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A well-known product, referred to as the Dirichlet convolution product, is generalized
to arithmetic functions defined on an order in a Cayley division algebra. Factorization results
for orders, multiplicative functions and analogues of the Moebius inversion formula are
discussed.

1. Introduction. Let C, with nondegenerate quadratic form N, be a composition algebra
over a field k of characteristic other than 2. Then N is a map of C into k such that

(i) NQO = '2#(£) for all tek and
(ii) (4, >/) = UNiZ + ri-NiO-Nir!)} is a bilinear function,
(iii) N(£ri) = N(ON(r,),
(iv) (£, rj) = 0 for all £eC implies that t\ - 0.

An algebra over k satisfying the conditions

2 and fr2 = «!j)ij (1.1)

for all elements <!;, r\ in the algebra is called alternative. It follows that £,{r\^) = (^)i^. C is
simultaneously an alternative algebra with an involution ^ -* % such that

and £ + ? = 27X01, where Ntf),T(Qek, (1.2)

and a quadratic algebra, since every element £ of C satisfies

{ 2 -2r«)S + JV«)l=0. (1.3)

Since C is alternative, the Moufang identities hold:

(1.4)

(1.5)

ijtfaO = [foflaK- (1-6)
I shall also use

(1.7)

(1.8)

Any alternative algebra with an identity and an involution that satisfies (1.2) is a composition
algebra.
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Given a composition algebra K. Take H to be the direct sum K©Ke, where Ke is
isomorphic to K under /; -> £e. Define multiplication in H by

(Zi + Z2e)(ril+ti2e) = (Zltil+arj2Z2) + (ri2l;l+Z2rj1)e (1.9)

for 0 i= ask. Then H is a composition algebra if and only if K is associative. Also, any
composition algebra over a field k may be obtained from k\ by applying this Dickson doubling
process at most three times. Then C is one of the following: k\; an algebra k[e] with e2 = a;
a generalized quaternion algebra; or a generalized Cayley algebra. C is a division algebra if
and only if the norm N is anisotropic.

Let the ground field be the rationals and take /0 = 1. By letting e = ilt i2 and then i4

with a = — 1 each time and setting it i2 = /3, it i4 = /5, i214 = i6 and ;3 /4 = i7, we obtain a
basis {is}l for the classical Cayley division algebra D.

An order or arithmetic of a composition algebra C over a field with a ring of integers is,
by definition, a not necessarily associative ring, consists of integral elements only and contains
1. Orders of C have been discussed for local and global fields by van der Blij and Springer [5].
To introduce composition algebras they allow a ground field of characteristic 2.

If o is an order of D and if o contains a subset of {is}, then by closure of multiplication
in o the subset has cardinality 1, 2, 4, or 8. Examples of such orders, maximal in the algebra
which they span, are: the rational integers Z; the Gaussian integers Z[/]; the Hurwitz
quaternion order Z,[ilti2,p] where p = i(l+ii + i2 + h)'> an<^ t n e isomorphic maximal
Cayley arithmetics [3]. The orders of D used below span the same algebra as does the subset
of {/,} that they contain.

Let o be an order of C in which the number of representations of any integer by norms
of elements of o is finite. For I; and a e o, a is said to be a left divisor of £, if £ has a factorization
a/? in o, and we write a | <!;. Right divisibility is similarly defined. Next one defines rjjri) to
be the number of elements of norm m in o. For Ceo and NC, = mn, so{(,, m, n) denotes the
number of distinct factorizations Sy of £ in o with N8 = m and Ny = n. When no confusion
can arise we omit the suffix o and write r(l) =r . Formulae for the values of the functions r
and s on certain orders of D are given in Rankin [4] and in [2]. The methods of proof used in
[2] are reviewed in the next section.

2. Factorization. Let o be an order of D which possesses the following properties:

(i) r(mn)r = r(m)r(n) if {m, n) = \, (2.1)
(ii) For any £, e o of odd norm, there exists a unit e e o such that £, = e (mod 2). (2.2)

Then we are able to prove the theorem:

(2.3) Any element £eo with N£ = mn has precisely r different factorizations £t] in o with
N£, = m and Nn = n, if(m, n) = 1. Moreover, for m odd, the factorization is unique apart from
signs if a unit s is prescribed to which S, is congruent modulo 2.

Proof. Suppose that C = ^ I ' / I = ^ ^ where ^ # ±E,2 and N^ = Mf2 = m is odd.
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Then 17X1, fc) | < m. By (1.1), 0h = » ^ and £j/2 = itf2. Hence fo, 0(ffi2) = n2^ £2. By

Assume that £t = f 2 (mod 2). Then f, | 2 = I(mod2). Hence | , £2 h a s integral
coefficients with respect to {Ql. Thus, since m | r ( | , £2), we have that 7X1, ^2) = 0.

Again, since iV(li £2) = w2, it follows that | t <!;2 has precisely one or five odd rational
integral coefficients. Hence, using (2.2), £t | 2 = /s(mod2) for some s (1 g J ^ 7). This is a
contradiction. Therefore ^ ^ £2 (mod 2). Again by (2.2), £ has at most r factorizations £n.

Now consider all £ e o with norm mn. Suppose that there is some ( e o with strictly less
than r factorizations of the required form. Then

r{m)r(ri) < r £ 1 = r(mri)r.

This contradicts (2.1). If m is even, apply the argument to s(l, n, m). The theorem is thus
proved.

Use of the alternative laws and the Moufang identities yields results of the following
form.

(2.4). For e any unit in o, s(£, m, n) = s(£e, m, n).

Proof. If C = ft, then £e =
An element £ e o of odd norm is called primitive if ( ^ 0 (mod/?) for any rational prime p.
Suppose now that, for the order o,

r(p'+1)r = r foMpO+Kp-^r- i -GO] (2.5)

when the integer t > 0. Then the following theorem holds:

(2.6). Any element Ceo, with N£ =p'+l, where p is an odd rational prime and the integer
t > 0, has precisely

(i) r(p) distinct factorizations ty\ with N£=p and Nn =p', ifC = 0(mod/>),
(ii) r such factorizations, ifC, is primitive.

Proof, (i) £ = pi', where £'eo. Let ^ be any element of norm p in o and let r\ = |£ ' .
Then £JJ = £. Thus £ has precisely as many distinct factorizations £JJ of the required form as
there are elements of norm p in o.

(ii) Suppose that £ has distinct factorizations f, f/j and <!;2f/2 in o with N^ = N£2 =p
and ^j ^ +%2- Assume that £t = ^2(mod2). Then ^t^2 = I(mod2). Hence ^ | 2 has
integral coefficients with respect to the basis {is}l.

Now, by (1.7) and (1.8),

Also ^i(?2O=Ki»72 and (K i ) | 2 =pr\il1- Hence, using (2.4), /? divides J ( ^ | 2 ) . Since
^i ^ ±^ 2 , £i ?2 # ±p . But AT(^ | 2 ) = p 2 . Hence J ( ^ | 2 ) = 0 and ^ | 2 has precisely one
or five odd rational integral coefficients. Thus £t | 2 is congruent modulo 2 to one of {is}\.
This contradicts the fact that ft | 2 = 1 (mod 2). Therefore ^ # <J2(mod2).
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We have proved that there are at most r distinct factorizations £t\ of £ in o with N£ = p.
Suppose that, for some ( of normp'+i, there are less than r such factorizations. Then

p-rc pfc

This contradicts (2.5) and completes the proof of the theorem.
An element ^ e o with N£ # 1 is called irreducible if £, = yd in o implies that one of y and

S is a unit of o. If ^ has norm a prime, then £ is irreducible.
Theorems (2.3) and (2.6) show that in, for example, the maximal Cayley arithmetics of

D, unique factorization, apart from signs, order and parentheses, holds for primitive elements,
provided that units are prescribed to which the irreducible factors are congruent modulo 2
and provided that parentheses are used in such a way that Theorem (2.6) is applicable.

Axiom (2.2) fails in the nonmaximal orders Jt = Z[iu i2, h] a n d J2 = Z[/x i7].
Factorization results for J£s =1,2) may be deduced from (2.3) and (2.6). Consider
congruence modulo 2 in corresponding maximal quaternion and Cayley orders. Note that,
if £ = e(mod2), then £e Js if and only if ee Js. Thus we need only consider factorizations
corresponding to units of the orders Js.

3. Arithmetic functions. Here the composition algebra C, defined over the field of rational
numbers, is assumed to be a division algebra. Again o is an order in C and ro(m) is finite for
all integers m.

A function / with domain o and codomain the field of complex numbers is called
arithmetic. Let 51 denote the set of all arithmetic functions on o.

Suppose that/and g e 91. A product fg is defined by

I/(Stetf-1©, (3.1)

where the sum extends over all left divisors 5 of ^ in o. Then f-gs91. Also

f-g(O = - I /(«M/0, (3.2)

where the summation is over all ordered pairs a, /? of elements of o with the product a/? equal
tof.

First we consider the following symmetry properties:

/(«€) = / « « ) = / ( O fora" i and units eeo, (3.3)

/ ( £ ) = / ( ! ) for all feo. (3.4)

Let 9It be the set of all elements in 91 satisfying (3.3).
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(3.5). <Ml is closed.

Proof. Takef,ge'Hl and £,, eeo with e a unit. Using the Moufang identity (1.5), we
have

/ • * ( « © = - E /(«)<?(/?) = - E / ( ) ( 0
r r

Now from (1.4) we deduce that

/ («)

Thus/-
Now suppose that functions/and ge3l satisfy (3.4). Then

/• 0(1) = - E /(y)<?(<5) = - I «(«)/(# = 9 •/(«)•

For an arithmetic function/,/* is defined to be the restriction of/to the integers Z. For /
and AeSl we have/-gi* = $•/* and (f-g)-h* =f(g-h)*.

Now define a function e by

{1 if I is a unit]

0 otherwise. J

Clearly eeSlj and e satisfies (3.4). Now for/e2Ij we have

E /(M0

Similarly e-f=f. Hence e is the unique identity for 3li.

(3.7). ForfeWlt a right inverse f'e'H^ exists if and only ///(I) ?t 0.

Proof. Note that, if/e2tlf then/(e) = / ( l ) for all units eeo. Suppose that/ 'eWt

exists. Then 1 = e(l) =/•/ ' (!) = / ( 0 / ' ( 0 . by (3.2) and (3.3). Therefore/(I) / 0.
Now assume that/(I) # 0. Define/' inductively as follows.

1, if 5 is a unit, |

-[r/(l)]-> E /(«)/ ' («. otherwise, f ( 1 8 )

An induction argument using the Moufang identities (1.5) and (1.6) shows that f'e9f,.
Next, for e a unit,

= - E /(*i)/'(M) = - E
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For £ with N£ ^ 1, we have

Hence / / ' = e and/ ' is a right inverse for/.
If/e2I, satisfies (3.4), then/' is a left inverse for/under the convolution product defined

by

I
with summation as before. I f / e ^ and both /and/ ' satisfy (3.4), then

Hence/ ' • / = e a n d / ' is also a left inverse.

4. Multiplicative functions. Let o again be an order of the Cayley division algebra over
the rationals. We consider orders o in which, for N£ — uv, s(£, u,v) = r if (w, v) = 1 or if £ is
primitive.

An arithmetic function/on o is said to be multiplicative if it possesses the property

Mti)=M)f(ri) (4.1)

when ^,r\eo and (Mj, Nt\) = 1. Let 9K denote the set of all nonzero multiplicative functions
in 91,.

(4.2). Iff and g G9)J, then f-g* e3fl.

Proof.

= - Z
' Ne=Ne=l

Now take positive integers m and n with (w, «) = 1.

/ ( ) Z
ri\mn

We may write ^ = ^ ^2 in any one of r ways where £, | w and ^21« and -Mli and ̂ 2 are
fixed. Conversely, by (1.7) and (1.8), if ̂  \m and £2 |«, then ^, ^2 \mn. Hence

St\»
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For £, neo, £, ~ n means that N£ = Nn and, for peZ, pm | ̂  if and only if pm \n. Take
i* ~ n in o. Let /?, y be any left (or right) divisors of <*, n, respectively, in o, such that P~ y.
If s(P, u, v) = s(y, u, v) for all positive integers u, v with uv equal to the common norm, we
shall write s(£,) = s(rj). Henceforth it is assumed that, in o, ^ ~ t] implies that s(^) = s(tj).

I shall consider functions/satisfying the condition

if ^ - £ 2 - (4-3)

(4.4). If arithmetic functions f and g satisfy (4.3), then so doesf-g.

Proof. Take £,x ~ ^2. Let there be t integral elements P of fixed norm n such that /? | £,.
Then

Therefore there are t elements y e 0 of norm n that are left divisors of £2. Also, if pm | /?, then
/>•"!£!, and hence/>m I £2. Let <fs = p % ( J = 1, 2). Then

Hence there is a one-to-one correspondence between the elements /? and the elements y
under which /? ~ y. A similar result holds for the corresponding right divisors.

(4.5). .//"an arithmetic function h satisfies (4.3) a/irf if h{\) ^ 0, //re« A'e2Ti ex
satisfies (4.3).

Proo/. For e a unit of 0, A'(e) = [1/A(1)] = h'{\). Assume that (4.3) holds for h' whenever
i = N\2 < N£. Take <J ~ n. Then, as in the proof of (4.4),

h'(Q E *Wfc'00 = - ^ E
' • « ( l ;

Let 9J2X be the set of all functions/eSR satisfying (4.3).

(4.6). Iff and ge^, then

if£ and n are primitive in 0 and if(N£, Nrj) — 1.
/ • g is then said to be multiplicative on primitive elements.

Proof: f-g(Sr,) = -
r

Suppose that £,, rjeo are primitive and that (JV£, iV»/) = 1. For fixed norm n there are r
left divisors 5 of ^ with N5 = n provided that n \ N(J;r\). Let 5 = aft, where Mx | Â i* and
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JV/J | Nr]. There are r such factorizations of each <5 for fixed A'a and Np. Now £ = txt ̂ x and
tj = /?j f/j each in any one of r ways where A7^ = A'a, Nfit = AT?. Then a! ~ a and pt ~ p.

= K E K^)9mr
r

For any complex number x, arithmetic functions nx are defined by wx(£) = (A7^)*. Then

(i)
(ii) IffeWli, then g is multiplicative on primitive elements.

Proof. g=fn0. The results follow by (4.2) and (4.6) respectively.

(4.8). Iffe9Jlu thenf is multiplicative on primitive elements.

Proof, f exists and satisfies (4.3). /'(e) = 1 for any unit eeo.
Assume that /'(a/S) =/'(a)/ '(^) for all primitive a.jSeo with (Na,NP)=l and

N(aP) < b. Choose primitive <!;, neo with (Nl;, Nn) = 1 and N£Nn = b. Then

r r Ne,i!2=l

\n
r

5. Mocbius inversion. Let /i = nj,. Then ^ is multiplicative on primitive elements and
on Z.

(5.1). Iffeo andN^>\, then V / ^ " ' O = 0.

Proof. - £ /ifo-'0 = - E noWMi"'0 = "o • MO = ««) = 0.
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(5.2). n(!;) = - 1 , if£, is irreducible in o.

Proof. 0 = - X ^ " 1 O = - I /<(£) + - E M«) =
r Ne=l

Hence

(5.3). 7/" // iy any product of t primitive irreducible elements of o with distinct norms, then

tin) = (-!)'•
Now it is easy to prove

(5.4). For rational prime p, n(p) = (l/r)r(p)— 1.

P r o o / . O = - 2 > ( 5 ) X ( ) + X tfH I ( ) 1

We recall that, in Z, r(/>) = 0 and, in the Gaussian integers, for odd p,

r(P) = 4{l+(- l )*< ' - 1 >}.

(5.5). 2

Proof. 0 = - £ /i(0+- Z K5) + " S M(8) = /i(O--s(C,P,p)+/*(l).
rNc=l rN» = p rNe=l r

(5.6). lfN£= pk, where C w primitive, p is a prime and k^.2, then fx(Q — 0.

Proo/. For it = 2, //(() = 0 by (5.5). The result follows by induction.
(i defined on Z is the well-known Moebius function. For /* defined on o, the following

inversion formula holds.

(5.7). Under any condition or restriction that makes the convolution product associative
and for any arithmetic functions f and g e 2t j ,

9(0 = - I /fo) '/ and only if /(£)
r

Proof, g =f-n0. Thus g • n = / . Conversely, by (4.5), \i satisfies (3.4) and is therefore
a left inverse for n0.

The theorem may be generalized by replacing «0 by any function / t e ^ with an inverse
h', provided that the function and the inverse satisfy (3.4). Any //e2r, that satisfies (4.3) and
has h(\) ^ 0 would be suitable.
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