(H). For a ûnite
CW complex C, let χ(C) denote the Euler characteristic of C. For K ∈ F and
x = (xH)H∈F ∈ lim

←ÐF
A(⋆), we deûne χK(x) by χK(x) = χ(XK), where X is a ûnite

K-CW complex representing xK . We regard χK as a homomorphism from lim
←ÐF

A(⋆)
to Z.

Lemma 2.1 For an arbitrary conjugation-invariant lower-closed set F of subgroups
of G, the homomorphism resGF ∶A(G ,F)→ lim

←ÐF
A(⋆) is injective and the equalities

rank resGF(A(G ,F)) = rank B(G ,F) = rank lim
←Ð
F

A(⋆) = cF

hold.
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Proof We have the commutative diagram

A(G ,F)

resGF

����

� � //

∏(H)⊂F χH
--

A(G)

resGF

����

//
∏(H)⊂S(G) χH // ∏(H)⊂S(G)Z

����
∏(H)⊂F Z

resGF(A(G ,F))
� � // B(G ,F)

� � // lim
←ÐF

A(⋆).
55 ∏(H)⊂F χH

55

By the Burnside congruence formula (cf. [3, IV,_eorem 5.7]), we readily see

∣G∣∏(H)⊂FZ ⊂ (∏(H)⊂F χH)(A(G ,F)).

_erefore the rank of (∏(H)⊂F χH)(A(G ,F)) is equal to cF . Since A(G ,F) is a free
Z-module of rank cF , the homomorphism ∏(H)⊂F χH ∶A(G ,F) → ∏(H)⊂F Z is in-
jective. By the commutative diagram above, we obtain the lemma.

Corollary 2.2 _emodule L(G ,F) coincides with lim
←ÐF

A(⋆).

Proof _e conclusion follows from the fact that L(G ,F) ⊂ lim
←ÐF

A(⋆), L(G ,F) is
a direct summand of P(G ,F), lim

←ÐF
A(⋆) is a submodule of P(G ,F), and the two

modules L(G ,F) and lim
←ÐF

A(⋆)have same rank, because L(G ,F)/B(G ,F) is torsion.

Now let M∶S(G)→ Ab be a covariant functor such that

(H, a,H)∗ = idM(H) for all H ∈ S(G) and a ∈ H,

where (H, a,K)∗ stands for M((H, a,K)). Let lim
Ð→F

M(⋆) denote the colimit de-
ûned in [1, p. 243]. In order to understand the colimit, let C be the family of pairs
(V , (hH)H∈F), where each V is an abelian group and each hH is a homomorphism
M(H)→ V , satisfying the following two conditions.
(C1) _e set {hH(x) ∣ H ∈ F, x ∈ M(H)} generates V .
(C2) If (H, a,K)∗x = y for (H, a,K) ∈ Mor(F), and x ∈ M(H), y ∈ M(K), then

hH(x) = hK(y).
Let (V0 , (h0,H)H∈F) be a universal object in the family C; i.e., for (V , (hH)H∈F) ∈ C,
there exists a homomorphism φ∶V0 → V such that hH = φ ○ h0,H for all H ∈ F. Since
we have a canonical epimorphism k∶∏H∈F M(H)→ V0,

k(x) = ∑
H∈F

h0,H(xH),

where x = (xH)H∈F ∈ ∏H∈F M(H) with xH ∈ M(H), we can identify V0 with a
module consisting of equivalence classes of elements of ∏H∈F M(H), which is the
colimit lim

Ð→F
M(⋆) deûned in [1, p. 243]. _us, we get a universal object in C of the

form (lim
Ð→F

M(⋆), (indFH)H∈F).
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_ere is a canonical homomorphism

indG
F ∶ limÐ→

F

A(⋆)Ð→ A(G); ∑
H∈F

indFH xH z→ ∑
H∈F

indG
H xH ,

where each xH is an element of A(H) and indG
H stands for (H, e ,G)∗. _e image of

this homomorphism is A(G ,F).

Proposition 2.3 For an arbitrary conjugation-invariant lower-closed set F of sub-
groups of G, the homomorphism indG

F ∶ limÐ→F
A(⋆)→ A(G) is injective.

Proof It is readily seen that lim
Ð→F

A(⋆) is a module generated by cF elements
indFH[H/H] with (H) ⊂ F, where

indFH ∶A(H)Ð→ lim
Ð→
F

A(⋆)

and cF is the number of the G-conjugacy classes of subgroups belonging to F. Since
A(G ,F) is a free Z-module of rank cF , the homomorphism indG

F is injective.

By the homomorphism indG
F above,we can identify lim

Ð→F
A(⋆)with the submodule

A(G ,F) of A(G).
Let N be a normal subgroup of G. We have the homomorphism ûxG ,N ∶A(G) →

A(G/N) that maps [X] to [XN] for ûnite G-sets X. Let ûxF(G),N ∶ L(G) → L(G/N)

be the homomorphism for which the diagram

L(G)

res

��

fixF(G),N // L(G/N)� _

��
∏
H∈G

A(H)
fix

// ∏
H∈G

A(H/N)

commutes, where G = {H ∈ S(G) ∣ N ⊂ H /= G}. It is a ring homomorphism and
induces a homomorphism ûxF(G),N ∶Q(G)→ Q(G/N).

3 Operation of A(G ,F) on L(G ,F)
Recall that L(G ,F) is amodule over A(G):

A(G) × L(G ,F)Ð→ L(G ,F); (α, x)z→ ((resGH α)xH)H∈F ,

where α ∈ A(G) and x = (xH)H∈F ∈ L(G ,F).
Let α be an element of A(G ,F) (resp. A(G ,F)(p) for a prime p) with

α = ∑
(H)⊂F

aH[G/H],

where aH ∈ Z (resp. Z(p)) and x = (xH)H∈F ∈ L(G ,F) (resp. L(G ,F)(p)). _en we
deûne an element α ○ x of A(G ,F) (resp. A(G ,F)(p)) by

α ○ x = ∑
(H)⊂F

aH indG
H xH .
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Lemma 3.1 For α ∈ A(G ,F) (resp. A(G ,F)(p)) and x = (xH)H∈F ∈ L(G ,F) (resp.
L(G ,F)(p)), the equality resGF(α ○ x) = αx (= (resGF α)x) holds, and therefore αx
belongs to B(G ,F) (resp. B(G ,F)(p)).

Proof Let K ∈ F(G). _en we have the equalities

resGK(α ○ x) = ∑
(H)⊂F

aH resGK(ind
G
H xH)

= ∑
(H)⊂F

aH( ∑
KgH∈K/G/H

indK
K∩gHg−1(cg)∗(resHH∩g−1Kg xH))

= ∑
(H)⊂F

aH( ∑
KgH∈K/G/H

indK
K∩gHg−1 xK∩gHg−1)

and

(resGK α)(resFK x) = ( ∑
(H)⊂F

aH resGK[G/H])xK

= ∑
(H)⊂F

aH( resGK[G/H])xK

= ∑
(H)⊂F

aH( ∑
KgH∈K/G/H

indK
K∩gHg−1(cg)∗ resHH∩g−1Kg[H/H])xK

= ∑
(H)⊂F

aH( ∑
KgH∈K/G/H

[K/K ∩ gHg−1
])xK

= ∑
(H)⊂F

aH( ∑
KgH∈K/G/H

indK
K∩gHg−1 xK∩gHg−1) ,

where (cg)∗ stands for (H∩ g−1Kg , g ,K∩ gHg−1)∗. Hencewe obtain the lemma.

_enext fact can be obtained implicitly fromR. Oliver [10, Lemma 8] and explicitly
from C. Kratzer and J. _évenaz [6, Proposition 3.2].

Lemma 3.2 ([9, Lemma 1.3], [8, Proposition 2.1]) For an arbitrary ûnite group G,
there exists a unique element γG ∈ A(G) such that χG(γG) = kG and χH(γG) = 0 for
all H ∈ F(G).

_is gives the following corollaries.

Corollary 3.3 For an arbitrary ûnite group G, there exists a unique element τG ∈

A(G) such that χG(τG) = 0 and χH(τG) = kG for all H ∈ F(G).

Corollary 3.4 ([9, Corollary 1.5]) For an arbitrary ûnite group G, kG L(G) is con-
tained in B(G), and hence kG Q(G) = 0.

Corollary 3.5 For an arbitrary ûnite group G and an arbitrary prime p, there exists
γG ,p ∈ A(G)(p) such that χG(γG ,p) = p and χH(γG ,p) = 0 for all H ∈ F(G).

Corollary 3.6 For an arbitrary ûnite group G and an arbitrary prime p, there exists
τG ,p ∈ A(G)(p) such that χG(τG ,p) = 0 and χH(τG ,p) = p for all H ∈ F(G).
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Corollary 3.7 For an arbitrary ûnite group G and an arbitrary prime p, p L(G)(p)
is contained in B(G)(p), and hence pQ(G)(p) = 0.

For a prime p, letLp(G) denote the set of all subgroups of G containing G{p} and
set Mp(G) = S(G) ∖Lp(G). Let L(G) (resp. M(G)) be the union of Lp(G) (resp.
the intersection ofMp(G)) for all primes p dividing ∣G∣.

Lemma 3.8 ([7,_eorem1.3]) For an arbitrary ûnite groupG, there exists an element
βG of A(G) such that χG(βG) = 1 and χH(βG) = 0 for all H ∈M(G).

Corollary 3.9 For an arbitraryûnite groupG and an arbitrary prime p, there exists an
element βG ,p of A(G)(p) such that χG(βG ,p) = 1 and χH(βG ,p) = 0 for all H ∈Mp(G).

Proof Let Q = G/Gnil. Note that Q is isomorphic to the cartesian product of Sylow
subgroups of Q. Let Qp be the Sylow p-subgroup of Q and let q∶Q → Q = Q/Qp

denote the quotient homomorphism. _ere exists an element u ∈ A(Q)(p) such
that χQ(u) = 1 and χT(u) = 0 for all T < Q. Set βQ ,p = q∗u ∈ A(Q)(p). _en
χT(βQ ,p) = 1 for T ∈ Lp(Q) and χT(βQ ,p) = 0 for T ∈ Mp(Q). Let f ∶G → Q be
the quotient homomorphism. _en the element βG ,p = βG ⋅ f ∗βQ ,p possesses the
required properties.

Let p be a prime. _e element α = [G/G] − βG ,p ∈ A(G)(p) has the form

α = ∑
(H)⊂F(G)

aH[G/H] (aH ∈ Z(p))

and belongs to A(G ,F(G))(p).

4 Comparison of Q(G)(p) and Q(G/G{p})(p)
_roughout this section, let N stand for G{p}. Let p be a prime, βG .p the element
given in Corollary 3.9, and set α = [G/G] − βG ,p .

Let x = (xH)H∈F(G) be an element of L(G)(p). _en we have x = x − αx + αx
and the last term αx = resG

F(G)(α ○ x) belongs to B(G)(p) = resG
F(G)(A(G)(p)) by

Lemma 3.1. In addition, we have resF(G)
Mp(G)(x − αx) = 0. Recall the commutative

diagram
B(G)(p)

����

// L(G)(p) // //

fixF(G),N
��

Q(G)(p)

fixF(G),N
��

B(G/N)(p) // L(G/N)(p) // // Q(G/N)(p) .

Lemma 4.1 _e homomorphism ûxF(G),N ∶Q(G)(p) → Q(G/N)(p) is injective.

Proof Let x ∈ L(G)(p) such that [ûxF(G),N(x)] = 0 in Q(G/N)(p). _en the ele-
ment ûxF(G),N(x) belongs to B(G/N)(p). _erefore,

ûxF(G),N(x) = ûxF(G),N(resGF(G)(z))
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holds for some z ∈ A(G)(p). It means that v = x − resG
F(G)(z) belongs to the kernel of

ûxF(G),N . Setw = v − αv. Since ûxF(G),N(w) = 0 and resF(G)
Mp(G)(w) = 0, we getw = 0

in L(G)(p). Clearly we have [x] = [v] = [w] in Q(G)(p). _erefore,we conclude that
[x] = 0 in Q(G)(p), which shows the injectivity of ûxF(G),N .

Lemma 4.2 _e homomorphism ûxF(G),N ∶Q(G)(p) → Q(G/N)(p) is surjective.

Proof Let x = (xK)K∈F(G/N) be an arbitrary element of L(G/N)(p). Deûne an ele-
ment y = (yH)H∈F(G) of P(G ,F(G))(p),where P(G ,F(G))(p) =∏H∈F(G) A(H)(p),
by

yH =

⎧⎪⎪
⎨
⎪⎪⎩

f ∣H∗x f (H) if H ⊃ N ,
0 otherwise

(H ∈ F(G)),

where f ∶G → G/N is the quotient map. _en the element z = y − αy belongs to
L(G)(p), and the equalities

[ûxF(G),N(z)] = [(ûxH ,N(zH))H]

= [(ûxH ,N(yH − (resGH α)yH))H]

= [(x f (H) − (ûxH ,N(resGH α))x f (H))H]

= [x − ûxG ,N(α)x] = [x]
hold in Q(G/N)(p), whereH ranges overLp(G)∩F(G). _is shows the surjectivity
of ûxF(G),N .
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