FACTORIZATION AND ARITHMETIC FUNCTIONS FOR ORDERS IN COMPOSITION ALGEBRAS

by P. J. C. LAMONT

(Received 2 August, 1971)

A well-known product, referred to as the Dirichlet convolution product, is generalized to arithmetic functions defined on an order in a Cayley division algebra. Factorization results for orders, multiplicative functions and analogues of the Moebius inversion formula are discussed.

1. Introduction. Let C, with nondegenerate quadratic form N, be a composition algebra over a field k of characteristic other than 2. Then N is a map of C into k such that

- (i) $N(t\xi) = t^2 N(\xi)$ for all $t \in k$ and $\xi \in \mathbb{C}$,
- (ii) $(\xi, \eta) = \frac{1}{2} \{ N(\xi + \eta) N(\xi) N(\eta) \}$ is a bilinear function,
- (iii) $N(\xi\eta) = N(\xi)N(\eta)$,
- (iv) $(\xi, \eta) = 0$ for all $\xi \in \mathbb{C}$ implies that $\eta = 0$.

An algebra over k satisfying the conditions

$$\xi^2 \eta = \xi(\xi \eta) \text{ and } \xi \eta^2 = (\xi \eta) \eta$$
 (1.1)

for all elements ξ , η in the algebra is called alternative. It follows that $\xi(\eta\xi) = (\xi\eta)\xi$. C is simultaneously an alternative algebra with an involution $\xi \to \xi$ such that

 $\xi\xi = N(\xi)\mathbf{1}$ and $\xi + \xi = 2T(\xi)\mathbf{1}$, where $N(\xi), T(\xi) \in k$, (1.2)

and a quadratic algebra, since every element ξ of C satisfies

$$\xi^2 - 2T(\xi)\xi + N(\xi)I = 0. \tag{1.3}$$

Since C is alternative, the Moufang identities hold:

$$(\xi \alpha)(\beta \xi) = \xi(\alpha \beta)\xi, \tag{1.4}$$

$$(\xi \alpha \xi) \eta = \xi [\alpha(\xi \eta)], \qquad (1.5)$$

$$\eta(\xi \alpha \xi) = [(\eta \xi) \alpha] \xi. \tag{1.6}$$

I shall also use

$$T(\xi\eta) = T(\eta\xi), \tag{1.7}$$

$$T[\xi(\eta\zeta)] = T[(\xi\eta)\zeta]. \tag{1.8}$$

Any alternative algebra with an identity and an involution that satisfies (1.2) is a composition algebra.

Given a composition algebra K. Take H to be the direct sum $K \oplus Ke$, where Ke is isomorphic to K under $\xi \rightarrow \xi e$. Define multiplication in H by

$$(\xi_1 + \xi_2 e)(\eta_1 + \eta_2 e) = (\xi_1 \eta_1 + a\bar{\eta}_2 \xi_2) + (\eta_2 \xi_1 + \xi_2 \bar{\eta}_1)e$$
(1.9)

for $0 \neq a \in k$. Then H is a composition algebra if and only if K is associative. Also, any composition algebra over a field k may be obtained from k1 by applying this Dickson doubling process at most three times. Then C is one of the following: k1; an algebra k[e] with $e^2 = a$; a generalized quaternion algebra; or a generalized Cayley algebra. C is a division algebra if and only if the norm N is anisotropic.

Let the ground field be the rationals and take $i_0 = 1$. By letting $e = i_1$, i_2 and then i_4 with a = -1 each time and setting $i_1 i_2 = i_3$, $i_1 i_4 = i_5$, $i_2 i_4 = i_6$ and $i_3 i_4 = i_7$, we obtain a basis $\{i_s\}_0^7$ for the classical Cayley division algebra **D**.

An order or arithmetic of a composition algebra C over a field with a ring of integers is, by definition, a not necessarily associative ring, consists of integral elements only and contains 1. Orders of C have been discussed for local and global fields by van der Blij and Springer [5]. To introduce composition algebras they allow a ground field of characteristic 2.

If o is an order of **D** and if o contains a subset of $\{i_s\}$, then by closure of multiplication in o the subset has cardinality 1, 2, 4, or 8. Examples of such orders, maximal in the algebra which they span, are: the rational integers **Z**; the Gaussian integers **Z**[*i*]; the Hurwitz quaternion order **Z**[i_1, i_2, ρ] where $\rho = \frac{1}{2}(1+i_1+i_2+i_3)$; and the isomorphic maximal Cayley arithmetics [3]. The orders of **D** used below span the same algebra as does the subset of $\{i_s\}$ that they contain.

Let \mathfrak{o} be an order of \mathbb{C} in which the number of representations of any integer by norms of elements of \mathfrak{o} is finite. For ξ and $\alpha \in \mathfrak{o}$, α is said to be a left divisor of ξ if ξ has a factorization $\alpha\beta$ in \mathfrak{o} , and we write $\alpha \mid \xi$. Right divisibility is similarly defined. Next one defines $r_{\mathfrak{o}}(m)$ to be the number of elements of norm m in \mathfrak{o} . For $\zeta \in \mathfrak{o}$ and $N\zeta = mn$, $s_{\mathfrak{o}}(\zeta, m, n)$ denotes the number of distinct factorizations $\delta\gamma$ of ζ in \mathfrak{o} with $N\delta = m$ and $N\gamma = n$. When no confusion can arise we omit the suffix \mathfrak{o} and write r(1) = r. Formulae for the values of the functions rand s on certain orders of \mathbb{D} are given in Rankin [4] and in [2]. The methods of proof used in [2] are reviewed in the next section.

2. Factorization. Let o be an order of D which possesses the following properties:

- (i) r(mn)r = r(m)r(n) if (m, n) = 1, (2.1)
- (ii) For any $\xi \in \mathfrak{o}$ of odd norm, there exists a unit $\varepsilon \in \mathfrak{o}$ such that $\xi \equiv \varepsilon \pmod{2}$. (2.2)

Then we are able to prove the theorem:

(2.3) Any element $\zeta \in \mathfrak{o}$ with $N\zeta = mn$ has precisely r different factorizations $\xi\eta$ in \mathfrak{o} with $N\xi = m$ and $N\eta = n$, if (m, n) = 1. Moreover, for m odd, the factorization is unique apart from signs if a unit ε is prescribed to which ξ is congruent modulo 2.

Proof. Suppose that $\zeta = \xi_1 \eta_1 = \xi_2 \eta_2$, where $\xi_1 \neq \pm \xi_2$ and $N\xi_1 = N\xi_2 = m$ is odd.

Then $|T(\xi_1 \xi_2)| < m$. By (1.1), $\zeta \bar{\eta}_1 = n\xi_1$ and $\zeta \bar{\eta}_2 = n\xi_2$. Hence $(\eta_1 \bar{\zeta})(\zeta \bar{\eta}_2) = n^2 \xi_1 \xi_2$. By (1.8), $mT(\eta_1 \bar{\eta}_2) = nT(\xi_1 \xi_2)$.

Assume that $\xi_1 \equiv \xi_2 \pmod{2}$. Then $\xi_1 \xi_2 \equiv 1 \pmod{2}$. Hence $\xi_1 \xi_2$ has integral coefficients with respect to $\{i_s\}_0^7$. Thus, since $m \mid T(\xi_1 \xi_2)$, we have that $T(\xi_1 \xi_2) = 0$.

Again, since $N(\xi_1 \xi_2) = m^2$, it follows that $\xi_1 \xi_2$ has precisely one or five odd rational integral coefficients. Hence, using (2.2), $\xi_1 \xi_2 \equiv i_s \pmod{2}$ for some $s \ (1 \leq s \leq 7)$. This is a contradiction. Therefore $\xi_1 \neq \xi_2 \pmod{2}$. Again by (2.2), ζ has at most r factorizations $\xi\eta$.

Now consider all $\zeta \in o$ with norm *mn*. Suppose that there is some $\zeta \in o$ with strictly less than *r* factorizations of the required form. Then

$$r(m)r(n) < r \sum_{N\zeta = mn} 1 = r(mn)r.$$

This contradicts (2.1). If m is even, apply the argument to $s(\zeta, n, m)$. The theorem is thus proved.

Use of the alternative laws and the Moufang identities yields results of the following form.

(2.4). For ε any unit in \circ , $s(\zeta, m, n) = s(\zeta \varepsilon, m, n)$.

Proof. If $\zeta = \zeta \eta$, then $\zeta \varepsilon = \{ [(\zeta \overline{\varepsilon})\varepsilon]\eta \} \varepsilon = (\zeta \overline{\varepsilon})(\varepsilon \eta \varepsilon)$. An element $\zeta \in \mathfrak{o}$ of odd norm is called primitive if $\zeta \not\equiv 0 \pmod{p}$ for any rational prime p. Suppose now that, for the order \mathfrak{o} ,

$$r(p^{t+1})r = r(p)r(p^{t}) + r(p^{t-1})[r - r(p)]$$
(2.5)

when the integer t > 0. Then the following theorem holds:

(2.6). Any element $\zeta \in \mathfrak{o}$, with $N\zeta = p^{t+1}$, where p is an odd rational prime and the integer t > 0, has precisely

(i) r(p) distinct factorizations $\xi \eta$ with $N\xi = p$ and $N\eta = p^t$, if $\zeta \equiv 0 \pmod{p}$,

(ii) r such factorizations, if ζ is primitive.

Proof. (i) $\zeta = p\zeta'$, where $\zeta' \in \mathfrak{o}$. Let ξ be any element of norm p in \mathfrak{o} and let $\eta = \xi\zeta'$. Then $\xi\eta = \zeta$. Thus ζ has precisely as many distinct factorizations $\xi\eta$ of the required form as there are elements of norm p in \mathfrak{o} .

(ii) Suppose that ζ has distinct factorizations $\xi_1 \eta_1$ and $\xi_2 \eta_2$ in \mathfrak{o} with $N\xi_1 = N\xi_2 = p$ and $\xi_1 \neq \pm \xi_2$. Assume that $\xi_1 \equiv \xi_2 \pmod{2}$. Then $\xi_1 \xi_2 \equiv 1 \pmod{2}$. Hence $\xi_1 \xi_2$ has integral coefficients with respect to the basis $\{i_s\}_0^7$.

Now, by (1.7) and (1.8),

$$T\{\xi_1(\xi_2\zeta) + (\zeta\xi_1)\xi_2\} = 2T(\zeta)T(\xi_1\xi_2).$$

Also $\xi_1(\xi_2\zeta) = p\xi_1\eta_2$ and $(\zeta\xi_1)\xi_2 = p\bar{\eta}_1\xi_2$. Hence, using (2.4), p divides $T(\xi_1\xi_2)$. Since $\xi_1 \neq \pm \xi_2, \xi_1\xi_2 \neq \pm p$. But $N(\xi_1\xi_2) = p^2$. Hence $T(\xi_1\xi_2) = 0$ and $\xi_1\xi_2$ has precisely one or five odd rational integral coefficients. Thus $\xi_1\xi_2$ is congruent modulo 2 to one of $\{i_s\}_1^7$. This contradicts the fact that $\xi_1\xi_2 \equiv 1 \pmod{2}$. Therefore $\xi_1 \neq \xi_2 \pmod{2}$.

We have proved that there are at most r distinct factorizations $\xi \eta$ of ζ in o with $N\xi = p$. Suppose that, for some ζ of norm p^{t+1} , there are less than r such factorizations. Then

$$\begin{aligned} r(p)r(p^{t}) < r & \sum_{\substack{N \zeta = p^{t+1} \\ p \neq \zeta}} 1 + r(p) \sum_{\substack{N \zeta = p^{t+1} \\ p \mid \zeta}} 1 \\ &= r(p^{t+1})r - r(p^{t-1})r + r(p)r(p^{t-1}) \\ &= r(p^{t+1})r + r(p^{t-1})[r(p) - r]. \end{aligned}$$

This contradicts (2.5) and completes the proof of the theorem.

An element $\xi \in \mathfrak{o}$ with $N\xi \neq 1$ is called irreducible if $\xi = \gamma \delta$ in \mathfrak{o} implies that one of γ and δ is a unit of \mathfrak{o} . If ξ has norm a prime, then ξ is irreducible.

Theorems (2.3) and (2.6) show that in, for example, the maximal Cayley arithmetics of **D**, unique factorization, apart from signs, order and parentheses, holds for primitive elements, provided that units are prescribed to which the irreducible factors are congruent modulo 2 and provided that parentheses are used in such a way that Theorem (2.6) is applicable.

Axiom (2.2) fails in the nonmaximal orders $J_1 = Z[i_1, i_2, i_3]$ and $J_2 = Z[i_1, \ldots, i_7]$. Factorization results for $J_s(s = 1, 2)$ may be deduced from (2.3) and (2.6). Consider congruence modulo 2 in corresponding maximal quaternion and Cayley orders. Note that, if $\xi \equiv \varepsilon \pmod{2}$, then $\xi \in J_s$ if and only if $\varepsilon \in J_s$. Thus we need only consider factorizations corresponding to units of the orders J_s .

3. Arithmetic functions. Here the composition algebra C, defined over the field of rational numbers, is assumed to be a division algebra. Again o is an order in C and $r_o(m)$ is finite for all integers m.

A function f with domain o and codomain the field of complex numbers is called arithmetic. Let \mathfrak{A} denote the set of all arithmetic functions on o.

Suppose that f and $g \in \mathfrak{A}$. A product $f \cdot g$ is defined by

$$f \cdot g(\xi) = \frac{1}{r} \sum_{\delta \mid \xi} f(\delta) g(\delta^{-1} \xi), \qquad (3.1)$$

where the sum extends over all left divisors δ of ξ in \mathfrak{o} . Then $f \cdot g \in \mathfrak{A}$. Also

$$f \cdot g(\xi) = \frac{1}{r} \sum_{\alpha \beta = \xi} f(\alpha) g(\beta), \qquad (3.2)$$

where the summation is over all ordered pairs α , β of elements of \mathfrak{o} with the product $\alpha\beta$ equal to ξ .

First we consider the following symmetry properties:

 $f(\varepsilon\xi) = f(\xi\varepsilon) = f(\xi)$ for all ξ and units $\varepsilon \in o$, (3.3)

$$f(\xi) = f(\xi)$$
 for all $\xi \in \mathfrak{o}$. (3.4)

Let \mathfrak{A}_1 be the set of all elements in \mathfrak{A} satisfying (3.3).

(3.5). \mathfrak{A}_1 is closed.

Proof. Take $f, g \in \mathfrak{A}_1$ and $\xi, \varepsilon \in \mathfrak{o}$ with ε a unit. Using the Moufang identity (1.5), we have

$$f \cdot g(\varepsilon\xi) = \frac{1}{r} \sum_{\alpha\beta = \varepsilon\xi} f(\alpha)g(\beta) = \frac{1}{r} \sum_{\bar{\varepsilon}\{\alpha[\bar{\varepsilon}(\varepsilon\beta)]\} = \xi} f(\alpha)g(\beta) = \frac{1}{r} \sum_{(\bar{\varepsilon}\alpha\bar{\varepsilon})(\varepsilon\beta) = \xi} f(\bar{\varepsilon}\alpha\bar{\varepsilon})g(\varepsilon\beta) = f \cdot g(\xi)$$

Now from (1.4) we deduce that

$$f \cdot g(\varepsilon \xi) = \frac{1}{r} \sum_{(\tilde{\varepsilon}\alpha)(\beta \tilde{\varepsilon}) = \xi \tilde{\varepsilon}} f(\tilde{\varepsilon}\alpha) g(\beta \tilde{\varepsilon}) = f \cdot g(\xi \tilde{\varepsilon}).$$

Thus $f \cdot g \in \mathfrak{A}_1$.

Now suppose that functions f and $g \in \mathfrak{A}$ satisfy (3.4). Then

$$f \cdot g(\xi) = \frac{1}{r} \sum_{\gamma \delta = \xi} f(\gamma)g(\delta) = \frac{1}{r} \sum_{\alpha \beta = \xi} g(\alpha)f(\beta) = g \cdot f(\xi).$$

For an arithmetic function f, f^* is defined to be the restriction of f to the integers Z. For f, g and $h \in \mathfrak{A}$ we have $f \cdot g^* = g \cdot f^*$ and $(f \cdot g) \cdot h^* = f \cdot (g \cdot h)^*$.

Now define a function e by

$$e(\xi) = \begin{cases} 1 & \text{if } \xi \text{ is a unit} \\ 0 & \text{otherwise.} \end{cases}$$
(3.6)

Clearly $e \in \mathfrak{A}_1$ and e satisfies (3.4). Now for $f \in \mathfrak{A}_1$ we have

$$f \cdot e(\zeta) = \frac{1}{r} \sum_{\alpha\beta = \zeta} f(\alpha) e(\beta) = \frac{1}{r} \sum_{N \varepsilon = 1} f(\zeta \varepsilon) = f(\zeta).$$

Similarly $e \cdot f = f$. Hence e is the unique identity for \mathfrak{A}_1 .

(3.7). For $f \in \mathfrak{A}_1$, a right inverse $f' \in \mathfrak{A}_1$ exists if and only if $f(1) \neq 0$.

Proof. Note that, if $f \in \mathfrak{A}_1$, then $f(\varepsilon) = f(1)$ for all units $\varepsilon \in \mathfrak{o}$. Suppose that $f' \in \mathfrak{A}_1$ exists. Then $1 = e(1) = f \cdot f'(1) = f(1)f'(1)$, by (3.2) and (3.3). Therefore $f(1) \neq 0$.

Now assume that $f(1) \neq 0$. Define f' inductively as follows.

$$f'(\xi) = \begin{cases} [f(1)]^{-1}, & \text{if } \xi \text{ is a unit,} \\ -[rf(1)]^{-1} \sum_{\substack{\alpha\beta = \xi \\ N\alpha \neq 1}} f(\alpha)f'(\beta), & \text{otherwise.} \end{cases}$$
(3.8)

An induction argument using the Moufang identities (1.5) and (1.6) shows that $f' \in \mathfrak{A}_1$. Next, for ε a unit,

$$f \cdot f'(\varepsilon) = \frac{1}{r} \sum_{N_{\varepsilon_1}=1} f(\varepsilon_1) f'(\overline{\varepsilon}_1 \varepsilon) = \frac{1}{r} \sum_{N_{\varepsilon_1}=1} f(1) f'(1) = 1.$$

90

For ξ with $N\xi \neq 1$, we have

$$f \cdot f'(\xi) = \frac{1}{r} \sum_{\alpha\beta = \xi} f(\alpha) f'(\beta)$$
$$= \frac{1}{r} \sum_{N\varepsilon = 1} f(\varepsilon) f'(\xi) + \frac{1}{r} \sum_{\substack{\alpha\beta = \xi \\ N\alpha \neq 1}} f(\alpha) f'(\beta)$$
$$= f(1) f'(\xi) - f(1) f'(\xi) = 0.$$

Hence $f \cdot f' = e$ and f' is a right inverse for f.

If $f \in \mathfrak{A}_1$ satisfies (3.4), then f' is a left inverse for f under the convolution product defined by

$$f \times g(\xi) = \frac{1}{r} \sum_{\alpha\beta = \xi} f(\beta)g(\alpha)$$

with summation as before. If $f \in \mathfrak{A}_1$ and both f and f' satisfy (3.4), then

$$f' \cdot f(\xi) = f \cdot f'(\xi) = e(\xi) = e(\xi).$$

Hence $f' \cdot f = e$ and f' is also a left inverse.

4. Multiplicative functions. Let o again be an order of the Cayley division algebra over the rationals. We consider orders o in which, for $N\zeta = uv$, $s(\zeta, u, v) = r$ if (u, v) = 1 or if ζ is primitive.

An arithmetic function f on v is said to be multiplicative if it possesses the property

$$f(\xi\eta) = f(\xi)f(\eta) \tag{4.1}$$

when $\xi, \eta \in \mathfrak{o}$ and $(N\xi, N\eta) = 1$. Let \mathfrak{M} denote the set of all nonzero multiplicative functions in \mathfrak{A}_1 .

(4.2). If f and $g \in \mathfrak{M}$, then $f \cdot g^* \in \mathfrak{M}$. Proof.

$$f \cdot g(1) = \frac{1}{r} \sum_{N \varepsilon = 1} f(\varepsilon) g(\overline{\varepsilon}) = 1.$$

Now take positive integers m and n with (m, n) = 1.

$$f \cdot g(mn) = \frac{1}{r} \sum_{\xi \mid mn} f(\xi)g(\xi^{-1}mn).$$

We may write $\xi = \xi_1 \xi_2$ in any one of r ways where $\xi_1 \mid m$ and $\xi_2 \mid n$ and $N\xi_1$ and $N\xi_2$ are fixed. Conversely, by (1.7) and (1.8), if $\xi_1 \mid m$ and $\xi_2 \mid n$, then $\xi_1 \xi_2 \mid mn$. Hence

$$f \cdot g(mn) = \frac{1}{r^2} \sum_{\substack{\xi_1 \mid m \\ \xi_2 \mid m}} f(\xi_1 \xi_2) g(\xi_2^{-1} n \xi_1^{-1} m) = f \cdot g(m) f \cdot g(n).$$

P. J. C. LAMONT

For ξ , $\eta \in \mathfrak{o}$, $\xi \sim \eta$ means that $N\xi = N\eta$ and, for $p \in \mathbb{Z}$, $p^m | \xi$ if and only if $p^m | \eta$. Take $\xi \sim \eta$ in \mathfrak{o} . Let β , γ be any left (or right) divisors of ξ , η , respectively, in \mathfrak{o} , such that $\beta \sim \gamma$. If $s(\beta, u, v) = s(\gamma, u, v)$ for all positive integers u, v with uv equal to the common norm, we shall write $s(\xi) = s(\eta)$. Henceforth it is assumed that, in \mathfrak{o} , $\xi \sim \eta$ implies that $s(\xi) = s(\eta)$.

I shall consider functions f satisfying the condition

$$f(\xi_1) = f(\xi_2)$$
 if $\xi_1 \sim \xi_2$. (4.3)

(4.4). If arithmetic functions f and g satisfy (4.3), then so does $f \cdot g$.

Proof. Take $\xi_1 \sim \xi_2$. Let there be t integral elements β of fixed norm n such that $\beta | \xi_1$. Then

$$s(\xi_1, n, n^{-1}N\xi_1) = s(\xi_2, n, n^{-1}N\xi_2).$$

Therefore there are t elements $\gamma \in \mathfrak{o}$ of norm n that are left divisors of ξ_2 . Also, if $p^m | \beta$, then $p^m | \xi_1$, and hence $p^m | \xi_2$. Let $\xi_s = p^m \xi'_s$ (s = 1, 2). Then

$$s(\xi'_1, np^{-2m}, n^{-1}N\xi_1) = s(\xi'_2, np^{-2m}, n^{-1}N\xi_2).$$

Hence there is a one-to-one correspondence between the elements β and the elements γ under which $\beta \sim \gamma$. A similar result holds for the corresponding right divisors.

$$f \cdot g(\xi_1) = \frac{1}{r} \sum_{\beta \mid \xi_1} f(\beta) g(\beta^{-1} \xi_1) = \frac{1}{r} \sum_{\gamma \mid \xi_2} f(\gamma) g(\gamma^{-1} \xi_2) = f \cdot g(\xi_2).$$

(4.5). If an arithmetic function h satisfies (4.3) and if $h(1) \neq 0$, then $h' \in \mathfrak{A}_1$ exists and satisfies (4.3).

Proof. For ε a unit of \mathfrak{o} , $h'(\varepsilon) = [1/h(1)] = h'(1)$. Assume that (4.3) holds for h' whenever $N\xi_1 = N\xi_2 < N\xi$. Take $\xi \sim \eta$. Then, as in the proof of (4.4),

$$h'(\xi) = \frac{-1}{rh(1)} \sum_{\substack{\alpha\beta = \xi \\ N\alpha \neq 1}} h(\alpha)h'(\beta) = \frac{-1}{rh(1)} \sum_{\substack{\gamma\delta = \eta \\ N\gamma \neq 1}} h(\gamma)h'(\delta) = h'(\eta).$$

Let \mathfrak{M}_1 be the set of all functions $f \in \mathfrak{M}$ satisfying (4.3).

(4.6). If f and $g \in \mathfrak{M}_1$, then

$$f \cdot g(\xi \eta) = f \cdot g(\xi) f \cdot g(\eta)$$

if ξ and η are primitive in \circ and if $(N\xi, N\eta) = 1$.

 $f \cdot g$ is then said to be multiplicative on primitive elements.

Proof:
$$f \cdot g(\xi \eta) = \frac{1}{r} \sum_{\delta \mid \xi \eta} f(\delta) g[\delta^{-1}(\xi \eta)].$$

Suppose that $\xi, \eta \in \mathfrak{o}$ are primitive and that $(N\xi, N\eta) = 1$. For fixed norm *n* there are *r* left divisors δ of $\xi\eta$ with $N\delta = n$ provided that $n | N(\xi\eta)$. Let $\delta = \alpha\beta$, where $N\alpha | N\xi$ and

 $N\beta | N\eta$. There are r such factorizations of each δ for fixed $N\alpha$ and $N\beta$. Now $\xi = \alpha_1 \xi_1$ and $\eta = \beta_1 \eta_1$ each in any one of r ways where $N\alpha_1 = N\alpha$, $N\beta_1 = N\beta$. Then $\alpha_1 \sim \alpha$ and $\beta_1 \sim \beta$. Also $(\alpha\beta)^{-1}(\xi\eta) \sim (\alpha_1^{-1}\xi)(\beta_1^{-1}\eta)$.

$$f \cdot g(\xi\eta) = \frac{1}{r^2} \sum_{\alpha\beta \mid \xi\eta} f(\alpha\beta)g[(\alpha\beta)^{-1}(\xi\eta)] = \frac{1}{r^2} \sum_{\substack{\alpha_1 \mid \xi \\ \beta_1 \mid \eta}} f(\alpha_1\beta_1)g[(\alpha_1^{-1}\xi)(\beta_1^{-1}\eta)] = f \cdot g(\xi)f \cdot g(\eta).$$

For any complex number x, arithmetic functions n_x are defined by $n_x(\xi) = (N\xi)^x$. Then $n_x \in \mathfrak{M}_1 \subseteq \mathfrak{M}$.

- (4.7) Let $g(\xi) = \frac{1}{r} \sum_{\delta \mid \xi} f(\delta).$
- (i) If $f \in \mathfrak{M}$, then $g^* \in \mathfrak{M}$.

(ii) If $f \in \mathfrak{M}_1$, then g is multiplicative on primitive elements.

Proof. $g = f \cdot n_0$. The results follow by (4.2) and (4.6) respectively.

(4.8). If $f \in \mathfrak{M}_1$, then f' is multiplicative on primitive elements.

Proof. f' exists and satisfies (4.3). $f'(\varepsilon) = 1$ for any unit $\varepsilon \in 0$.

Assume that $f'(\alpha\beta) = f'(\alpha)f'(\beta)$ for all primitive $\alpha, \beta \in \mathfrak{o}$ with $(N\alpha, N\beta) = 1$ and $N(\alpha\beta) < b$. Choose primitive $\xi, \eta \in \mathfrak{o}$ with $(N\xi, N\eta) = 1$ and $N\xi N\eta = b$. Then

$$\begin{aligned} 0 &= e(\xi\eta) = f \cdot f'(\xi\eta) \\ &= \frac{1}{r} \sum_{\substack{\delta \mid \xi\eta \\ N \in \delta \neq 1}} f(\delta) f'[\delta^{-1}(\xi\eta)] \\ &= \frac{1}{r^2} \sum_{\substack{\alpha \mid \xi \\ N \in \delta \neq 1}} f(\alpha\beta) f'[(\alpha^{-1}\xi)(\beta^{-1}\eta)] + \frac{1}{r^2} \sum_{\substack{N \in \iota_2 = 1 \\ N \in \iota_2 = 1}} f'(\xi\eta) \\ &= \frac{1}{r^2} \sum_{\alpha \mid \xi} f(\alpha) f'(\alpha^{-1}\xi) \sum_{\beta \mid \eta} f(\beta) f'(\beta^{-1}\eta) - f'(\xi) f'(\eta) + f'(\xi\eta) \\ &= f \cdot f'(\xi) f \cdot f'(\eta) - f'(\xi) f'(\eta) + f'(\xi\eta). \end{aligned}$$

Thus $f'(\xi \eta) = f'(\xi)f'(\eta)$.

5. Moebius inversion. Let $\mu = n'_0$. Then μ is multiplicative on primitive elements and on Z.

(5.1). If
$$\xi \in \mathfrak{o}$$
 and $N\xi > 1$, then $\sum_{\eta \mid \xi} \mu(\eta^{-1}\xi) = 0$.
Proof. $\frac{1}{r} \sum_{\eta \mid \xi} \mu(\eta^{-1}\xi) = \frac{1}{r} \sum_{\eta \mid \xi} n_0(\eta)\mu(\eta^{-1}\xi) = n_0 \cdot \mu(\xi) = e(\xi) = 0$

(5.2). $\mu(\xi) = -1$, if ξ is irreducible in \mathfrak{o} .

Proof.
$$0 = \frac{1}{r} \sum_{\delta \mid \xi} \mu(\delta^{-1}\xi) = \frac{1}{r} \sum_{N_{\ell}=1} \mu(\xi) + \frac{1}{r} \sum_{N_{\ell}=1} \mu(\xi) = \mu(\xi) + 1.$$

Hence

(5.3). If η is any product of t primitive irreducible elements of \circ with distinct norms, then $\mu(\eta) = (-1)^t$.

Now it is easy to prove

(5.4). For rational prime $p, \mu(p) = (1/r)r(p) - 1$.

Proof.
$$0 = \frac{1}{r} \sum_{\delta \mid p} \mu(\delta) = \frac{1}{r} \sum_{N \varepsilon = 1} \mu(\varepsilon) + \frac{1}{r} \sum_{N \delta = p} \mu(\delta) + \frac{1}{r} \sum_{N \varepsilon = 1} \mu(p) = 1 - \frac{1}{r} r(p) + \mu(p).$$

We recall that, in Z, r(p) = 0 and, in the Gaussian integers, for odd p,

$$r(p) = 4\{1 + (-1)^{\frac{1}{2}(p-1)}\}.$$

(5.5). If
$$N\zeta = p^2$$
, then $\mu(\zeta) = (1/r)s(\zeta, p, p) - 1$.

Proof.
$$0 = \frac{1}{r} \sum_{N_{\varepsilon}=1} \mu(\zeta) + \frac{1}{r} \sum_{\substack{N\delta=p\\\delta \mid \zeta}} \mu(\delta) + \frac{1}{r} \sum_{\substack{N\varepsilon=1\\\delta \mid \zeta}} \mu(\varepsilon) = \mu(\zeta) - \frac{1}{r} s(\zeta, p, p) + \mu(1).$$

(5.6). If $N\zeta = p^k$, where ζ is primitive, p is a prime and $k \ge 2$, then $\mu(\zeta) = 0$.

Proof. For k = 2, $\mu(\zeta) = 0$ by (5.5). The result follows by induction.

 μ defined on Z is the well-known Moebius function. For μ defined on o, the following inversion formula holds.

(5.7). Under any condition or restriction that makes the convolution product associative and for any arithmetic functions f and $g \in \mathfrak{A}_1$,

$$g(\xi) = \frac{1}{r} \sum_{\eta \mid \xi} f(\eta) \quad \text{if and only if} \quad f(\xi) = \frac{1}{r} \sum_{\eta \mid \xi} g(\eta) \mu(\eta^{-1}\xi).$$

Proof. $g = f \cdot n_0$. Thus $g \cdot \mu = f$. Conversely, by (4.5), μ satisfies (3.4) and is therefore a left inverse for n_0 .

The theorem may be generalized by replacing n_0 by any function $h \in \mathfrak{A}_1$ with an inverse h', provided that the function and the inverse satisfy (3.4). Any $h \in \mathfrak{A}_1$ that satisfies (4.3) and has $h(1) \neq 0$ would be suitable.

REFERENCES

1. N. Jacobson, Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo 7 (1958), 55-80.

2. P. J. C. Lamont, On arithmetics in Cayley's algebra and multiplicative functions, Thesis, Glasgow (1962).

94

P. J. C. Lamont, Arithmetics in Cayley's algebra, Proc. Glasgow Math. Assoc. 6 (1963), 99-106.
 R. A. Rankin, A certain class of multiplicative functions, Duke Math. J. 13 (1946), 281-306.

5. F. van de Blij and T. A. Springer, The arithmetics of the octaves and of the group G_2 , Nederl. Akad. Wetensch. Proc. 62 A (1959), 406-418.

ST. MARY'S COLLEGE and UNIVERSITY OF NOTRE DAME NOTRE DAME, INDIANA 46556