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Abstract

The group of C1-diffeomorphisms of any sparse Cantor subset of a manifold is countable

and discrete (possibly trivial). Thompson’s groups come out of this construction when

we consider central ternary Cantor subsets of an interval. Brin’s higher-dimensional

generalizations nV of Thompson’s group V arise when we consider products of central

ternary Cantor sets. We derive that the C2-smooth mapping class group of a sparse

Cantor sphere pair is a discrete countable group and produce this way versions of the

braided Thompson groups.

1. Introduction

Differentiable structures on Cantor sets have first been considered by Sullivan in [Sul88]. Our

aim is to consider groups of diffeomorphisms of Cantor sets, mapping class groups of Cantor

punctured spheres and their relations with Thompson-like groups. In particular, the usual

Thompson groups (see [CFP96]) can be retrieved as diffeomorphism groups of Cantor subsets of

suitable spaces (a line, a circle or a 2-sphere).

Let M be a compact manifold and C ⊂ M be a Cantor set, namely a compact totally

disconnected subset without isolated points. Any two Cantor sets are homeomorphic as topological

spaces. But if M has dimension m > 3 there exist Cantor sets C1 and C2 embedded into M so

that there is no ambient homeomorphism of M carrying C1 into C2. One says that C1 and C2

are not topologically equivalent Cantor set embeddings.

A Cantor subset of Rm is tame if there is a homeomorphism of Rm which sends it within a

coordinates axis. All Cantor sets in Rm, for m 6 2 are tame, but there exist uncountably many

wild (i.e. not tame) Cantor sets in Rm, for every m > 3 (see [Bla51]).

One defines similarly smooth equivalence and smoothly tame Cantor sets. The analogous

story for diffeomorphisms is already interesting for m = 1, as Cantor subsets of R might be

differentiably non-equivalent. Our main concern is the image of the group of diffeomorphisms

of M which preserve a Cantor set C into the automorphisms group of C. Under fairly general

conditions we are able to prove that this is a countable group, thereby providing an interesting

class of discrete groups. For Cantor sets obtained from a topological iterated function system

the associated groups are non-trivial, while for many self-similar Cantor sets these are versions

of Thompson’s groups.
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Diffeomorphism groups of Tame Cantor sets

A. General countability statements

1.1 Pure mapping class groups

Definition 1. Let M be a compact orientable manifold and C ⊂ M a Cantor subset. We

denote by Diffk(M,C) the group of diffeomorphisms of class Ck of M sending C to itself, by

Diffk,+(M,C) the subgroup of orientation preserving diffeomorphisms and by PDiffk,+(M,C)

the subgroup of pure orientation preserving diffeomorphisms, i.e. pointwise preserving C.

The Ck-mapping class groupMk,+(M,C) is the group π0(Diffk,+(M,C)) of Ck-isotopy classes

of orientation preserving diffeomorphisms rel C (i.e. which are the identity on C) of class Ck.
The pure Ck-mapping class group PMk,+(M,C) is the group π0(PDiffk,+(M,C)) of Ck-isotopy

classes of pure orientation preserving Ck-diffeomorphisms rel C.

In a similar vein but a different context, the group of homeomorphisms Diff0(M,A) associated

to a manifold M and a countable dense set A ⊂M was studied recently in [DM10]. The authors

proved there that Diff0(M,A) is either isomorphic to a countably infinite product of copies of Q,

when M is 1-dimensional, or the Erdös subgroup of l2 elements, otherwise. In the present setting,

when A is closed and the smoothness is at least C1 the situation is fundamentally different.

If we write C =
⋂∞
j=1Cj , where each Cj is a compact submanifold of M and Cj+1 ⊂ int(Cj)

for all j, then the sequence {Cj} is called a defining sequence for C. It is known that C is a tame

Cantor set if and only if we can choose Cj to be finite unions of disjoint disks.

Definition 2. The class of ϕ in PMk,+(M,C) is compactly supported if there exists some

defining sequence {Cj} of C and some n for which the restriction of ϕ to Cn is Ck-isotopic to

identity rel C.

Note that the property of being compactly supported is independent of the choice of the

defining sequence.

Our first result is as follows.

Theorem 1. Let C be a Ck-tame Cantor set, namely a Cantor subset of a closed interval

Ck-embedded in a compact orientable manifold M of dimension at least 2. If k > 2, then all classes

in the group PMk,+(M,C) are compactly supported. In particular, the group PMk,+(M,C) is

countable.

In contrast, the topological mapping class group PM0,+(S2, C) is uncountable. We might

expect PMk,+(M,C) to be countable for k > 2 even when C is only a C0-tame Cantor subset

of M .

The following precises the second statement in Theorem 1.

Corollary 1. Let C be a Ck-tame Cantor subset of a compact orientable surfaceM and {Cj} be

a defining sequence for C consisting of finite unions of disjoint disks. If k > 2, then PMk,+(M,C)

coincides with the inductive limit limj→∞ PMk,+(M − int(Cj)) of pure mapping class groups of

compact subsurfaces.

Note that, when N is a compact surface the isomorphism type of PMk,+(N) is independent

of k.
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1.2 C1-diffeomorphism groups of Cantor sets
We now turn to the full mapping class groups. Several groups which arose recently in the
literature could be thought to play the role of the mapping class groups for some infinite type
surfaces, for instance the group B from [FK04] and its version BV , which was defined by Brin
[Bri07] and Dehornoy [Deh06], independently. These two groups are braidings of the Thompson
group V (see [CFP96]). Geometric constructions of the same sort permitted the authors of [FK08]
to derive two braidings T ∗ and T ] of the Thompson group T .

Our next goal is to show that these groups are indeed smooth mapping class groups in the
usual sense and that most (if not all) smooth mapping class groups of Cantor sets are related to
some Thompson-like groups.

Assume for the moment that C ⊂M is smoothly tame. Set then diffkM (C) and diffk,+M (C) for
the groups of induced transformations of C arising as restrictions of elements of Diffk(M,C) and
Diffk,+(M,C), respectively. The Ck topology on Diffk(M,C) induces a topology on diffkM (C).

Notice now that we have the exact sequence:

1 → PMk,+(M,C) →Mk,+(M,C) → diffk,+M (C) → 1. (1)

By Theorem 1 the group Mk,+(M,C) is discrete countable if and only if diffk,+M (C) does,
when k > 2 and M is compact (or the interior of a compact manifold).

Classical Thompson groups can be realized as groups of dyadic piecewise linear homeomor-
phisms (or bijections) of an interval, circle or a Cantor set (see [CFP96, GS87]) or as groups of
automorphisms at infinity of graphs (respecting or not the planarity), as in [Ner92]. Notice that
the more involved construction from [GS87] provides embeddings of Thompson groups into the
group of diffeomorphisms of the circle, admitting invariant minimal Cantor sets. In particular,
Ghys and Sergiescu obtained embeddings as discrete subgroups of the group of diffeomorphisms
(see [GS87, Theorem 2.3]).

In our setting we see that whenever it is discrete and countable the groupMk,+(M,C) is the

braiding of diffk,+M (C) according to Corollary 1, as in the cases studied in [Bri07, Deh06, FK04,

FK08]. This raises the question whether diffk,+M (C) is a Thompson-like group, in general. We
were not able to solve this question in full generality and actually when C is a generic Cantor
set of the interval we expect the group diffk,+M (C) be trivial. To this purpose we introduce the
following property of Cantor sets.

Definition 3. The Cantor subset C of an interval is σ-sparse if, for any a, b ∈ C, there is a
complementary interval (α, β) ⊂ (a, b) ∩ R\C such that

β − α > σ(b− a). (2)

Moreover C is sparse if it is σ-sparse for some σ > 0.

Set diffk(C) = diffkR(C), diffk,+(C) = diffk,+R (C) for the sake of notational simplicity.

Theorem 2. If C is a sparse Cantor subset of R, then the group diff1(C) is countable. If C is a
sparse Cantor set in S1 = R/Z, then diff1S1(C) is countable.

Theorem 2 cannot be extended to all Cantor sets C, without additional assumptions, as we
can see from the examples given in § 5.

We have the following more general version of the previous result.
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Diffeomorphism groups of Tame Cantor sets

Theorem 3. If C is a sparse Cantor subset of an interval C1-embedded into a compact orientable
manifold M , then the group diff1M (C) is countable and discrete.

Although we only considered smoothly tame Cantor subsets above, there is a large supply
of topologically tame Cantor subsets in any dimensions for which we can prove the countability.

Theorem 4. Let Ci be sparse Cantor sets in R and C = C1 × C2 × · · · × Cn ⊂ Rn. Then the
group diff1Rn(C) is countable.

Observe that the Lebesgue measure of a sparse Cantor set is zero. In this direction, notice that
Deroin, Kleptsyn and Navas recently proved that invariant Cantor sets of groups of real-analytic
circle diffeomorphisms have zero Lebesgue measure (see [DKN13, Corollary 1.17]). The result
cannot be extended to C1-diffeomorphisms, due to the Denjoy counterexamples, but it might
hold more generally for all C2-diffeomorphisms of the circle according to a conjecture of Hector
(see the discussion in [DKN13] and [DKN09, Conjecture 1.11]).

The key point is to show that the stabilizer of a point in this group is a finitely generated
abelian group (see Lemma 7, Proposition 1). The discreteness of the stabilizers seems to be the
counterpart to the following unpublished theorem of G. Hector (see [Nav06]): If the subgroup
G of the group Diffω(S1) of analytic diffeomorphisms of the circle has an exceptional minimal
set, then the stabilizer Ga of any point a of the circle in G is either trivial or Z. As a corollary
every subgroup of Diffω(S1) having a minimal Cantor set is countable. This is, of course, not
true for subgroups of Diff∞(S1). Nevertheless, the stabilizer Ga of a subgroup G ⊂ Diff2(S1)
with an exceptional minimal set cannot contain two germs whose logarithm of their derivatives
are rationally independent, according to a classical result of Sacksteder [Sac65, Theorem 2].
Sacksteder’s result cannot be extended to C1-diffeomorphisms. The proof of our key result is
related to Thurston’s generalization of Reeb’s stability theorem from [Thu74] and uses in an
essential way the fact that the Cantor set is sparse while allowing only C1-smoothness of the
diffeomorphisms.

Remark 1. Note that mapping class groups M1(M,C) depend essentially on the ambient
manifold M (see [AF17]). On the contrary, if C ⊂ int(Dn) is fixed, then for any embedding of the
disk Dn in the interior of some orientable n-manifold Mn the groups diff1M (C) are isomorphic.
Moreover, these groups stabilize with respect to the standard embeddings Dn ⊂ Dn+k, for large
enough k. One could however vary the groups diff1M (C) by allowing C to intersect the boundary
of M in different patterns (isolated points, Cantor subsets etc.).

B. Specific families of Cantor sets

1.3 Iterated functions systems
Definition 4. A contractive iterated function system (abbreviated contractive IFS ) is a finite
family Φ = (φ0, φ1, . . . , φn) of contractive maps φj : Rd → Rd. Recall that a map φ is contractive
if its Lipschitz constant is smaller than unity, namely:

sup
x,y∈Rd

d(φ(x), φ(y))

d(x, y)
< 1.

According to Hutchinson (see [Hut81]) there exists a unique non-empty compact C =
CΦ ⊂ Rd, called the attractor of the contractive IFS Φ, such that C =

⋃n
j=0 φj(C).
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Example 1. The central Cantor set Cλ, with λ > 2, is the attractor of the IFS Φ = (φ0, φ1) on
R given by

φ0(x) =
1

λ
x, φ1(x) =

1

λ
x+

λ− 1

λ
.

Although the IFS makes sense also when 1 < λ 6 2, in this case the attractor is not a Cantor
set but the whole interval [0, 1].

Consider now the following type of IFS of topological nature.

Definition 5. Let U be an orientable manifold (possibly non-compact) and φj : U → U be
finitely many orientation preserving homeomorphisms on their image. We say that Φ = (φ0, φ1,
. . . , φn) has a strict attractive basin M if M is a compact orientable submanifold M ⊂ U with
the following properties:

(i) φj(M) ⊂ int(M), for all j ∈ {0, 1, . . . , n};
(ii) φi(M) ∩ φj(M) = ∅, for any j 6= i ∈ {0, 1, . . . , n}.

We say that the pair (Φ,M) is an invertible IFS if M is a strict attractive basin for Φ. If moreover,
φj are Ck-diffeomorphisms on their image, then we say that the IFS is of class Ck.

The existence of an attractive basin is a topological version of uniform contractivity of
φj . There exists then a unique invariant non-empty compact CΦ ⊂ M with the property that
CΦ =

⋃n
i=0 φi(CΦ).

Theorem 5. Consider a C1 contractive invertible IFS (Φ,M), Φ = (φ0, φ1, . . . , φn), whose strict
attractive basin M is diffeomorphic to a d-dimensional ball. Then, the group diff1M (CΦ) contains
the Thompson group Fn+1, when M is of dimension d = 1 and the Thompson group Vn+1, when
d > 2, respectively.

In particular, the groups diff1M (CΦ) are (highly) non-trivial.
For a clear introduction to the classical Thompson groups F, T, V we refer to [CFP96]. The

generalized versions Fn, Tn, Vn were considered by Higman ([Hig74] and further extended and
studied by Brown and Stein (see [Ste92]), Bieri and Strebel (see [BS16]) and Laget [Lag04]. We
will recall their definitions in § 2.

The result of the theorem does not hold when the attractive basin M is not a ball. For
instance, when M is a 3-dimensional solid torus, by taking non-trivial (linked) embeddings⋃n
i=0 φi(M) ⊂M we can provide examples of wild Cantor sets, some of them being topologically

rigid, in which case the group diff1M (C) is trivial (see [Shi74, Wri86]).

1.4 Self-similar Cantor subsets of the line
The second part of this paper is devoted to concrete examples of groups arising from these
constructions, for particular choices of Cantor sets. We will be concerned in this section with
self-similar Cantor sets, namely attractors of IFS which consist only of similitudes. The typical
example is the central ternary Cantor set Cλ ⊂ [0, 1] of parameter λ > 2 from Example 1.

Let Φ = (φ0, φ1, . . . , φn) be an IFS of affine transformations of [0, 1], given by

φj(x) = λjx+ aj ,

where

0 = a0 < λ0 < a1 < λ1 + a1 < a2 < · · · < λn−1 + an−1 < an < λn + an = 1.
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The last condition means that the segments φj([0, 1]) are mutually disjoint, so that the attractor

C = CΦ is a sparse Cantor subset of [0, 1]. The positive reals gj = aj+1 − λj − aj are the initial

gaps as they represent the distance between consecutive intervals φj([0, 1]) and φj+1([0, 1]). The

image of [0, 1] by the elements of the monoid generated by Φ are called standard intervals.

We consider the groups FC and TC defined as follows. Let PL(R, C) and PL(S1, C) be

the groups of orientation preserving piecewise linear homeomorphisms of R and S1 = R/Z
respectively, keeping invariant C, i.e. of those homeomorphisms ϕ for which there exists a finite

covering of C by standard disjoint intervals {Ij}, kj ∈ Zn+1 and aj , bj ∈ C, such that

ϕ(x) = bj + Λkj (x− aj) for any x ∈ Ij , (3)

where Λk =
∏n
i=0 λ

ki
i , for each multi-index k = (k0, k1, . . . , kn) ∈ Zn+1. Eventually FC and TC

are the images of PL(R, C) and PL(S1, C), respectively, in the group of homeomorphisms of

C. Similarly we have the group of piecewise affine exchanges PE(C) which are (not necessarily

orientation preserving) left continuous bijections of S1 preserving C, i.e. of those (not necessarily

continuous) maps ϕ for which there exists a finite covering of C by standard disjoint intervals

{Ij}, kj ∈ Zn+1 and aj , bj ∈ C, such that

ϕ(x) = bj ± Λkj (x− aj) for any x ∈ Ij . (4)

We denote by V ±C its image into the group of homeomorphisms of C. We denote by

VC ⊂ V ±C the subgroup obtained by requiring the restrictions of ϕ to each standard interval

Ij be orientation-preserving, as in (3).

Definition 6. The self-similar Cantor set C ⊂ [0, 1] satisfies the genericity condition (C) if

(i) either all homothety ratios λi are equal and all initial generation gaps gα are equal;

(ii) or the factors λi and the gaps gα are incommensurable, in the following sense:

(a) Λkgα = gβ implies that k = 0 and α = β;

(b) there exists no permutation σ different from identity and k,kα ∈ Zn+1
+ such that for

all β we have:
gσ(β)

gβ
= Λ−kβ+(1/n)

∑n
α=1 kα

.

Theorem 6. Let C ⊂ [0, 1] be a self-similar Cantor set satisfying the genericity condition (C).

Then for every ϕ ∈ diff1,+(C) we can find a covering of C by a finite collection of disjoint standard

intervals {Ij}, whose images are also standard intervals, integers kj ∈ Zn+1 and aj , bj ∈ C, such

that the restriction of the map ϕ has the form

ϕ(x) = bj + Λkj (x− aj) for any x ∈ Ij ∩ C. (5)

In particular, diff1,+(C) is isomorphic to FC , diff1,+
S1 (C) is isomorphic to TC and diff1,+

S2 (C) is

isomorphic to V ±C . Moreover, these are isomorphic to the Thompson groups Fn+1, Tn+1 and the

signed Thompson group V ±n+1, respectively.

The main points in the statement of the theorem are the finiteness of the covering and the

fact that the intervals are standard.
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Remark 2. If the self-similar Cantor set does not satisfy the genericity condition (C), then the
same proof provides for every ϕ ∈ diff1,+(C) a covering of C by a finite collection of disjoint
intervals {Ij}, integers kj ∈ Zn+1 and aj , bj ∈ C, such that the restriction of the map ϕ is
given by the formula (39), a slight generalization of (5) above. However, it is not clear that one
could assume that the images of {Ij} are standard intervals and, in particular, that diff1,+(C)
is isomorphic to some Thompson group.

We derive easily now the interpretation for the Thompson groups and their braided versions
as follows.

Corollary 2.

(i) Let C be the image of the standard ternary Cantor subset into the equatorial circle of the
sphere S2 and k > 2.

(a) The smooth mapping class group Mk,+(D2
+, C) is the Thompson group T , where D2

+

denotes the upper hemisphere.

(b) The smooth mapping class group Mk,+(S2, C) is the group of half-twists B1/2 from
[FN16].

(ii) Let C be the standard ternary Cantor subset of an interval contained in the interior of a
2-disk D2 and k > 2. Then Mk,+(D2, C) is the group of half-twists of the punctured disk
(see [AF17]).

Remark 3. The group of half twists B1/2 is an extension of the signed Thompson group V ±

by the compactly supported pure mapping class group of S2 − C. It is similar to the braided
Thompson group B from [FK04] (see § 2.5), which is an extension of V by the same pure mapping
class group, in particular it is also finitely presented (see [AF17]).

Remark 4. The central ternary Cantor sets Cλ are pairwise non-diffeomorphic, i.e. there is no C1

diffeomorphism of R sending Cλ into Cλ′ for λ 6= λ′. Indeed, if it were such a diffeomorphism then
the Hausdorff dimensions of the two Cantor sets would agree, while the Hausdorff dimension of Cλ
is log 2/log λ (see [Fal03], Theorem 1.14). Nevertheless, the groups diff1,+(Cλ) are all isomorphic,
for λ > 2, according to Theorem 6.

We notice that a weaker version of our Theorem 6 concerning the form of C1-diffeomorphisms
of the central Cantor sets Cλ, was already obtained in [BMPV97, Proposition 1].

A case which attracted considerable interest is that of bi-Lipschitz homeomorphisms of
Cantor sets (see [CP88, FM92] and the recent [RRY12, XX13]). In particular, the results of
Falconer and Marsh [FM92] imply that every bi-Lipschitz homeomorphism of a Cantor set is
given by a pair of possibly infinite coverings of the Cantor set by disjoint intervals and affine
homeomorphisms between the corresponding intervals. Notice that any countable subgroup of
Diff0(S1) (or Diff0([0, 1]) can be conjugated (by a homeomorphism) into the corresponding group
of bi-Lipschitz homeomorphisms (see [DKN07, Theorem D]).

1.5 Self-similar Cantor dusts
The next step is to go to higher dimensions. Examples of Blankenship (see [Bla51]) show that
there exist wild Cantor sets in Rn, for every n > 3. A Cantor set C is tame if and only if for
every ε > 0 there exist finitely many disjoint piecewise linear cells of diameter smaller than ε
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whose interiors cover C. In particular, products of tame Cantor sets are tame. More generally,
the product of a Cantor subset of Rn with any compact 0-dimensional subset Z ⊂ Rm is a tame
Cantor subset of Rm+n (see [Mcm64, Corollary 2]).

In order to emphasize the role of the embedding we will consider now the simplest Cantor
subsets, which although tame they are not smoothly tame. Let Cnλ ⊂ Rn be the Cartesian product
of n copies of Cλ, where n > 2 and λ > 2, which is itself a Cantor set.

Theorem 7. Let ϕ ∈ diff1,+Rn (Cnλ ), where λ > 2. Then there is a covering of Cnλ by a finite
collection of disjoint standard parallelepipeds {Ij}, integers kj,i ∈ Z and aj,i, bj,i ∈ Cλ, such that

ϕ(x) = (bj,i + λkj (xi − aj,i))i=1,n ◦ Sj for any x ∈ Ij ∩ Cnλ , (6)

where Sj is an orientation preserving symmetry of the cube. In particular, diff1,+Rn (Cnλ ) is
isomorphic to the n-dimensional Brin group nV sym decorated by the group Dn of positive
symmetries of the cube (see § 2).

Notice that in a series of papers (see [Bri04, Bri10, BL10, HM12]) by Brin, Bleak and Lanoue,
Hennig and Matucci the authors proved that the higher-dimensional Thompson groups nV
defined by Brin are pairwise non-isomorphic finitely presented simple groups (see also [Rub96,
Rub89]).

Remark 5. Note that the group diff1[0,1]n(Cnλ ) is a proper subgroup of diff1Rn(Cnλ ).

2. Definition of Thompson-like groups

The standard reference for the classical Thompson groups is [CFP96]. For the sake of
completeness we provide here the basic definitions from several different perspectives, which
lead naturally to the generalizations considered by Brown and Stein and further to the high
dimensional Brin groups.

2.1 Groups of piecewise affine homeomorphisms/bijections
Thompson’s group F is the group of piecewise dyadic affine homeomorphisms of the interval [0, 1].
Namely, for each f ∈ F , there exist two dyadic subdivisions of [0, 1], a0 = 0 < a1 < · · · < an = 1
and b0 = 0 < b1 · · · < bn, with n ∈ N∗, such that ai+1−ai and bi+1−bi belong to {n/2k, n, k ∈ N},
so that the restriction of f to [ai, ai+1] is the unique increasing affine map onto [bi, bi+1].

Therefore, an element of F is completely determined by the data of two dyadic subdivisions
of [0, 1] having the same cardinality.

Let us identify the circle to the quotient space [0, 1]/0 ∼ 1. Thompson’s group T is the group
of piecewise dyadic affine orientation preserving homeomorphisms of the circle. In other words,
for each g ∈ T , there exist two dyadic subdivisions of [0, 1], a0 = 0 < a1 < · · · < an = 1 and
b0 = 0 < b1 · · · < bn, with n ∈ N∗, and i0 ∈ {1, . . . , n}, such that, for each i ∈ {0, . . . , n− 1}, the
restriction of g to [ai, ai+1] is the unique increasing map onto [bi+i0 , bi+i0+1]. The indices must
be understood modulo n.

Therefore, an element of T is completely determined by the data of two dyadic subdivisions
of [0, 1] having the same cardinality, say n ∈ N∗, plus an integer i0 mod n.

Finally, Thompson’s group V is the group of bijections of [0, 1[, which are right-continuous
at each point, piecewise non-decreasing and dyadic affine. In other words, for each h ∈ V , there
exist two dyadic subdivisions of [0, 1], a0 = 0 < a1 < · · · < an = 1 and b0 = 0 < b1 · · · < bn, with
n ∈ N∗, and a permutation σ ∈ Sn, such that, for each i ∈ {1, . . . , n}, the restriction of h to
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[ai−1, ai[ is the unique non-decreasing affine map onto [bσ(i)−1, bσ(i)[. It follows that an element

h of V is completely determined by the data of two dyadic subdivisions of [0, 1] having the same

cardinality, say n ∈ N∗, plus a permutation σ ∈ Sn. Denoting Ii = [ai−1, ai] and Ji = [bi−1, bi],

these data can be summarized into a triple ((Ji)16i6n, (Ii)16i6n, σ ∈ Sn).

The signed Thompson group V ± is the group of right-continuous bijections of the unit circle

that map the set of dyadic rationals to itself, are differentiable except at finitely many points,

and such that, on every interval of differentiability, they are affine maps whose derivatives are

(positive or negative) powers of 2.

We have obvious inclusions F ⊂ T ⊂ V ⊂ V ±. R.J. Thompson proved in 1965 that F, T and

V are finitely presented groups and that T and V are simple (cf. [CFP96]). The group V ± is also

finitely presented and simple (see [AF17]). The group F is not perfect, as F/[F, F ] is isomorphic

to Z2, but F ′ = [F, F ] is simple. However, F ′ is not finitely generated (this is related to the fact

that an element f of F lies in F ′ if and only if its support is included in ]0, 1[).

2.2 Groups of diagrams of finite binary trees

A finite binary rooted planar tree is a finite planar tree having a unique 2-valent vertex, called

the root, a set of monovalent vertices called the leaves, and whose other vertices are 3-valent. The

planarity of the tree provides a canonical labelling of its leaves, in the following way. Assuming

that the plane is oriented, the leaves are labelled from 1 to n, from left to right, the root being

at the top and the leaves at the bottom.

There exists a bijection between the set of dyadic subdivisions of [0, 1] and the set of finite

binary rooted planar trees. Indeed, given such a tree, one may label its vertices by dyadic

intervals in the following way. First, the root is labelled by [0, 1]. Suppose that a vertex is

labelled by I = [k/2n, (k + 1)/2n], then its two descendant vertices are labelled by the two

halves I: [k/2n, (2k + 1)/2n+1] for the left one and [(2k + 1)/(2n+1), (k + 1)/2n] for the right

one. Finally, the dyadic subdivision associated to the tree is the sequence of intervals which label

its leaves.

Thus, an element h of V is represented by a triple (τ1, τ0, σ), where τ0 and τ1 have the same

number of leaves n ∈ N∗, and σ ∈ Sn. Such a triple will be called a symbol for h. It is convenient

to interpret the permutation σ as the bijection ϕσ which maps the ith leaf of the source tree τ0

to the σ(i)th leaf of the target tree τ1. When h belongs to F , the permutation σ is identity and

the symbol reduces to a pair of trees (τ1, τ0).

Now, two symbols are equivalent if they represent the same element of V and one denotes

by [τ1, τ0, σ] the equivalence class. The composition law of piecewise dyadic affine bijections is

pushed out on the set of equivalence classes of symbols in the following way. In order to define

[τ ′1, τ
′
0, σ
′] · [τ1, τ0, σ], one may suppose, at the price of refining both symbols, that the tree τ1

coincides with the tree τ ′0. Then the product of the two symbols is

[τ ′1, τ1, σ
′] · [τ1, τ0, σ] = [τ ′1, τ0, σ

′ ◦ σ].

It follows that V is isomorphic to the group of equivalence classes of symbols endowed with this

internal law. Now, every element of V ± is encoded by an enhanced symbol (T, T ′, σ, ε), where

T, T ′ are admissible trees, σ : ∂T → ∂T ′ is a bijection and ε ∈ (Z/2Z)∂T
′
, up to equivalence.

2.3 Partial automorphisms of trees

The beginning of the article [GS91] formalizes a change of point of view, consisting in considering,

not the finite binary trees, but their complements in the infinite binary tree.
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Let T2 be the infinite binary rooted planar tree (all its vertices other than the root are

3-valent). Each finite binary rooted planar tree τ can be embedded in a unique way into T2,

assuming that the embedding maps the root of τ onto the root of T2, and respects the orientation.

Therefore, τ may be identified with a subtree of T2, whose root coincides with that of T2.

Definition 7 (Cf. [KS05]). A partial isomorphism of T2 consists of the data of two finite binary

rooted subtrees τ0 and τ1 of T2 having the same number of leaves n ∈ N∗, and an isomorphism

q : T2\τ0 → T2\τ1. The complements of τ0 and τ1 have n components, each one isomorphic to

T2, which are enumerated from 1 to n according to the labeling of the leaves of the trees τ0 and

τ1. Thus, T2\τ0 = T 1
0 ∪ · · · ∪ Tn0 and T2\τ1 = T 1

1 ∪ · · · ∪ Tn1 where the T ij are the connected

components. Equivalently, the partial isomorphism of T2 is given by a permutation σ ∈ Sn and,

for i = 1, . . . , n, an isomorphism qi : T i0 → T
σ(i)
1 .

Two partial automorphisms q and r can be composed if and only if the target of r coincides

with the source of r. One gets the partial automorphism q ◦ r. The composition provides a

structure of inverse monoid on the set of partial automorphisms.

Let ∂T2 be the boundary of T2 (also called the set of ‘ends’ of T2) endowed with its usual

topology, for which it is a Cantor set. Although a partial automorphism does not act (globally)

on the tree, it does act on its boundary. One has therefore a morphism from the monoid of partial

isomorphism into the homeomorphisms of ∂T2, whose image N is the spheromorphisms group of

Neretin (see [Ner92]).

Thompson’s group V can be viewed as the subgroup of N which is the image of those partial

automorphisms which respect the local orientation of the edges.

2.4 Generalizations following Brown and Stein, Bieri and Strebel

Brown considered in [Bro87] similar groups Fn,r ⊂ Tn,r ⊂ Vn,r (extending the previous work

of Higman), which were defined as in the last two constructions above but using instead of

binary trees forests of r copies of n-ary trees so that F, T, V correspond to n = 2 and r = 1.

The isomorphism type of Vn,r and Tn,r only depends on r (mod n) while Fn,r depends only on

n. We drop the subscript r when r = 1. These groups are finitely presented and of type FP∞
according to [BG84] for the case of F and T and then [Bro87, Theorem 4.17] for its extension

to all other groups from this family. Moreover, Higman has proved (see [Hig74]) that Vn,r has a

simple subgroup of index g.c.d(2, n− 1), and this was extended by Brown who showed that Fn
have simple commutator and Tn,r have simple double commutator groups (see [Bro87] for more

details and refinements).

One can obtain these groups also by considering n-adic piecewise affine homeomorphisms

(or bijections) of [0, r] (with identified endpoints for Tn,r) i.e. having singularities in Z[1/n] and

derivatives in {na, a ∈ Z}. This point of view was taken further by Bieri, Strebel and Stein in

[BS16, Ste92]. Specifically, given a multiplicative subgroup P ⊂ R, a Z[P ]-submodule A ⊂ R
satisfying P · A = A, and a positive r ∈ A, one can consider the group FA,P,r of those PL

homeomorphisms of [0, r] with finite singular set in A and all slopes in P . There are similar

families TA,P,r and VA,P,r. Brown and Stein proved that FZ[1/(n1n2···nk)],〈n1,n2,...,nk〉,r is finitely

presented of FP∞ type. Furthermore FA,P,r and VA,P,r have simple commutator subgroups,

while TA,P,r have simple second commutator subgroups.

The signed version V ±n,r of Vn,r is defined as above, by allowing both orientation preserving

and orientation reversing piecewise affine homeomorphisms.
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2.5 Mapping class groups of infinite surfaces and braided Thompson groups
Let S0,∞ be the oriented surface of genus zero, which is the following inductive limit of compact
oriented genus zero surfaces with boundary Sn. Starting with a cylinder S1, one gets Sn+1 from
Sn by gluing a pair of pants (i.e. a three-holed sphere) along each boundary circle of Sn. This
construction yields, for each n > 1, an embedding Sn ↪→ Sn+1, with an orientation on Sn+1

compatible with that of Sn. The resulting inductive limit (in the topological category) of the
Sn is the surface S0,∞ = lim→

n
Sn.

By the above construction, the surface S0,∞ is the union of a cylinder and of countably many
pairs of pants. This topological decomposition of S0,∞ will be called the canonical pair of pants
decomposition.

The set of isotopy classes of orientation-preserving homeomorphisms of S0,∞ is an
uncountable group. By restricting to a certain type of homeomorphism (called asymptotically
rigid), we shall obtain countable subgroups (see [FK04, FK08]).

Any connected and compact subsurface of S0,∞ which is the union of the cylinder and finitely
many pairs of pants of the canonical decomposition will be called an admissible subsurface of
S0,∞. The type of such a subsurface S is the number of connected components in its boundary.

A rigid structure on S0,∞ is given by a pants decomposition together with a set of disjoint
proper arcs joining distinct ends such that each pair of pants intersects essentially only three
arcs which join different boundary circles. One component of complement of the union of arcs
is called the visible side. We fix a rigid structure on the surface underlying the canonical pants
decomposition.

Definition 8 (Following [KS05, FK04]). A homeomorphism ϕ of S0,∞ is asymptotically rigid
if there exist two admissible subsurfaces S0 and S1 having the same type, such that ϕ(S0) = S1

and whose restriction S0,∞\S0 → S0,∞\S1 is rigid, meaning that it maps each pair of pants (of
the canonical pants decomposition) onto a pair of pants and the visible side onto the visible side.
If we drop the last requirement we say that the homeomorphism ϕ is asymptotically quasi-rigid.
The asymptotically rigid and quasi-rigid mapping class groups of S0,∞ are the groups of isotopy
classes of asymptotically rigid and quasi-rigid homeomorphisms, respectively.

The asymptotically rigid mapping class group B and the quasi-rigid mapping class group B1/2

of S0,∞ are finitely presented groups (see [FK04, AF17]) which fit into the exact sequences:

1 → PM(S0,∞) → B→ V → 1,

1 → PM(S0,∞) → B1/2
→ V ± → 1.

Some very similar versions of the same group (using a Cantor disk instead of a Cantor sphere
or a more combinatorial framework) were obtained independently by Brin [Bri07] and Dehornoy
[Deh06]. We will call any version of them braided Thompson groups.

2.6 Brin’s groups nV and their decorated versions
A rather different direction was taken in the seminal paper [Bri04] of Brin, where the author
constructed a family of countable groups nV acting as homeomorphisms of the product of n-
copies of the standard triadic Cantor, generalizing the group V which occurs for n = 1.

Let In ⊂ Rn denote the unit cube. A numbered pattern is a finite dyadic partition of In into
parallelepipeds along with a numbering. A dyadic partition is obtained from the cube by dividing
at each step of the process one parallelepiped into two equal halves by a cutting hyperplane
parallel to one of the coordinates’ hyperplane.
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One definition of nV is the group of piecewise affine (not continuous!) transformations
associated to pairs of numbered patterns. Given the numbered patterns P = (L1, L2, . . . , Ln)
and Q = (R1, R2, . . . , Rn), we set ϕP,Q for the unique piecewise affine transformation of the cube
sending affinely each Li into Ri and preserving the coordinates’ hyperplanes. Thus nV is the
group of piecewise affine transformations of the form ϕP,Q, with P,Q running over the set of all
possible dyadic partitions.

Another description is as a group of homeomorphisms of the product Cn of the standard
triadic Cantor set C. Parallelepipeds in a dyadic partition correspond to closed and open (clopen)
subsets of Cn. Every dyadic cutting hyperplane H subdividing some parallelepiped R into two
halves determines a parallel shadow (open) parallelepiped in R whose width is one third of the
width of R in the direction orthogonal to H. Notice then that the complement of the union of
all shadow parallelepipeds is Cn. Every pattern P = (R1, R2, . . . , Rn) determines a numbered
collection of parallelepipeds XP = (X(R1), X(R2), . . . , X(Rn)) whose complementary is the set of
shadow parallelepipeds of those cutting hyperplanes used to build P . Then A(Ri) = X(Ri) ∩ Cn
form a clopen partition of Cn. For a pair of patterns P,Q we define the homeomorphism hP,Q
of Cn as the unique homeomorphism which sends affinely A(Li) into A(Ri) and preserves the
orientation in each coordinate. This amounts to say that hP,Q is the restriction to Cn of the
piecewise affine transformation sending affinely X(Li) into X(Ri) and preserving the coordinates’
hyperplanes.

The groups nV are simple (see e.g. [Bri04, Bri10]) and finitely presented (see [HM12]). The
stabilizer at some a ∈ Cn of the (germs of) homeomorphisms in nV is isomorphic to Zr(a), where
r(a) is the number of rational coordinates of a. This implies that the groups nV are pairwise
non-isomorphic (see [BL10] for details).

We could of course extend this construction to arbitrary products of central Cantor sets Cλ
in the spirit of Brown and Stein, Bieri and Strebel as above.

As in the case of groups Vn,r there exists a decorated version nV sym of nV by allowing
piecewise affine transformations hP,Q to be arbitrary affine isomorphisms between A(Li) into
A(Ri), not necessarily preserving each coordinate’s hyperplane. We will say that nV sym is the
n-dimensional Brin group decorated by Dn, where Dn denotes the group of orientation preserving
symmetries of the cube. Its elements correspond to numbered patterns P = (L1, L2, . . . , Ln)
and Q = (R1, R2, . . . , Rn), along with a n-tuple Σ = (σ1, σ2, . . . , σn) of orientation preserving
symmetries of the n-cube. The map ϕP,Q,Σ consists of the unique piecewise affine transformation
sending σi(Li) into Ri. Recall that Dn is the group of orthogonal n × n matrices with integer
entries and unit determinant. One defines in the same way the n-dimensional Brin group nV ±sym

decorated by On, where On denotes the hyperoctahedral group of all symmetries of the cube,
which is the higher-dimensional generalization of V ±.

3. Proof of general countability statements

3.1 Proof of Theorem 1
We parameterize the interval E containing the Cantor set C by the Ck-curve γ : [0, 1] → M
and denote by A ⊂ [0, 1] the preimage of C, which is still a Cantor set. We may assume that
{0, 1} ⊂ A. For the sake of simplicity we suppose that the interval E lies in the interior of M .
The proof works in general, with only minor modifications. Let ϕ ∈ Diffk,+(M,C) and denote by
ξ(t) = ϕ ◦ γ(t). Consider a Ck-coordinates chart U ⊂M containing E, such that U is identified
with an open disk, while γ is now linear and parameterized by arc length, namely that ‖γ̇‖ = 1
and γ̈ = 0. The norm ‖·‖ is associated to the standard scalar product 〈 , 〉 on U induced from Rn.
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The strategy of the proof is as follows. We define a subset Iε ⊂ [0, 1] consisting of finitely

many intervals which contains A. At first one straightens out ξ in the complementary of Iε. To

this purpose we modify ϕ by composing with a convenient compactly supported diffeomorphism.

Further we show that there is an isotopy rel A which straightens out the remaining arcs of ξ.

Eventually, one proves that a diffeomorphism preserving the orientation of the surface which

fixes the arc E is, up to isotopy, supported outside a disk neighborhood of E. This will show

that ϕ has a compactly supported class.

Assume for the moment that A is just an infinite set without isolated points. The set of those

t for which γ(t) = ξ(t) is a closed subset of [0, 1] containing A and hence its closure A. Now let

t0 ∈ A. Then, since γ and ξ are differentiable at t0 we have

γ̇(t0) = lim
t∈A,t→t0

γ(t)− γ(t0)

t− t0
= lim

t∈A,t→t0

ξ(t)− ξ(t0)

t− t0
= ξ̇(t0). (7)

If ϕ is twice differentiable then the same argument shows that

γ̈(t0) = ξ̈(t0). (8)

Since ϕ is of class C2, for every ε > 0, there exists δ(ε) > 0 such that whenever s1, s2 ∈ A,
with |s1 − s2| < δ(ε) we have

1− ε < 〈γ̇(t), ξ̇(t)〉 6 1 for all t ∈ [s1, s2], (9)

|ξ̈(t)| < ε for all t ∈ [s1, s2]. (10)

We assume now that A =
⋂∞
j=1Aj is the infinite nested intersection of the closed finite unions

of intervals Aj ⊃ Aj+1 ⊃ · · · .
We denote Iε =

⋃
s1,s2∈A;|s1−s2|6(δ(ε)/2)[s1, s2] ⊂ [0, 1]. We choose ε > 0 small enough such

that the image of ξ|Iε is contained within the coordinates disk U .

Set further γs(t) = (1− s)γ(t) + s ξ(t), for t ∈ [s1, s2] ⊂ Iε and s ∈ [0, 1].

Lemma 1. Fix ε < 1 as above. Let s1, s2 ∈ A, such that |s1−s2| 6 δ(ε)/2. Then γs|[s1,s2] provides

a Ck-isotopy between the restrictions γ|[s1,s2] and ξ|[s1,s2] to the interval [s1, s2]. In particular,

the image ξ(Iε) is contained within the union of orthogonal strips (γ(Iε)× R) ∩ U .

Proof. We have to prove that for any s ∈ [0, 1] the curve γs|[s1,s2] is simple. This follows

immediately from the fact that whenever ε < 1 we have

〈γ̇s(t), γ̇(t)〉 > 1− s+ s〈ξ̇(t), γ̇(t)〉 > 1− εs > 0 (11)

for any t ∈ [0, 1], s ∈ [0, 1]. Further, note that the curve γs(t), for s ∈ [0, 1] and fixed t ∈ Iε is a

segment joining ξ(t) with its orthogonal projection onto γ(Iε). 2

We set

η(t) =

{
ξ(t) if t ∈ Iε,
γ(t) if t 6∈ Iε.

(12)

Lemma 2. There exists a compactly supported diffeomorphism ψ ∈ PDiffk,+(M,C) such that

ψ(ξ) and η are isotopic rel A.
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Proof. Lemma 1 shows that the image of η is a simple curve, as ξ(Iε) is contained within the
union of orthogonal strips (γ(Iε)× R) ∩ U , and thus it cannot intersect γ([0, 1]\Iε).

Note that A ⊂ Iε, since A has no isolated points. The endpoints of a maximal complementary
interval should belong to A, by maximality. In particular, its length should be greater than δ(ε)/2,
and hence there are only finitely many maximal complementary intervals say J1, J2, . . . , Jp.
Then ξ(Ji) are pairwise disjoint smooth arcs whose interiors are ξ(int(Ji)) ⊂M − C, each such
arc joining two distinct points of C. Moreover, as ξ(t) = γ(t), for t ∈ ⋃p

i=1 ∂Ji, we can straighten
out the half-arcs of ξ around these points. Namely, there exists a small neighborhood N(Iε) of Iε
within [0, 1] such that after perturbing ξ by an isotopy supported in N(Iε) ∩ (

⋃p
i=1 Ji) we have

ξ(t) = γ(t), for t ∈ N(Iε) ∩ (
⋃p
i=1 Ji).

Now the arcs ξ(Iε) are disjoint both from ξ(Ji\N(Iε)) and γ(Ji\N(Iε)). There exists then a
small enough open neighborhood V of ξ(Iε) within U which is disjoint from both ξ(Ji\N(Iε))
and γ(Ji\N(Iε)). Therefore there exists an orientation preserving diffeomorphism ψ supported
on M − V , thus compactly supported, such that ψ(ξ(Ji\N(Iε))) = γ(Ji\N(Iε)), and hence
ψ(ξ(Ji)) = η(Ji). Thus ψ(ξ) and η are isotopic rel A, as claimed. 2

Lemma 3. The curves γ and η are isotopic rel A.

Proof. We will prove that the family

ηs(t) =

{
γs(t) if t ∈ Iε,
γ(t) if t 6∈ Iε,

(13)

is the desired isotopy. From Lemma 1 it suffices to show that there are not intersections between
the segments of curves γs|[s1,s2] and γs|[s3,s4], when si ∈ A and [s1, s2], [s3, s4] ⊂ Iε are disjoint.

Let p = γs|[s1,s2](t0) be a point on the first curve segment. We want to estimate the angle β
of the Euclidean triangle with vertices p, γ(s1), γ(s2) at γs(s1). We can write then

〈γs(t0)−γs(s1), γ̇(0)〉 =

∫ t0−s1

0
〈γ̇s(s1 +x), γ̇(0)〉 dx =

∫ t0−s1

0
1−s+s〈ξ̇(s1 +x), γ̇(0)〉 dx. (14)

Then (9) implies

‖γs(t0)− γs(s1)‖cos(β) = 〈γs(t0)− γs(s1), γ̇(0)〉 > (t0 − s1)(1− sε). (15)

On the other hand from (10) we derive

‖ξ̇(x)− ξ̇(s1)‖ 6 ε(x− s1), (16)

and then

‖γs(t0)−γs(s1)‖6
∫ t0−s1

0
‖γ̇s(x)‖ dx6

∫ t0−s1

0
(s ‖ ξ̇(x)‖+(1−s)) dx6 t0−s1+

ε

2
(t0−s1)2. (17)

From (15) we obtain

cos(β) >
1− sε

1 + (ε/2)(t0 + s1)
>

1− ε
1 + ε

. (18)

If we choose ε 6 1
3 then β ∈ [−π/3, π/3].

Assume now the contrary of our claim, namely that there exists some intersection point p
between γs|[s1,s2] and γs|[s3,s4]. Up to a symmetry of indices we can assume that the Euclidean
triangle with vertices at p, γs(s1) and γs(s2) has the angle β at γs(s1) within the interval [π/2, π).
This contradicts our estimates (18) for β. 2
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The last ingredient of the proof of Theorem 1 is as follows.

Lemma 4. Assume that there exists an isotopy of class Ck between γ and η = ψ(ϕ(γ)) rel A.
Then ϕ is Ck-isotopic to a compactly supported diffeomorphism from PDiffk,+(M,C).

Proof. We can assume that the disk D of diameter E is contained in U .
If the dimension of M is 2, the endpoints of E separate the circle ∂D into two arcs, say F+

and F−. The circular order of the three arcs F+, E, F− around an endpoint of E is preserved
by ψ ◦ ϕ ∈ Diffk,+(M,C). Note that E is fixed by ψ ◦ ϕ. Thus there exists a Ck-isotopy which
is identity on E, sends ψ(ϕ(F+)) to F+ and ψ(ϕ(F−)) to F−. Therefore ψ ◦ ϕ is isotopic to a
diffeomorphism supported on the complement of D and hence its class is compactly supported.
The claim follows now, because ψ is equally compactly supported.

If the dimension of M is at least 3, there exists an isotopy of M sending ψ(ϕ(∂D)) to ∂D,
which is identity on E, because ψ ◦ ϕ ∈ PDiffk,+(M,C) and we conclude as above. 2

3.2 Sparse sets and proofs of Theorems 2, 3 and 4
3.2.1 Preliminaries. Let Nε(a) denote the ε-neighborhood |x − a| < ε of a in R, N±ε (a)

the punctured right and left semi-neighborhoods of a, i.e., a < x < a + ε and a − ε < x < a,
respectively.

We say that a ∈ C is a left point of C if there is a left semi-neighborhood N−(a) such that
N−(a) ∩ C = ∅. In the same way we define right points.

For a ∈ C denote by Diffka the stabilizer of a in Diffk(R, C), and by diffka the group of
k-germs of elements of the stabilizer of a in diffk(C). The superscript + in Diffk,+a and diffk,+a
means that we only consider those diffeomorphisms that preserve the orientation of the interval,
i.e. increasing.

Let ϕ be a diffeomorphism with ϕ(a) = a. We say that ϕ is N -flat at a if

ϕ(x)− x = o((x− a)N ) as x → a. (19)

Lemma 5. Assume that C is a σ-sparse subset of R. Let ϕ ∈ Diff1
a be 1-flat at a ∈ C. Then ϕ|C

is identity in a small neighborhood of a.

Proof. Observe first that ϕ ∈ Diff1,+
a , since ϕ′(a) = 1 and hence ϕ must be increasing. We can

assume without loss of generality that a is not a right point of C. Suppose that ϕ is non-trivial
on N+

δ (a) ∩ C for any δ > 0.
We first claim that fixed points of ϕ accumulate from the right to a. Otherwise, there exists

some δ such that ϕ(x) − x keeps a constant sign for all x ∈ N+
δ (a). Assume that this sign is

positive and choose b ∈ N+
δ (a) ∩ C. Let (α, β) ⊂ (a, b) be a maximal complementary interval of

length at least σ(b− a). By maximality α ∈ C. Since ϕ(α) ∈ C and ϕ(α) > α we have ϕ(α) > β,
so that

ϕ(α)− a
α− a =

ϕ(α)− α
α− a + 1 >

β − α
α− a + 1 >

σ(b− a)

α− a + 1 > 1 + σ. (20)

By the mean value theorem there exists ξ ∈ (a, α) such that:

ϕ′(ξ) =
ϕ(α)− a
α− a > 1 + σ.

But this inequality contradicts the 1-flatness condition for small δ, as taking the limit when
δ → 0 we would obtain ϕ′(a) > 1 + σ.
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When the sign of ϕ(x)−x is negative we reach the same conclusion by considering ϕ(β)−β.
This proves the claim.

Therefore there is a decreasing sequence uk accumulating at a, such that ϕ(uk) = uk. As
ϕ|C ∩ N+

δ (a) is not identity for any δ > 0 there exists a decreasing sequence vk ∈ C accumulating

on a, such that all ϕ(vk) − vk are of the same sign, say positive. Therefore, up to passing to a
subsequence, we obtain a sequence of disjoint intervals (αj , βj) such that βj+1 6 αj , ϕ(αj) = αj ,
ϕ(βj) = βj , and vj ∈ (αj , βj).

Since ϕ is monotone, it has to be monotone increasing, by above. Thus ϕk(vj) ∈ [αj , βj ], for
any k ∈ Z, where ϕk denotes the kth iterate of ϕ. The bi-infinite sequence ϕk(vj) is increasing
and so

αj 6 lim
k→−∞

ϕk(vj) < lim
k→∞

ϕk(vj) 6 βj . (21)

Now limk→−∞ ϕ
k(vj) and limk→∞ ϕ

k(vj) are fixed points of ϕ and we can assume, without loss
of generality that our choice of intervals is such that αj = limk→−∞ ϕ

k(vj), limk→∞ ϕ
k(vj) = βj .

In particular αj , βj ∈ C.
As C is σ-sparse there is a complementary interval (γj , δj) ⊂ (αj , βj) of length at least

σ(βj − αj). The interval (γj , δj) cannot contain any point ϕk(vj) and thus there exists some
kj ∈ Z such that

ϕkj (vj) 6 γj < δj 6 ϕkj+1(vj). (22)

Denote ϕkj (vj) = ηj . We have then

ϕ(ηj)− ϕ(αj)

ηj − αj
− 1 =

ϕ(ηj)− ηj
ηj − αj

>
σ(βj − αj)
ηj − αj

> σ. (23)

By the mean value theorem there exists ξj ∈ (αj , ηj) such that

ϕ(ηj)− ϕ(αj)

ηj − αj
= ϕ′(ξj), (24)

and thus such that ϕ′(ξj) > 1 + σ. As ϕ′ is continuous at a, by letting j go to infinity we derive
ϕ′(a) > 1 + σ which contradicts the 1-flatness. 2

Lemma 6. If C is σ-sparse and ϕ ∈ Diff1
a is not 1-flat then

|ϕ′(a)− 1| > σ. (25)

Proof. Let ϕ ∈ Diff1
a not 1-flat, so that ϕ′(a) 6= 1. Let us further suppose that ϕ′(a) > 1, the other

situation being similar. For any δ > 0 we can choose b ∈ N+
δ (a) ∩ C. There is then a maximal

complementary interval (α, β) ⊂ (a, b) of length at least σ(b− a). By maximality α ∈ C.
We claim that for small enough δ we have ϕ(α) > α. Assume the contrary. By the mean

value theorem there exists ξ ∈ (a, α) ⊂ (a, b) such that

ϕ′(ξ) = 1 +
ϕ(α)− α
α− a 6 1 (26)

and letting δ go to 0 we would obtain ϕ′(a) 6 1, contradicting our assumptions. Thus ϕ(α) > α,
and hence ϕ(α) > β. As above, the mean value theorem provides us ξ ∈ (a, α) so that

ϕ′(ξ) = 1 +
ϕ(α)− α
α− a > 1 + σ. (27)

Letting δ go to zero we obtain ϕ′(a) > 1 + σ. When ϕ′(a) < 1 we can use similar methods or
pass to ϕ−1 in order to obtain ϕ′(a) 6 1− σ. 2
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Lemma 7. Let C sparse and a ∈ C. Then one of the following holds:

(i) either for any ϕ ∈ Diff1,+
a , the restriction ϕ|C is identity in a small neighborhood of a, so

that diff1,+a = 1;

(ii) or else, there is ψa ∈ Diff1,+
a such that for any ϕ ∈ Diff1,+

a the restriction of ϕ to a small
neighborhood Nδ(a) ∩ C coincides with the iterate ψka |C for some k ∈ Z\{0}. Moreover,
any such ψa is of the form

ψa(x) = a+ p(x− a) + o(x− a) as x → a, (28)

where |p− 1| > σ. Thus diff1,+a = Z.

Proof. If the first alternative doesn’t hold, by Lemma 5 we can assume that there exists some
ϕ ∈ Diff1,+

a which is not 1-flat.
The map χ : Diff1

a → R∗ given by χ(ϕ) = ϕ′(a) is easily seen to be a group homomorphism.
By Lemma 6 the subgroup χ(Diff1,+

a ) of R∗+ is discrete and non-trivial and thus it is isomorphic
to Z. Let ψa ∈ Diff1,+

a be a germ whose image χ(ψa) is a generator of χ(Diff1,+
a ). Then ψa is not

1-flat and thus, by Lemma 6, it satisfies (28).
If ϕ ∈ Diff1,+

a , then we can write ϕ = ψkaθ, for some k ∈ Z\{0} and θ ∈ kerχ. But the kernel
of χ consists of those θ ∈ Diff1,+

a which are 1-flat. By Lemma 5 the restriction of θ to some
neighborhood Nδ(a) ∩ C is identity. This proves that ϕ = ψka in a neighborhood Nδ(a) ∩ C, as
claimed. 2

Remark 6. If C = Cλ is the ternary central Cantor set in R, then diff1,+a (Cλ) is not always Z.
An element a of Cλ is called λ-rational if it has an eventually periodic development

a =
∞∑
i=1

aiλ
i,

where ai ∈ {0, λ−1}. Therefore diff1,+a (Cλ) is Z if and only if a is λ-rational and trivial, otherwise.

Remark 7. Since the subgroup χ(Diff1
a) ⊂ R∗ is discrete there exists λ > 1 such that χ(Diff1

a) is
of the form 〈λ〉, 〈−λ〉 or 〈±λ〉. Here 〈x〉 denotes the subgroup of R∗ generated by x. In particular
diff1a is isomorphic to either 1, Z/2Z, Z, or else Z⊕ Z/2Z.

However, if a is a left (or right) point of C then there is no decreasing homeomorphism of
(R, C) fixing a. Thus Diff1

a = Diff1,+
a , and the result of Lemma 28 holds more generally for Diff1

a.

3.2.2 Proof of Theorem 2. We need to show that the identity is an isolated point of the group
diff1(C), if C is σ-sparse. To this purpose consider an element diff1(C) having a representative
ψ ∈ Diff1(R, C) such that

1− σ < ψ′(x) < 1 + σ for any x ∈ C. (29)

There is no loss of generality in assuming that ψ ∈ Diff1,+(R, C), i.e. that ψ is monotone
increasing. The minimal element minC of C should therefore be fixed by any element of
Diff1,+(R, C), in particular by ψ. By Lemma 6, ψ ∈ Diff1

minC(R, C) must be 1-flat at minC.
Consider the set

U = {x ∈ C;ψ(z) = z for any z ∈ C ∩ (−∞, x]}. (30)

The set U is non-empty, as minC ∈ U . Let ξ = supU .
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Assume first that ξ is not a right point of C. Since ψ is continuous, ξ ∈ U so that ψ ∈ Diff1
ξ .

From Lemma 6 ψ′(ξ) = 1 and ψ is 1-flat at ξ. According to Lemma 5 there is some δ > 0 such

that the restriction ψ|C ∩ N+
δ (ξ) is identity, which contradicts the maximality of ξ.

If ξ is a right point of C, then there is some maximal complementary interval (ξ, η) ⊂ R\C.

Since ψ|C ∩ [minC,ξ] is identity it follows that ψ(C ∩ [ξ,∞)) ⊂ C ∩ [ξ,∞). As η is the minimal

element of C ∩ (ξ,∞) it should be a fixed point of ψ|[ξ,∞) and so η ∈ U . This contradicts the

maximality of ξ. Hence ψ is identity on C.

Remark 8. The same arguments show that if C ⊂ [0, 1] is a sparse Cantor set and diff1,+0 (C) = 1,

then diff1,+(C) = 1.

For the second claim of the theorem let Vδ be the set of those elements in diff1S1(C) having

a representative ψ ∈ Diff1(S1, C) such that

1− δ < ψ′(x) < 1 + δ for any x ∈ C. (31)

Here elements of Diff1(S1) are identified with real periodic functions on R. We choose δ < min(σ,

0.3). It is enough to prove that Vδ is finite.

Consider a complementary interval J ⊂ S1−C of maximal possible length, say |J |. Consider

its right end η, with respect to the cyclic orientation. If ψ ∈ Vδ is such that ψ(η) = η, then the

arguments from the proof of Theorem 2 show that ψ(x) = x when x ∈ C.

We claim that the set of intervals of the form ψ(J), for ψ ∈ Vδ is finite. Each ψ(J) is a maximal

complementary interval, because if it were contained in a larger interval J ′, then ψ−1(J) would

be a complementary interval strictly larger than J . This shows that any two such intervals ψ(J)

and ϕ(J) are either disjoint or they coincide, for otherwise their union would contradict their

maximality. Further, each ψ(J) has length at least (1−δ)|J |. This shows that the set of intervals

is a finite set {J1, J2, . . . , Jk}.
Assume that ψ(J) = ϕ(J) and both ψ and ϕ preserve the orientation of the circle. If the

right end of J is η, with respect to the cyclic orientation, then ϕ ◦ ψ−1 sends J to J and hence

fixes η. Then the arguments from the proof of Theorem 2 show that ϕ◦ψ−1(x) = x when x ∈ C.

It follows that there are at most 2k elements in Vδ, finishing the proof of the first part.

3.2.3 Proof of Theorem 3. Let C be a Cantor set contained within a C1-embedded simple

closed curve L on the orientable manifold M . For the sake of simplicity we will suppose from

now on that M is a surface, but the proof goes on without essential modifications in higher

dimensions. Let ϕ be a diffeomorphism of M sending C into C. Fix a parameterization of a

collar N such that (N,L) is identified with (L × [−1, 1], L × {0}). Denote by π : N → L the

projection on the first factor and by h : N → [−1, 1] the projection on the second factor.

There exists an open neighborhood U of C in L so that ϕ(U) ⊂ N . In particular, the closure

U is a finite union of closed intervals. The map ϕ : U → N = L × [−1, 1] has the property

h ◦ϕ(a) = 0, for each a ∈ C. Therefore the differential Da (h ◦ϕ) = 0, for each a ∈ C. Since ϕ is

a diffeomorphism Da(π ◦ ϕ) 6= 0, for every a ∈ C.

For each a ∈ C consider an open interval neighborhood Ua within L, so that Dx(π ◦ ϕ) 6= 0

and ‖Dx (h ◦ ϕ)‖< 1, for every x ∈ Ua. We obtain an open covering {Ua; a ∈ C} of C. As C is

compact there exists a finite subcovering by intervals {U1, U2, . . . , Un}. Without loss of generality

one can suppose that Uj ⊂ U , for all j. We consider such a covering having the minimal number

of elements. This implies that Uj are disjoint intervals.
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For every j the map π|ϕ(Uj)
: ϕ(Uj) → π(ϕ(Uj)) ⊂ L is a diffeomorphism on its image, since

ϕ(Uj) is connected and Dx(π ◦ ϕ) 6= 0, for any x ∈ Uj .
Consider a slightly smaller closed interval Ij ⊂ Uj such that Ij ∩ C = Uj ∩ C.

Let µ be a positive smooth function on
⊔n
j=1 Uj such µ(t) equals 1 near the boundary points

and vanishes on
⊔n
j=1 Ij . Define φs :

⊔n
j=1 Uj → N by

φs(x) = (π ◦ ϕ(x), (sµ(x) + 1− s) · h ◦ ϕ(x)). (32)

Then φ0(x) = ϕ(x) and for each s ∈ [0, 1] we have φs(x) = ϕ(x), for x near the boundary points

of
⊔n
j=1 Uj . Furthermore φ1(x) = π ◦ ϕ(x) ∈ L, when x ∈ ⊔n

j=1 Ij . One should also notice that

φs(x) = ϕ(x), for each x ∈ C and s ∈ [0, 1].

Now denote Jj = π◦ϕ(Ij). It is clear that C = ϕ(C) ⊂ ⋃n
j=1 Jj . We claim that we can assume

that Jj are disjoint. Indeed, since ϕ is bijective we have ϕ(Ij ∩ C) ∩ ϕ(Ik ∩ C) = ∅, for any j 6= k.

Since ϕ(Ij ∩ C) are closed subsets of L there exists ε > 0 so that d(ϕ(Ij ∩ C), ϕ(Ik ∩ C)) > ε,

for j 6= k, where d is a metric on L. Since φ1(Ij ∩ C) = ϕ(Ij ∩ C), we have d(φ1(Ij ∩ C),

φ1(Ik ∩ C)) > ε, for j 6= k. Thus there exist some open neighborhoods J ′j of φ1(Ij ∩ C) within L

so that d(J ′j , J
′
k) >

1
2ε, for all j 6= k. As φ1 is a diffeomorphism there exist open neighborhoods

I ′j of Ij ∩ C with the property that φ1(I ′j) ⊂ J ′j , for all j. Now I ′j and J ′j are finite unions of

open intervals. We can replace them by closed intervals with the same intersection with C. This

produces two new families of disjoint closed intervals related by φ1, as the initial situation. This

proves the claim.

We obtained that there exist two coverings {I1, I2, . . . , In} and {J1, J2, . . . , Jn} of C by

disjoint closed intervals and a diffeomorphism φ1 :
⊔n
j=1 Ij →

⊔n
j=1 Jj such that φ1(x) = ϕ(x),

for any x ∈ C.

Notice that the sign of Da(π ◦ ϕ) might not be the same for all intervals.

Every partition of C induced by a covering {I1, I2, . . . , In} as above is determined by the

choice of complementary intervals, namely the n − 1 connected components of L\⋃n
j=1 Ij . It

follows that there are only countably many finite partitions of C of the type considered here. Next,

the set of those elements of diff1M (C) which arise from partitions induced by the coverings {I1,

I2, . . . , In} and {J1, J2, . . . , Jn} of C is acted upon transitively by the stabilizer of one partition.

The stabilizer of one partition embeds into the product of diff1Ij (C ∩ Ij). Theorem 2 then implies

that diff1M (C) is countable.

3.2.4 Proof of Theorem 4. Before proceeding, we need some preparatory material. Let

A ⊂ Rn be a set without isolated points. Let TpRn denote the tangent space at p on Rn and

UTpRn ⊂ TpRn the sphere of unit vectors. For any p ∈ A one defines the unit tangent spread

UTpA ⊂ UTpRn at p as the set of vectors v ∈ UTpRn for which there exists a sequence of points

ai ∈ A with limi→∞ ai = p and

lim
i→∞

ai − p
‖ai − p ‖

= v.

Vectors in UTpA will also be called (unit) tangent vectors at p to A. We also set TpA = R+ ·
UTpA ⊂ TpRn for the tangent spread at p.

A differentiable map ϕ : (Rn, A) → (Rn, B) induces a tangent map Tpϕ : TpA → Tϕ(p)B.

Specifically, let Dpϕ : TpRn → Tϕ(p)Rn be the differential of ϕ; then we have

Tpϕ = U(Dpϕ),
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where for a linear map L : V → W between vector spaces we denoted by U(L) : U(V ) → U(W )
the map induced on the unit spheres, namely

U(L)v =
L(v)

‖L(v)‖ .

As the unit tangent spread UTpA is a subset of the unit sphere, it inherits the
spherical geometry and metric. In particular, it makes sense to consider the convex hull
Hull(UTpA) ⊂ UTpRn in the sphere.

Although tangent spreads to product Cantor sets might depend on the particular factors,
their convex hulls have a simple description. Let C = C1 × C2 × · · · × Cn ⊂ Rn be a product
of Cantor sets Ci ⊂ R. The usual cubical complex underlying the n-dimensional cube [0, 1]n

will be denoted by 2n. Then denote by Lk(p) the spherical link of p ∈ 2n. If p belongs to a
k-dimensional cube but not to a (k + 1)-dimensional cube of 2n then Lk(p) is isometric to the
link Lk,n of the origin in Rk × Rn−k+ . Thus there are precisely n + 1 different isometry types of
links of points.

Now a direct inspection shows that for each p ∈ C there exists some k so that the convex
hull Hull(UTpA) is isometric to Lk,n.

When the diffeomorphism ϕ : (Rn, C) → (Rn, C) is also conformal, then the tangent maps
are isometries between the unit tangent spreads, because the spherical distance is given by angles
between the corresponding vectors. However this is not true for general diffeomorphisms.

Nevertheless the spherical links Lk,n are quite particular. There exist n+k vectors along the
coordinates’ axes which are extremal points of UTpC, such that their convex hull is Hull(UTpC),
so isometric to Lk,n. These are vectors of the form ei,−ei, ej , where ei correspond to the
coordinates’ axes in Rk and ej to those in Rn−k. Now, any diffeomorphism ϕ : (Rn, C) → (Rn, C)
should send a unit tangent spread of type Lk,n into one of the same type, since Lk,n is not affinely
equivalent to Lk′,n, for k 6= k′. Moreover, the extremal vectors are sent into extremal vectors of
the same type.

Further, let ϕ ∈ Diff1(Rn, C) such that ‖Daϕ − 1‖ 6 ε for all a ∈ C. Assume now that the
unit tangent spread UTaC is isometric to L0,n, namely it is of corner type. In this case U(Daϕ)
should permute the n coordinate vectors, which are the extremal vectors of L0,n. Therefore either
U(Daϕ) = 1, or else

‖U(Daϕ)− 1‖ >
√

2,

which yields
‖Daϕ− 1‖ >

√
2.

In other words, taking ε <
√

2 any diffeomorphism ϕ as above should satisfy U(Daϕ) = 1. Now,
if ϕ is of class C1 then U(Daϕ) is continuous. Since the set of corner points is dense in C we
derive U(Daϕ) = 1, for any a ∈ C. This is the same as saying that for any a ∈ C the linear map
Daϕ is represented by a diagonal matrix, with respect to the standard coordinate system of Rn.

Proposition 1. Let a ∈ C be a corner point. The map χ : diff1Rn,a(C) → (R∗)n, which associates
to the germ ϕ the eigenvalues of Daϕ is an isomorphism onto a discrete subgroup of (R∗)n.

Proof. Let {x1, x2, . . . , xn} be the standard coordinate functions on Rn and πj : Rn → Rn−1

denote the projection onto the hyperplane Hj = {xj = 0}. For the sake of simplicity we assume
that a = (0, 0, . . . , 0), and that the convex hull of the unit tangent spread is the union of the sets
H+
j = Hj ∩ {xi > 0, i = 1, . . . , n}. We will use induction on n. The claim was proved in Lemma 7

for n = 1. Assume it holds for all dimensions at most n− 1.
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Let ϕ ∈ Diff1(Rn, C) such that ϕ(a) = a. Assume that ‖Dxϕ − 1‖ < 1
2σ <

1
2 for all x in a

neighborhood V of a in Rn. We will prove that ϕ|C is a trivial germ at a. This shows that the
image of χ is a discrete subgroup of (R∗)n and the kernel of χ is trivial.

Consider the maps ϕj : Hj → Hj given by ϕj(x) = πj ◦ ϕ(x). The determinant of Daϕj is
the product of all eigenvalues of Daϕ but the jth eigenvalue, and hence it is non-zero. Moreover,
we have ‖Daϕj − 1‖ < 1

2σ.
We claim the following.

Lemma 8. The map ϕj : Hj ∩ V → Hj is injective.

Proof. Assume the contrary, namely that there exist two points p, q ∈ Hj ∩V such that
πj(ϕ(p)) = πj(ϕ(q)). Consider the first non-trivial case n = 2, when H+

j are half-lines issued from

a. The mean value theorem and the previous equality prove that there exists some ξ ∈ H+
j ∩ V

between p and q so that (πj ◦ ϕ)′(ξ) = 0. This amounts to the fact that the image of Dξϕ is
contained in the kernel of Dϕ(ξ)πj , namely that

〈Dξϕ(vj), vj〉 = 0,

where vj is a unit tangent vector to H+
j at ξ. We derive ‖Dξϕj − 1‖ > 1, contradicting our

assumptions.
In the general case n > 2 we will use a trick to reduce ourselves to n = 2, because we lack a

multidimensional mean value theorem. Let P be a generic affine 2-dimensional half-plane whose
boundary line passes through p and q. We can find arbitrarily small C1-isotopy deformations ψ
of ϕj so that ψ(Hj) is transversal to P and ‖Daψ − 1‖ < σ. It follows that ψ(Hj) ∩ P is a
1-dimensional manifold Z with a boundary containing both p and q. Now either there exist two
distinct points of the boundary ∂Z joined by an arc within Z, or else there is an arc of Z issued
from p which returns to p, contradicting the transversality of the intersection ψ(Hj) ∩ P . In any
case the mean value argument above shows that a point ψ(ξ) of Z should exist for which the
tangent vector v is orthogonal to Hj . We can write v = Dξψ(w), for some tangent vector w ∈ Hj

at ξ. It follows that
〈Dξψ(w), w〉 = 0,

which implies ‖Dξψ − 1‖ > 1, contradicting our assumptions. 2

It follows that ϕj : Hj ∩ V → Hj is an injective map of maximal rank in a neighborhood V
of a, and hence a diffeomorphism on its image. The projection πj sends C into C ∩ Hj , so that

ϕj(C ∩ Hj ∩ V ) ⊂ C ∩ ϕ(Hj ∩ V ) ⊂ C ∩ Hj .

Our aim is to use the induction hypothesis for ϕj . In order to do that we need to show that
the class of ϕj defines indeed an element of diff1Rn−1,a(C), where we identified Hj with Rn−1.

We assume from now on that the neighborhood V is a parallelepiped, all whose vertices
being corner points. Its boundary ∂V will then consist of the union of the faces Vj = ∂V ∩ H+

j

with their respective parallel faces V ′j . The parallelepiped V is surrounded by gaps, whose smaller

width is some δ > 0. Let V δ be the δ-neighborhood of V . If ϕ is Lipschitz with Lipschitz constant
1 + ε and

(1 + ε)li < δ + li

where li are the edge lengths of V then the image ϕ(V ) is contained in V δ, so that
ϕj(Vj) ⊂ V δ ∩ Hj .
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Further ϕj(∂Vj) bounds ϕj(Vj) and thus there are no points of C ∩ Hj accumulating on
ϕj(Vj), as their unit tangent spread cannot be of the type Ln−1,n−1. Thus C−ϕj(Vj) is a closed
subset of C and hence its distance to ϕj(Vj) is strictly positive. There exists then an open set
U ⊂ V δ which contains ϕj(Vj) such that U ∩ (C − ϕj(Vj)) = ∅. It follows that there exists an
extension of ϕj to a diffeomorphism Φj of (Hj , C) which is identity outside U , and hence on
(Vδ ∩ Hj) ∪ (C − ϕ(Vj)).

It only remains to check that Φ−1
j (C) is also contained in C, as needed for Φj ∈ Diff1

(Rn−1, C). This follows as shown below.

Lemma 9. The map ϕj has the property

ϕj(C ∩ Vj) = C ∩ ϕ(Vj).

Proof. Assume that there exists some point p in ϕ(Vj) ∩ C which does not belong to Vj . Then
the line issued from p which is orthogonal to Vj intersects ϕ(Vj) only once, from Lemma 8. On
the other hand there are points of C on this line, as C is a product and p 6∈ Vj . By Jordan’s
theorem there exist points of C which belong to different components of Rn − ϕ(∂V ) which
contradicts the fact that ϕ is surjective on C.

Thus ϕ(C ∩ Vj) ⊂ C ∩ Vj . The same argument for ϕ−1 yields the opposite inclusion and
hence ϕ(C ∩ Vj) = C ∩ Vj . Our claim follows. 2

Lemma 9 tells us that ϕj defines a germ in diff1Hj ,a(C ∩ Hj), namely both ϕj and ϕ−1
j sends

C ∩ Hj into itself. By the induction hypothesis ϕj |C ∩ Hj must be identity in a neighborhood of
a within Hj .

Notice that this implies already that Daϕ = 1, and hence establishing the first claim of
Proposition 1.

For the second claim we consider the distance d(C − V, V ) = µ > 0, as V is surrounded by
gaps. We suppose further that

‖Dxϕ− 1‖ < min

(
σ

2
,

µ

1 + σ

)
.

We know that ϕ(y, 0) = (y, u(y)), for y ∈ C ∩ V ∩ Hn and some function u > 0. The next
step is to show that u|C ∩ V ∩ Hn = 0.

Assume that there exists some x ∈ C ∩ V ∩ Hn so that u(x) > 0. Observe that u(x) ∈ Cn,
since ϕ(C) ⊂ C. Since points of Cn which are not endpoints are dense in Cn there should exist
x ∈ C for which u(x) is not an endpoint of Cn. Set z = (x, u(x)) ∈ C.

Then for each ν > 0 there exist points z+, z− ∈ C with πn(z+) = πn(z−) = x, so that the
distances d(z+, z), d(z−, z) < ν.

Observe that the segment z+z− intersects just once ϕ(H+
n ), namely at z. One might expect

to use Jordan’s theorem in order to derive that z+ ∈ C and z− ∈ C could not belong to the same
connected component of ϕ(∂V ). This is not exactly true, as the segment z+z− could possibly
intersect other sheets like ϕ(H+

j ) which are part of ϕ(∂V ).

Set r for the distance between x ∈ H+
n and the union of the other 2n − 1 faces of ∂V . By

the induction hypothesis we can assume that r > 0. Choose now ν so that ν < min((1− σ)r/2,
µ(1− σ)/2).

Suppose that there exist x+, x− ∈ C ∩ V such that ϕ(x+) = z+ and ϕ(x−) = z−. By Jordan’s
theorem the segment z+z− intersects at least once ϕ(∂V −H+

n ), say in a point z̃ = ϕ(x̃).
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We have then d(x, x̃) > r, while

d(ϕ(x), ϕ(x̃)) 6 d(z+, z−) 6 2ν.

On the other hand the C1-diffeomorphism ϕ−1 is Lipschitz with Lipschitz constant bounded
by supx∈V ‖Dxϕ

−1‖. Now, by standard functional calculus we have:

‖Dxϕ
−1‖ 6

∞∑
k=0

‖1−Dxϕ‖k <
1

1− σ .

Therefore the Lipschitz constant of ϕ−1 is bounded above by 1/(1− σ) so that

d(x, x̃) 6
1

1− σd(ϕ(x), ϕ(x̃)) 6
2ν

1− σ .

This contradicts our choice of ν.
Furthermore if one of x+, x−, say x+ belongs to C − V then we have d(x, x+) > µ while

d(ϕ(x), ϕ(x+)) 6 ν

and the argument above still leads to a contradiction.
This shows that ϕ cannot be surjective on C. On the other hand a diffeomorphism of Rn

which preserves C restricts to a bijection on C. If it were not surjective then its inverse would
send points of C outside.

In particular u(x)|C ∩ H+
n

= 0 and so ϕ|C ∩ H+
n

is identity. The same proof shows that ϕ|C ∩ H+
j

is identity, for all j.
By using the same argument when a runs over the points of V ∩ C ∩ ⋃n

j=1H
+
j we derive

that ϕ|C ∩ V is identity, as claimed. 2

End of the proof of theorem 4. The proof is by induction on n. For n = 1 this was already
proved above. Let V denote now the smallest parallelepiped containing C, in order to match
previous notations and constructions. Suppose that ϕ ∈ Diff1(Rn, C) is such that ‖Dxϕ−1‖ < ε,
for all x ∈ V δ. Then ϕ(∂V ) surrounds C and the proof of Lemma 9 gives us ϕ(C ∩ ∂V ) = C ∩ ∂V .
Moreover, each ϕj preserves the associated face Vj . By the induction hypothesis ϕj is the identity.
It follows that ϕ|C ∩ ∂V is the identity. We can therefore use Proposition 1 to derive that around
every corner point of C ∩ ∂V the map ϕ|C is identity. The same argument works for all corner
points of V .

Remark 9. If C = Cnλ , then diff1,+a (Cλ) is isomorphic to Zr(a), where r(a) is the number of
coordinates of a which are λ-rational (compare with [BL10]).

4. Diffeomorphism groups of specific Cantor sets

4.1 Proof of Theorem 5
Observe first that CΦ is a Cantor set. Indeed the contractivity assumption implies that an infinite
intersection limp→∞ φi1φi2 · · ·φip(M) cannot contain but a single point. Two such points which
are distinct are separated by some smoothly embedded sphere, which is the image of ∂M by
an element of the semigroup generated by Φ, so that the set CΦ is totally disconnected. The
perfectness follows the same way.
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We will draw a rooted (n+2)-valent tree T with edges directed downwards. When M = [0, 1]
there is an extra structure on T , as all edges issued from a vertex are enumerated from left to
right.

There is a one-to-one correspondence between the points of the boundary at infinity of the
tree and the points of the Cantor set C = CΦ associated to the invertible IFS (Φ,M). To each
point ξ ∈ C we can assign an infinite sequence I = i1i2 · · · ip · · · , so that ξ = ξ(I) where we
denoted:

ξ(I) =
∞⋂
p=1

φi1φi2 · · ·φip(M).

The vertices of the tree are endowed with a compatible labeling by means of finite multi-indices
I, where the root has associated the empty index and the vertex vI is the one reached after
traveling along the edges labeled i1, i2, . . . , ip. We also put

φI(x) = φi1φi2 · · ·φip(x)

for finite I. This extends obviously to the case of infinite multi-indices I.
We further need to introduce a special class of germs, as follows.

Definition 9. The standard germ associated with the finite multi-indices I and J is the
diffeomorphism φI/J : φI(M) → φJ(M) given by

φI/J(φI(x)) = φJ(x). (33)

Standard germs preserve the Cantor set C as germs, namely φI/J(C ∩ φI(M)) ⊂ C ∩ φJ(M).
In fact if S is an infinite multi-index then

φI/J(ξ(IS)) = ξ(JS).

Graphically we can realize this map as a partial isomorphism of the tree T which maps the
subtree hanging at vI onto the subtree hanging at vJ .

Consider a pair (t1, t2) of finite labeled subtrees of the same degree of T both containing the
root, and whose leaves are enumerated vI1 , vI2 , . . . , vIp and vJ1 , vJ2 , . . . , vJp .

Lemma 10. Assume that φj are orientation preserving diffeomorphisms of M . Then the map

φ(x) = φIk/Jk(x) if x ∈ φIk(C) (34)

defines an element φ(t1,t2) ∈ diff1,+(C).

Proof. We know that C =
⋃n
i=0 φi(C), since C is the attractor of Φ. By recurrence on the number

of leaves we show that

C =
n⋃
i=0

φIi(C)

for any finite subtree t of T containing the root and having leaves vIi , i = 0, n. Now φ is a smooth
orientation preserving map defined on

⋃n
i=0 φIi(M), and so its domain of definition contains C.

When the dimension d = 1, the complementary M\⋃n
i=0 φIi(M) is the union of finitely many

intervals, which we call gaps and there exists by orientability assumption an extension of φ to a
diffeomorphism of M = [0, 1] sending gaps into gaps.
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When the dimension d > 1, the complementary gap M\⋃n
i=0 φIi(M) is now connected and

diffeomorphic to the standard disk with (n + 1) holes. Moreover, the restriction of φ to every
sphere ∂φIi(M) is isotopic to identity since it is orientation preserving and it admits an extension
to the ball. Taking a suitable smoothing at the singular vertex of the conical extension of
φ|⋃n

i=0 φIi (∂M) we obtain an extension of φ to a diffeomorphism of the ball M , possibly non-trivial
on ∂M .

This extension preserves C invariant as gaps are disjoint from C and therefore defines an
element φ(t1,t2) ∈ diff1,+(C). 2

End of the proof of Theorem 5. Let us stabilize the pair of trees (t1, t2) to a pair (t′1, t
′
2),

where t′j is obtained from tj by adding the first descendants at vertex vIs , for j = 1 and vJs , when
j = 2. The new vertices come with a compatible labeling. Moreover, an orientation preserving
diffeomorphism of C induces a monotone map of the boundary of the tree, when d = 1.

By direct inspection using the explicit form of φ we find that:

φ(t1,t2) = φ(t′1,t
′
2).

Thus the map which associates to the pair (t1, t2) of labeled trees the element φ(t1,t2) factors

through a map Fn+1 → diff1,+(C), for d = 1, and Vn+1 → diff1,+(C), for d = 2, respectively.
This is easily seen to be a homomorphism. When I 6= J the map ϕI/J |C is not identity since
ϕI(M) ∩ ϕJ(M) = ∅. This proves that the homomorphism defined above is injective, thereby
ending the proof of Theorem 5.

Remark 10. There is a more general setting in which we allow basins to have boundary fixed
points. We say that the compact submanifold M is an attractive basin for Φ = (φ0, φ1, . . . , φn)
if, for all j ∈ {0, 1, . . . , n} we have

(i) φj(int(M)) ⊂ int(M);

(ii) int(φ−1
j (φj(∂M) ∩ ∂M)) ⊃ int(φj(∂M) ∩ ∂M);

(iii) φi(M) ∩ φj(M) = ∅, for any i 6= j ∈ {0, 1, . . . , n};
(iv) int(φj(∂M) ∩ ∂M) ⊂ int(φ−1

j (φj(∂M) ∩ ∂M)).

Using similar arguments one can show that diff1(CΦ) contains Fn+1 whenever Φ has an attractive
basin.

Remark 11. If the Cantor set C is invertible, namely there exists an orientation reversing
diffeomorphism φ of M preserving C, then we can replace the homeomorphisms φj which reverse
the orientation by φ ◦ φj . However, there exist non-invertible Cantor subsets, for instance the
union of two copies Cλ ∪ (1 + Cµ), for λ 6= µ.

4.2 Proof of Theorem 6 for C = Cλ

Our strategy is to give first a detailed proof of Theorem 6 in the case when C = Cλ and then to
explain the necessary changes needed to achieve the general case in the next section.

We first need the following lemma.

Lemma 11. If a is a left (or right) point of Cλ, then χ(Diff1
a) is the subgroup 〈λ〉 ⊂ R∗.

Proof. Recall from Remark 7 that Diff1
a(Cλ) = Diff1,+

a (Cλ). The set L(Cλ) of left points of Cλ
is affinely locally homogeneous, namely for any two left points a and b there exists an affine
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germ sending a neighborhood of a in Cλ into a neighborhood of b in Cλ. Therefore it suffices to
analyze Diff1,+

0 (Cλ). Moreover, 0 is the minimal element of Cλ and therefore it should be fixed
by any element of Diff1,+(Cλ).

Elements of L(Cλ) can be described explicitly, as

L(Cλ) =

∞⋃
n=1

{
x ∈ [0, 1];x =

n∑
j=1

ajλ
−j , where aj ∈ {0, λ− 1}

}
. (35)

Therefore there exists δ such that the multiplication by λ ∈ R∗ sends Cλ ∩ Nδ(0) into Cλ.
This easily implies that χ(Diff1,+

a ) contains the subgroup 〈λ〉.
For the reverse inclusion we need a sharpening of Lemma 6. Note first that the set of lengths

of gaps in Cλ is {(λ− 2)λ−n, n ∈ Z+\{0}}. In particular, the quotients of the lengths of any two
gaps belong to 〈λ〉.

Let α > 1 be a minimal element occurring in χ(Diff1,+
0 (Cλ)) ⊂ R∗+. By Lemma 7 there exists

k ∈ Z+ such that λ−1 = αk. Let ϕ ∈ Diff1,+
0 be such that ϕ′(0) = λ−1/k.

For every gap I, the image J = ϕ(I) is another gap and the ratio |J |/|I| is an element in
〈λ〉, hence of the form λi(I), for some integer i(I). Further, there is a point xI ∈ I for which
ϕ′(xI) = λi(I). Letting In be a sequence of gaps converging to the origin, we have that ϕ′(xIn)
converges to ϕ′(0) = λ−1/k. The sequence of integers i(In) hence converges to −1/k, which forces
k = 1. 2

We next observe that for each left point a of Cλ there exists a small neighborhood Ua of a
such that the affine map ψa = a+ λ(x− a) sends Ua ∩ Cλ into Cλ, defining therefore a germ in
diff1,+a . Then Lemmas 11 and 7 imply together that diff1,+a is generated by ψa = a+ λ(x− a).

Let a and b be two left points of Cλ. Denote by D(a, b) the set of germs at a of classes of
local diffeomorphisms ϕ of (R, Cλ) such that ϕ(a) = b. Then D(a, b) is acted upon transitively by
diff1,+a . Using an argument similar to the one from above concerning stabilizers, D(a, b) consists
of germs of maps of the form ψa,b,k = b+ λk(x− a), with k ∈ Z.

Now let ϕ ∈ Diff1,+(R, Cλ) such that ϕ(a) = b. From above there exists δ > 0 such that
ϕ|Cλ ∩ Nδ(a) coincides with ψa,b,k|Cλ ∩ Nδ(a) and hence ϕ′(a) ∈ 〈λ〉. Therefore, for any left point
a ∈ Cλ we have ϕ′(a) ∈ 〈λ〉. Now, left points of Cλ are dense in Cλ, ϕ′ is continuous and 〈λ〉
has no other accumulation points in R∗. It follows that ϕ′(a) ∈ 〈λ〉, for any a ∈ Cλ and any
ϕ ∈ Diff1,+(R, Cλ).

For a given ϕ ∈ Diff1,+(R, Cλ) its derivative ϕ′ is continuous on the whole interval [0, 1] and
hence is bounded. Moreover, the same argument for ϕ−1 shows that ϕ′ is also bounded from
below away from 0, so that ϕ′|Cλ can only take finitely many values of the form λn, n ∈ Z.

The following is a key ingredient in the description of the group diff1,+(Cλ).

Lemma 12. Let ϕ ∈ diff1,+(Cλ). There is a covering of Cλ by a finite collection of disjoint closed
intervals Ik, such that ϕ|Cλ ∩ Ik is the restriction of an affine function to Ik ∩ Cλ. Specifically,

ϕ(x) = ϕ(ck) + λjk(x− ck) for x ∈ Ik ∩ Cλ, (36)

where ck is a left point of Cλ ∩ Ik.

Proof. For c ∈ Cλ there is some m ∈ Z such that ϕ′(c) = λm. We want to prove that there exists
an open neighborhood U of c such that

ϕ(x) = ϕ(c) + λjk(x− c) for x ∈ U ∩ Cλ. (37)
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Then such neighborhoods will cover Cλ and we can extract a finite subcovering by clopen (closed
and open) subsets with the same property.

This claim is true for any left (and by similar arguments for right) end points c of Cλ. It is
then sufficient to prove that whenever we have a sequence of left points an → a∞ contained in
a closed interval U ⊂ [0, 1] and a C1-diffeomorphism ϕ : U → ϕ(U) ⊂ [0, 1] with ϕ(C ∩ U) ⊂ C,
there exists a neighborhood Ua∞ of a∞ and an affine function ψ such that for large enough n
the following holds:

ϕ(x) = ψ(x) for x ∈ Cλ ∩ Ua∞ .
Around each left point an there are affine maps ψan,kn : Uan,kn → [0, 1] defining germs in

D(an, cn), where cn = ϕ(an), such that cn converge to c∞ = ϕ(a∞) and

ϕ(x) = ψan,kn(x) for x ∈ Cλ ∩ Uan,kn .

We can further assume that Uan,kn ∩ Cλ are clopen sets and we can take Uan,kn = [an, bn]
where bn are right points of Cλ, and the sequence an is monotone, say increasing.

There is no loss of generality to assume that ψ′an,kn |C ∩ Uan,kn is independent on n, say it

equals λm, namely kn = m. Replacing ϕ by its inverse ϕ−1 we can also assume that m 6 0. Since
Cλ is invariant by the homothety of factor λ and center 0, we can further reduce the problem to
the case where m = 0. We have then ϕ′(a∞) = 1, by continuity.

Choose n large enough so that |ϕ′(x) − 1| < ε, for any x ∈ [an, a∞], where the exact value
of ε will be chosen later. Now consider the maximal interval of the form [an, b] to which we can
extend ψan,0 to an affine function which coincides with ϕ on C ∩ [an, b].

If b = a∞, then the Lemma follows. Otherwise, it is no loss of generality in assuming that
b = bn and thus b is a right point of Cλ. Then bn is adjacent to some gap (bn, d). Since d is a left
point of Cλ and ϕ′(d) = 1, we can suppose that d = an+1.

Since ϕ preserves C ∩ U , it should send the gap (bn, an+1) into some gap contained into
[ϕ(an), ϕ(bn+1)]. Recall from above that the ratios of lengths of gaps of Cλ is the discrete subset
〈λ〉 ⊂ R∗. When |ϕ′(x) − 1| < ε, we derive that the ratio of the lengths of the gaps ϕ(bn, an+1)
and (bn, an+1) is bounded by 1 + ε. By taking ε < 1− λ we see that the only possibility is that
the lengths of these two gaps coincide, namely that

ϕ(an+1) = ϕ(bn) + an+1 − bn.

This implies that there is a smooth extension of ψan,0 to an affine function on [an, bn+1] which
coincides with ϕ on points of Cλ, contradicting the maximality of b = bn. This proves that
b = a∞, proving the claim.

When a∞ is not a right point we also have an affine extension of ϕ to a right neighborhood
of a∞, by the same argument. 2

Consider the rooted binary tree T embedded in the plane so that its ends abut on the interval
[0, 1]. We label each edge e by l(e) ∈ {0, λ− 1}, such that the leftmost edge is always labeled 0.
Let v be a vertex of T and e1, e2, . . . , en the sequence of edges representing the geodesic which
joins the root to v. To the vertex v one associates then the number

r(v) =
n∑
j=1

l(ej)λ
−j . (38)

Denote by D(v) the set of all descendants of the vertex v. If I is a closed interval in [0, 1] we claim
that L(Cλ) ∩ I coincides with the set r(D(vI)), for some unique vertex vI ∈ T . Furthermore, if
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I1, I2, . . . , Ik is a set of disjoint standard intervals covering Cλ then vI1 , vI2 , . . . , vIk are the leaves
of a finite binary subtree T (I1, I2, . . . , Ik) of T containing the root. In particular, if J1, J2, . . . , Jk
is another covering of Cλ by standard intervals then we have two finite trees T (I1, I2, . . . , Ik)
and T (J1, J2, . . . , Jk). Further, we also have affine bijections ϕj : Ij → Jj which are of the form
ϕj(x) = bj +λkj (x−aj), where aj , bj ∈ L(Cλ). It is clear that ϕj(Ij ∩ L(Cλ)) = Jj ∩ L(Cλ). The
explicit form of ϕj |Ij ∩ L(Cλ) actually can be interpreted in terms of r(vIj ), as follows. Let D(v)
be the planar rooted subtree of T of vertices D(v) and root v. There is a natural identification
ιv,w of the planar binary rooted trees D(v) and D(w), for any v, w ∈ T . When we further identify
L(Cλ) ∩ Ij with the set r(D(vIj )) the induced action of ϕj on w ∈ D(vIj ) coincides with ιvIj ,vJj .

Consider now the operation of replacing an interval Ij by two disjoint intervals I ′j and I ′′j
whose union is disjoint from the other intervals Ik. Correspondingly we replace Jj by the couple
{J ′j , J ′′j } = {ϕj(I ′j), ϕj(I ′′j )} and ϕj by its restrictions to these smaller intervals. This operation

does not change the element in diff1(Cλ). The immediate consequence of the description of ϕj
is that the pairs of trees T (I1, . . . , I

′
j , I
′′
j , . . . , Ik) and T (J1, . . . , J

′
j , J
′′
j , . . . , Jk) are both obtained

from T (I1, I2, . . . , Ik) and T (J1, J2, . . . , Jk) by adding one caret at the jth leaf. This proves that
this pair of trees is a well-defined element of the standard Thompson group F . It is rather clear
that the map defined this way diff1,+(Cλ) → F is an isomorphism.

In a similar way we define an isomorphism diff1,+
S1 (Cλ) → T , when we work with the infinite

unrooted binary tree T embedded in the plane so that its ends abut to S1.
In the case of diff1S2(Cλ) we use the proof of Theorem 3 and the infinite unrooted binary tree

T without any planar structure. The only difference is that the restrictions ϕ|Ij are not having
anymore a coherent orientation. Some of them might be orientation preserving while the others
may not. This explains the isomorphism between diff1S2(Cλ) and the signed Thompson group
V ±. This ends the proof of Theorem 6 in the case of C = Cλ.

4.3 Proof of the general case of Theorem 6
The only missing ingredient is the result generalizing Lemma 12 to the more general self-similar
sets considered here, as follows.

Lemma 13. Let ϕ ∈ Diff1,+(R, C), where C = CΦ is a self-similar Cantor set satisfying the
genericity condition (C). Then there is a covering of C by a finite collection of disjoint intervals
Ik, such that ϕ|C ∩ Ik is the restriction of an affine function to Ik ∩ C.

The proof of this lemma for incommensurable parameters will occupy § 4.3.1. In the case
when gaps and homothety factors are respectively equal the proof given above extends word by
word.

Now, any ϕ in the group diff1,+(C) corresponds to a pair of coverings of C by intervals
(I1, I2, . . . , Ik) and (J1, J2, . . . , Jk) so that ϕ sends affinely Ij into Jj , for all j. These intervals
could be chosen to be of the form [a, b], where a is a left point of C and b is a right point of C.
We call them clopen intervals.

Particular examples of clopen intervals are the images of [0, 1] by the semigroup generated
by Φ, which will be called standard (clopen) intervals. Each standard clopen interval corresponds
to a finite geodesic path descending from the root in the (regular rooted) tree of valence n + 2
associated to Φ. Thus standard intervals are associated to vertices of the (n+ 2)-valent tree, and
one says that they belong to the kth generation of standard intervals if the associated vertex is
at distance k from the root. The complementary intervals to the union of all kth generation of
standard intervals will be the kth generation of gaps. Moreover, given a standard interval I of
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the kth generation, the gaps of the (k + 1)th generation lying in I will also be called the first
generation of gaps in I. Notice that, conversely, every gap is a first generation gap for some
uniquely determined standard interval, to be called its antecedent standard interval.

Note that the intervals obtained in the previous lemma were not necessarily standard
intervals. It then remains to prove the following enhancement of Lemma 13.

Lemma 14. We assume that C = CΦ, where Φ verifies the genericity condition (C) from
Definition 6. Then any ϕ ∈ diff1,+(C) corresponds to a pair of coverings of C by standard
intervals (I1, I2, . . . , Ik) and (J1, J2, . . . , Jk) so that ϕ sends affinely Ij into Jj , for all j.

Proof. Every clopen interval is the disjoint union of finitely many standard intervals and open
gaps. We can therefore suppose that all Ij are standard intervals.

Note that for any two standard intervals I, J ⊂ [0, 1] there exists an affine bijection
(I, I ∩ C) → (J, J ∩ C), because this holds when I = [0, 1].

We now claim that, conversely, if there exists an affine bijection ϕ : (I, I ∩ C) → (J, J ∩ C)
and I is standard then its image J is also a standard interval. This will prove Lemma 14.

Consider a maximal standard interval I ′ ⊂ J . Composing ϕ with the affine map in diff1,+(C)
sending bijectively (I ′, I ′ ∩ C) onto (I, I ∩ C) we can assume that I = I ′. In particular, the
homothety factor µ of the affine map ϕ : I → J is at least 1.

Assume first that all homothety ratios are equal to λ and all initial gaps have the same
length g, as in Definition 6(i). Observe that all gaps will have sizes of the form λmg, for some
m ∈ Z+. Moreover, if I is a standard interval of the kth generation, then the set of largest gaps
in I consists of n equidistant gaps of size λkg. Their image by the affine map ϕ is the set of
largest gaps in J , so that the latter are also n equidistant equal gaps in J , necessarily of size
λn+kg, for some n ∈ Z−. In particular the homothety factor is µ = λn.

We now consider the antecedent standard intervals associated to the largest gaps of J . If
such a gap had size λn+kg, its antecedent interval would have size λn+k. If two of the largest
gaps in J have distinct antecedent intervals, then they would be separated by another gap of
size λn−1+kg, contradicting their maximality in J . Therefore all but possibly the leftmost and
rightmost intervals of the complement of these n gaps in J are standard.

Now, the interval between two consecutive gaps in I is a standard interval of length λk+1,
whose image by the affine map ϕ has length λn+k+1. This shows that the leftmost and the
rightmost intervals also should be standard intervals, as they have the same size as the remaining
(n − 1) standard intervals between consecutive image gaps. This proves that J is a standard
interval.

Consider now the case when homothety factors and gap lengths are incommensurable, as
in Definition 6(ii). The set of gaps of the same generation is totally ordered from the leftmost
gap towards the right. The sequence of lengths of (k + 1)th generation gaps within a standard
interval of the kth generation is of the form (Λkg1,Λkg2, . . . ,Λkgn), for some k. Consider now a
gap of the first generation, say Λkgα, of I. Its image by an affine map should be a gap of J . It
follows that there exists some σ(α) ∈ {1, 2, . . . , n} and kα ∈ Zn+1

+ , so that:

µΛkgα = Λkαgσ(α),

where µ is the homothety factor of the map ϕ. Conversely, any gap of I ⊂ J is the image by ϕ
of some gap of I, and hence there exists some τ(α) ∈ {1, 2, . . . , n} and lα ∈ Zn+1

+ , so that:

1

µ
Λkgα = Λlαgτ(α).
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Getting rid of µ in the two equalities above we obtain the following identities, for all α, β:

Λkα+lβ−2k gσ(α)gτ(β) = gαgβ.

By taking β = σ(α) we derive:

Λkα+lσ(α)−2k gτ(σ(α)) = gα.

If gα and λj satisfy the genericity condition (C) the last equality implies τ(σ(α)) = α and
kα + lσ(α) = 2k, for every α. A symmetric argument yields σ(τ(α)) = α, so that σ and τ are
bijections inverse to each other. Furthermore we derive:

µn =
n∏

α=1

Λkα−k
gσ(α)

gα
= Λ∑n

α=1(kα−k),

so that
µ = Λ−k+(1/n)

∑n
α=1 kα

.

Therefore, for each β we have:

gσ(β)

gβ
= Λ−kβ+(1/n)

∑n
α=1 kα

.

Then our assumptions of genericity imply that σ must be identity. It turns out that all kα are
equal to some k and hence µ = Λk−k.

Observe that there exists a standard interval J ′ and an affine bijection ψ : (I, I ∩ C) →

(J ′, J ′ ∩ C) with homothety factor Λk−k. Therefore ϕ ◦ψ−1 : J ′ → J is a translation. Moreover,

as σ was identity the sequence of first generation gaps in J ′ is sent by ϕ ◦ψ−1 into the sequence
of first generation gaps of some standard interval J ′′. By induction, the ordered sequence of the
kth generation of gaps in J ′ is sent by ϕ◦ψ−1 into the sequence of the kth generation gaps of J ′′.
Since J and J ′′ have the same length it follows that J = J ′′ and hence J is a standard interval,
as claimed. 2

Now, it is immediate that 〈λ0〉 ⊂ χ(Diff1,+
0 ), and by Lemma 7 there exists some N ∈ Z+ so

that χ(Diff1,+
0 ) = 〈λ1/N

1 〉. Since L(C) is affinely locally homogeneous this holds for any left point
a of C.

Then, the general form of an affine germ locally preserving C around a left point ck ∈ C ∩ Ik
is

ϕ(x) = ϕ(ck) + Λjk,N (x− ck) for x ∈ Ik ∩ C, (39)

where, for each multi-index k = (k0, k1, . . . , kn) we put

Λk,N = λ
k0/N
0

n∏
i=1

λkii . (40)

Furthermore, we can modify any germ in Diff1,+
0 by using homotheties of ratios λk0, k ∈ Z

in order to obtain a diffeomorphism ϕ : [0, 1] → [0, r] sending C into C. By Lemma 13 we can
assume that ϕ is an affine map, and by Lemma 14 [0, r] must be a standard interval. It follows
that the homothety factor of ϕ is a power of λ0. This implies that N = 1.

Pairs of coverings by standard clopen intervals of C correspond to pairs of finite rooted
subtrees. Subdividing the covering by standard subintervals is then equivalent to stabilizing
the trees. This provides isomorphisms with the Thompson groups Fn+1, Tn+1 and the signed
Thompson group V ±n+1, respectively, ending the proof of Theorem 6.
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4.3.1 Proof of Lemma 13 for incommensurable parameters. We will use a much weaker
restriction than the total incommensurability, see the conditions used below.

Recall from § 4.1 that the rooted (n + 2)-valent tree associated to the IFS has the edges
issued from a vertex labeled by integers from 0 to n (from left to right). Then left points of C
correspond to sequences which eventually end in 0, namely of the form

L(i1 · · · ip) = i1i2 · · · ip000000 · · · ,

while right points correspond to sequences which eventually end in n:

R(i1 · · · ip) = i1 · · · ipnnnnnn · · · .

Consider two finite multi-indices I = i1 · · · ip and J = j1 · · · jq and set a = L(i1 · · · ip), b =
R(i1 · · · ip), α = L(j1 · · · jq), β = R(j1 · · · jq). Following Definition 9 the standard germ ψI,J is
the affine map ψI,J : [a, b] → [α, β] given by the formula:

ψI,J(x) = a+

(∏q
m=1 λjm∏p
k=1 λ

−1
ik

)
(x− a).

Each multi-index I determines a vertex vI of the tree, which is the endpoint of the geodesic
issued from the root which travels along the edges labeled i1, i2, . . . , ip. Then, at the level of trees
a standard germ corresponds to a combinatorial map sending the subtree hanging at the vertex
vI onto the subtree issued from the vertex vJ , as in the figure below:

An extension of the standard germ ψ : [a, b] → [α, β] is a standard germ defined on [c, d] ⊃
[a, b] whose restriction to [a, b] coincides with ψ such that [c, d] corresponds to a vertex vI′ of
the tree whose multi-index I ′ is a prefix of I, namely I ′ = i1i2 · · · ir with r 6 p. Note that a
non-trivial extension of ψ exists only if ip = jq.

A multi-germ is a finite collection of standard germs ψj : [aj , bj ] → [αj , βj ] such that:

a1 < b1 < a2 < b2 < c < · · · < ak < bk, α1 < β1 < α2 < β2 < · · · < αk < βk

and [bj , aj+1] and [βj , αj+1] are gaps of C, for all j.
Eventually an extension of a multi-germ {ψj}j=1,k is a multi-germ {θj}j=1,m such that every

standard germ ψj is extended by some θi. Notice that several elements of the multi-germ {ψj}j=1,k

might have the same extension θi.

Lemma 15. Let {ψj}j=1,m be a multi-germ with the property that there exist constants µ, ν > 0
satisfying

µ

ν
>

1

max(λ1, λ2, . . . , λn)
,

such that
µ 6 ψ′j(x) 6 ν for every x. (41)
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If one standard germ ψi, for some i ∈ {1, 2, . . . ,m}, admits an extension χ, then there exists an
extension of the multi-germ {ψj}j=1,m containing the standard germ χ.

Moreover, if a diffeomorphism ϕ ∈ Diff1(R, C) whose derivative ϕ′ verifies the condition for
derivative (41) coincides with the multi-germ {ψj}j=1,m on [a1, bm], then it coincides with χ on
its domain of definition.

Proof. The standard germ ψj is of the form ψj = ψI,J , with ip = jq = k. We want to construct
an increasing function extending the standard germ ψI,J which satisfies the condition (41) for
the derivative. Such a function will be called a continuation of ψj . Moving one step upward on
the tree (i.e. the ancestor vertices) we arrive at the vertices vI′ and vJ ′ , where I = I ′k, J = J ′k.

Consider first k < n and seek for a continuation on the right side of the interval on which ψI,J
is defined. Therefore the continuation must have the form drawn below, where points marked by
squares correspond to each other:

Since the ratio of the derivatives is uniformly bounded, the vertices corresponding to squares
should be on the same level, namely at equal distance from the vertices vI′ and vJ ′ , respectively.
Consider the highest possible level of such squares for which the extended map is compatible
with the standard germ ψj+1. We claim that this continuation has the following form, namely
that squares sit on the vertices vI′k+1 and vJ ′k+1:

Assume the contrary holds, namely that the squares sit on lower levels, as in the figure below:

Consider further continuation to the right of this increasing function. We label points on the
next branch issued from the ancestor of square vertices by triangles and further by hexagons etc.
Consider further the highest levels for which continuation is compatible. Then the picture
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is impossible, since the ancestor of the square vertex also should have been labeled by a square.

Therefore we must continue along an infinite path down to a boundary point of the tree, as in

the following figure:

The boundary point corresponds to an infinite multi-index I. Then ξ = ξ(I) ∈ [0, 1] cannot

be a right point of the Cantor set, since this would give a continuation to a whole subtree issued

from vI′ , contradicting the form of our path.

Now our continuation coincides with the multi-germ {ψj}j=1,m for values x ∈ [aj , ξ]. Since

ξ is not a right point, they coincide in a right semi-neighborhood of ξ and this contradicts the

choice of our infinite path.

We summarize the discussion above as follows. Let kr < n; then the only possible

right continuation (which satisfies the condition (41)) of ψIk1···kr,Jk1···kr is by the germ

ψIk1···kr−1kr+1,Jk1···kr−1kr+1. A similar argument shows that whenever kr > 0 the only possible

left continuation (which satisfies the condition (41)) of ψIk1···kr,Jk1···kr is by the germ

ψIk1···kr−1kr−1,Jk1···kr−1kr−1.

Repeating the same argument, we get the desired statement. 2

Lemma 16. There exists ε > 0 with the following property. Consider a standard germ ψI,J with

ip 6= jq and jq 6= n 6= ip.

Then any continuation of ψI,J to a standard germ θ sending L(i1i2 · · · ip−1ip + 1) to

L(j1j2 · · · jq−1jq + 1) which is defined in a right semi-neighborhood of L(i1i2 · · · ip−1ip + 1) is

either an extension of the standard germ ψI,J , or else it verifies:∣∣∣∣ψ′I,Jθ′ − 1

∣∣∣∣ > ε.

Notice that θ is locally affine and hence we don’t need to specify the point (of the

corresponding domain of definition) in which we consider the derivative.
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Proof. The ratio of the derivatives of the standard germs ψI,J and θ = ψi1i2···ip−1ip+1, j1j2···jq−1jq+1

is given by

ψ′

θ′
=

λ−1
ip
λiq

λ−1
ip+1λiq+1

λm1 ,

where m ∈ Z. This is a discrete subset of R∗ and hence the claim. 2

We can apply the same arguments when ip 6= 0 6= jq. Specifically, we have the following
lemma.

Lemma 17. Let n > 2. Then there exists ε > 0 such that any multi-germ {ψj}j=1,m with the
property: ∣∣∣∣ψ′iψ′j − 1

∣∣∣∣ < ε

admits an extension containing with at most two elements.

Proof. It remains to examine the standard germs ψI,J in following two cases:

(I, J) ∈ {(i1 · · · ip−10, J = j1 · · · jq−1n), (i1 · · · ip−1n, j1 · · · jq−10)}.

The corresponding picture depends on the number s of occurrences of n in the tail of j1 · · · jq−1n
and the positions of the the square vertices (having r and m respectively ancestors labeled 0) as
below:

The ratio of derivatives is

λsnλkλ
−1
k+1λ

−r
0

λ0λ
−1
1 λ−m0

=
λkλ1

λk+1
· λsn
λr−m+1

0

.

Letting s and µ = r −m + 1 be large enough we can insure that λsn/λ
µ
0 is arbitrarily close to

λk+1/λkλ1. In this case µ > 0, so that we can automatically extend the new standard germ
obtained this way and get the figure below, where the position of the squared vertex is the
highest possible:
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Now, as n > 2 we cannot find a non-trivial extension of the two standard germs corresponding
to the labeled vertices. This means that there is an extension with at most two elements, thereby
proving our statement. 2

Lemma 18. Let n = 1. Then there exists ε > 0 such that any multi-germ {ψj}j=1,m verifying
the condition: ∣∣∣∣ψ′iψ′j − 1

∣∣∣∣ < 1 + ε

admits an extension containing at most 4 elements.

Proof. The only possible situation is that pictured below:

Consider a right continuation as follows:

In the left-hand side picture we have r + 1 ancestors of the fat dotted vertex which are labeled
1 and s ancestors of the square vertex labeled 0, while in the right-hand picture there are v
ancestors of the square vertex labeled 0. Then the ratio of derivatives of the two standard germs
is:

λ−r−1
1 λ1λ

s
0

λ1λv0
=
λs−v0

λr+1
1

.

We can approximate arbitrarily close 1 by λs−v0 /λr+1
1 , but then s − v must be large, and in

particular positive. This implies that we can automatically extend this to a standard germ as
follows:

or, after removing non-essential information:

And we now see that a right continuation is impossible. Thus we get our claim. 2
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4.3.2 Cantor sets with commensurable parameters. The genericity condition (C) could be
extended to include also the case when all homothety factors λi are commensurable. We skip the
details and present instead an example of an asymmetric Cantor set AC which is the attractor
of the IFS:

φ0(x) = 1
4x, φ1(x) = 1

2x+ 1
2 .

For each finite multi-index I = i1i2 · · · ik, with ij ∈ {0, 1} we set l∅ = 0 and define by induction:

l0I = 1
4 lI , l1I = 1

2 lI + 1
2 .

Then L(AC) = {lI ; I finite and admissible}, where I = i1i2 · · · ik is admissible if it is either empty
or else ik = 1. If we set lI = limk→∞ li1i2...ik for infinite I, then AC is the union of L(AC) and
the set of lI , with infinite I. Further, L(AC) is identified with the set of those lI for which I is
infinite and eventually 0. It follows as in the case of Cλ that χ(Diff1

0(AC)) = 〈4〉. Further, for
a, b ∈ L(AC), we obtain

D(a, b) =

{
ψa,b,k = b+

1

2n(a,b)
4−k(x− a), k ∈ Z

}
, (42)

where n(a, b) ∈ {0, 1} is the parity of the length of the geodesic joining a to b in the reduced
binary tree associated to the IFS.

The previous arguments show that any element ϕ of diff1,+(AC) determines a finite covering
of AC by intervals Ij on which ϕ|Ij is of the form ψaj ,bj ,kj , for some aj ∈ L(AC). Moreover

diff1,+(AC) is isomorphic to the Thompson group F .

4.4 Proof of Theorem 7
Let Diff1

a(Rn, C) denote the stabilizer of a ∈ C in the group Diff1(Rn, C). We verify immediately
that the map χ : Diff1

a(Rn, C) → GL(n,R), given by χ(ϕ) = Daϕ is a homomorphism. In the
case when C is a product we can describe explicitly χ(Diff1

a(Rn, C)). For the sake of simplicity
we restrict ourselves to the case n = 2. Consider C = Cλ1 × Cλ2 . We say that a = (a1, a2) ∈ C
is an end point of C if both ai are endpoints of Cλi .

Lemma 19. Suppose that λi > 2 and a is an end point of C.

(i) If λ1 6= λ2 then

χ(Diff1
a(R2, C)) = 〈λ1〉 ⊕ 〈λ2〉. (43)

(ii) If λ1 = λ2 = λ then

χ(Diff1,+
a (R2, C)) = 〈λ〉 ⊕ 〈λ〉. (44)

Proof. From the first part of the proof of Theorem 4 we infer that whenever C is a product
and a ∈ C is fixed by ϕ, its differential Daϕ must send both horizontal and vertical vectors into
horizontal or vertical vectors.

Moreover, when λi are distinct, the horizontality/verticality of the segment should be
preserved. Otherwise ϕ would induce a germ of C1-diffeomorphism φ : (R, Cλ1) → (R, Cλ2).
By Remark 4 we need λ1 = λ2.

Therefore ϕ restricts to germs of diffeomorphisms φi ∈ Diff1
ai(R, Cλi). By Lemma 11 and

Remark 7 χ(φi) = 〈λi〉. This proves the first item.
On the other hand when λ1 = λ2 we can locally identify (Cλ1 , a1) and (Cλ2 , a2) by an

affine germ. The linear map Ra =
(

0 1
1 0

)
which exchanges the two orthogonal axes meeting at
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a ∈ C belongs to Diff1
a(R2, C). We can compose ϕ with Ra, if needed, in order to have Daϕ

diagonal. Thus χ(Diff1
a(R2, C)) = 〈〈λ〉⊕ 〈λ〉, Ra〉. Taking into account that det(Ra) = −1, so Ra

is orientation reversing, we obtain the claim.
Observe that diff1a,R2(C) is either isomorphic to Z2, when λi are distinct, or an extension of

Z2 by Z/2Z, otherwise. 2

Consider now that λ1 = λ2. Now let a and b be two end points of C. Denote by D(a, b)
the set of germs at a of classes in diff1R2(C) having representatives ϕ ∈ Diff1(R2, C) such that

ϕ(a) = b. This set is acted upon transitively by diff1,+
a,R2(C), so that D(a, b) consists of maps of

the form
ψa,b,k,n(x) = (bj,i + λkj (xi − aj,i))i=1,2 ◦ Snba for any x ∈ Ij ∩ C. (45)

where Snba is an element of the group D2 of orientation preserving symmetries of the square,
namely Sa is a rotation of order 4 fixing a and nb ∈ {0, 1, 2, 3}.

Now the set of endpoints of C is kept invariant by any ϕ ∈ Diff1(R2, C). Therefore, for any
endpoint a ∈ C there exists some ki, n depending on a such that Daϕ = (λk1⊕λk2)◦Sna . The set
of possible values of Daϕ is then a discrete subset of GL(2,R). Since endpoints of C are dense
in C and Dϕ is continuous we have Daϕ is of the form (λk1 ⊕ λk2) ◦ Sna , for any a ∈ C and any
ϕ ∈ Diff1,+(R, C).

For a given ϕ both the norm ‖Dϕ‖ and the determinant det(Dϕ) of its differential are
continuous on [0, 1]× [0, 1] and hence they are bounded. Moreover, the same argument for ϕ−1

shows that these quantities are also bounded from below away from 0, so that Dϕ|C can only
take finitely many values. The next point is the analogue of Lemma 12 to this situation.

Lemma 20. There is a covering of C by a finite collection of disjoint standard rectangles Ik
whose images are standard rectangles such that ϕ|C ∩ Ik is the restriction of an affine function
and more precisely we have

ϕ(x) = (λjk,1 ⊕ λjk,2) ◦ Smkbk (x− (α1, α2)) + ϕ(α1, α2) for x ∈ Ik ∩ C, (46)

where αi are left points of Ci.

Proof. We can choose both Ik and their images to be standard rectangles, as in the case of
central Cantor sets Cλ.

Let c ∈ C. Then Dcϕ = (λjk,1⊕λjk,2)◦Smkbk , which we denote by A for simplicity in the proof.
We have to prove that there exists a neighborhood U of c such that

ϕ(x) = A(x− (α1, α2)) + ϕ(α1, α2) for x ∈ U ∩ C. (47)

Such neighborhoods will cover C and we can extract a finite subcovering by clopen sets to get
the statement.

This claim is true for endpoints a = (α1, α2) of C. It is then sufficient to prove that whenever
we have a sequence of endpoints an → a∞ contained in a closed rectangle U ⊂ [0, 1] and a
C1-diffeomorphism ϕ : U → ϕ(U) ⊂ [0, 1] with ϕ(C ∩ U) ⊂ C, there exists a neighborhood Ua∞
of a∞ and an affine function ψ such that for large enough n the following holds:

ϕ(x) = ψ(x) for x ∈ Cλ ∩ Ua∞ .
Around each left point an there are affine maps ψan : Uan,kn → [0, 1] defining germs in

D(an, cn), where cn = ϕ(an), such that cn converge to c∞ = ϕ(a∞) and

ϕ(x) = ψan(x) for x ∈ Cλ ∩ Uan,kn .
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We can further assume that Uan ∩ Cλ are clopen sets and we can take Uan to be standard
rectangles [αn,1, βn,1]× [αn,2, βn,2] where βn,i are right points of Ci.

There is no loss of generality to assume that Dψan |C ∩ Uan is independent on n, say it equals
(λm1 ⊕ λm2)Sj . Replacing ϕ by its inverse ϕ−1 we can also assume that m1 6 0. Since C1 is
invariant by the homothety of factor λ and center 0, we can further reduce the problem to the
case where m1 = 0. We can further assume that m2 6 0 by the same trick and finally get rid of
the second diagonal component of the differential. Then, by continuity, we have Da∞ϕ = Sj .

Choose n large enough so that ‖Dxϕ(x)− 1‖ < ε, for any x in a square centered at a∞ and
containing all Uan , with n large enough, where the exact value of ε will be chosen later.

Now consider the maximal standard rectangle of the form U ′ = [αn,1, β1]× [αn,2, β2] to which
we can extend ψan to an affine function which coincides with ϕ on C ∩ U ′.

The endpoint (β1, β2) belongs to the closure of three maximal rectangular gaps: the rectangle
Q which is opposite to U ′ is a product of two gaps, while the other two Qv and Qh are products
of gaps with one (vertical or horizontal) side of U ′. Since Dxϕ is close to identity the image of
the rectangular gaps are closed to rectangular gaps of approximatively the same sizes. Now, the
images by ϕ of the vertices of Q are points of C forming a rectangle, which is itself the product
of two gaps. Thus the sizes of this rectangle belong to the set {(λ−2)λ−n;n ∈ Z+}×{(λ−2)λ−n;
n ∈ Z+}. Since the ratios of two different lengths form a discrete set and Dxϕ is close to identity,
the four points in the image form a rectangle congruent to Q. A similar argument holds now
for the rectangles Qv and Qh. This implies that ψan can be extended to an affine function on a
strictly larger rectangle, contradicting our assumptions. This proves the claim. 2

This description shows that diff1,+R2 (C) is isomorphic to 2V sym, namely the Brin’s group
decorated by D2 (see [Bri04] for the non-decorated case). Here D2 is the group of the orientation
preserving symmetries of the cube, namely the group of orthogonal matrices with integral entries
and unit determinant.

Remark 12. We can obtain smaller decoration by choosing self-similar Cantor sets with fewer
symmetries. For instance, diff1,+Rn (C) is isomorphic to Brin’s group decorated by the positive
isometry group of a rectangular parallelepiped with edges of different sizes, if C = Cλ1 × Cλ2 ×
· · ·Cλn , where λi are pairwise distinct but commensurable, namely there exists α ∈ R∗+ and
ki ∈ Z such that λi = αki , for all i. We expect a similar result when λi are incommensurable.
Moreover, by replacing each Cλi by some non-invertible self-similar Cantor set, the corresponding
group diff1,+Rn (C) is isomorphic to Brin’s group nV .

Remark 13. Following the arguments in the proof of Theorem 3 one shows that diff1,+Rn+k(C), for
k > 1, is Brin’s group nV ±sym decorated by the hyperoctahedral group On, namely the group of
symmetries of the cube (possibly reversing the orientation).

5. Examples and counterexamples

5.1 Non-sparse Cantor sets with uncountable diffeomorphism group
Let h : R+ → R be a C∞-function satisfying the following conditions:

h(x) = 0 for 0 6 x 6 1, x > 2,

h(x) > 0 for 1 < x < 2,

h′(x) > −1.
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Since the maps gj : [0, 1] → [0, 1] given by

gj(x) = x+ 2−2jh(2jx), j ∈ Z∗+, (48)

are strictly increasing, they are smooth diffeomorphisms of the interval. The support of gj is

[2−j , 2−j+1] and hence the diffeomorphisms gj pairwise commute. Their derivatives are of the

form:

g′j(x) = 1 + 2j−2jh′(2jx),

and respectively

g
(k)
j (x) = 2kj−2jh(k)(2jx) for k > 2.

Consider the group R consisting of bounded infinite sequences m = m1,m2, . . . of integers,

endowed with the term-wise addition.

There is a map Θ : R → Diff0([0, 1]) given by

Θ(m) = lim
n→∞

gm1
1 ◦ gm2

2 ◦ · · · ◦ gmnn , (49)

where gmj is the m-fold composition of gj . The order in the previous definition does not matter,

as the maps commute. The limit map Θ(m) is immediately seen to be a homeomorphism of [0, 1]

which is a diffeomorphism outside 0.

Let us first consider only those m where mj ∈ {0, 1}. Then we can compute first

lim
x→0

Θ(m)′(x) = 1,

and then

lim
x→0

Θ(m)(k)(x) = 1 for k > 2.

Therefore Θ(m) is a C∞ diffeomorphism of [0, 1].

Moreover any element of R can be represented as a product of Θ(m), with m of having

only 0 or 1 entries. This implies that Θ(R) ⊂ Diff∞([0, 1]). Furthermore it is clear that Θ is

injective, by looking at the factor corresponding to the first place where two sequences disagree.

This implies that Θ provides a faithful C∞ action of R by C∞ diffeomorphisms on [0, 1].

The dynamics of each gj on its support [2−j , 2−j+1] is of type north-south with repelling and

attracting fixed points on the boundary. Pick up some aj ∈ (2−j , 2−j+1), so that bj = gj(aj) > aj .

Then the intervals gnj ((aj , bj)) are all pairwise disjoint. If C0
j ⊂ [aj , bj ] is some Cantor set, then

the closure of its orbit, namely Cj =
⋃∞
k=−∞ g

k
j (C0

j ) ∪ {2−j , 2−j+1} is a gj-invariant Cantor

subset of [2−j , 2−j+1]. Moreover, for any n 6= 0 the restriction gnj |Cj cannot be identity, since gnj
is strictly increasing.

Then their union C =
⋃∞
j=1Cj is a Cantor subset of [0, 1] and for m not identically 0 we also

have Θ(m)|C is not identity. This shows that the diffeomorphism group diff∞(C) contains R. In

particular, diff∞(C) is uncountable.

This technique of construction is close to that involved in other classical constructions in the

field, as in [Tsu95, Nav08, Jor12]. In particular, such a group arises as the group of fragmentations

of elements of the Grigorchuk–Maki group of intermediate growth acting by C1-diffeomorphisms

of the interval from [Nav08].
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5.2 Non-sparse Cantor set with trivial diffeomorphism group
Let X be obtained by removing a sequence of intervals, as follows. At the first step we remove
from [0, 1] the central interval of length 1/4. At the mth step we have 2m intervals which we

label, starting from the leftmost to the rightmost as I
(m)
1 , I

(m)
2 , . . . , I

(m)
2m . We remove then from

I
(m)
j the central interval of length 2−22

m−1−1+j
. The result of this procedure is a Cantor set X

which is not sparse.
Let ϕ ∈ Diff1(R, X). Suppose first that there exists a sequence In of gaps approaching 0 from

the right side with the property that for every n we have Jn = ϕ(In) 6= In. Then there exists
points xIn ∈ In such that ϕ′(xIn) = |Jn|/|In|. The sequence xIn converges to 0. Now lengths of
gaps belong to the discrete set {2−2n , n ∈ Z+} and there are not two gaps of the same length.
Therefore any infinite sequence of lengths |Jn|/|In| 6= 1 has a subsequence which either converges
to 0 or is unbounded. This implies that ϕ′(0) is either 0 or infinite, which contradicts the fact
that ϕ was a diffeomorphism.

It follows that for any sequence In as above and large enough n we have ϕ(In) = In. In
particular ϕ(0) = 0. This holds for any left point of X and hence diff1(X) = 1.

Now let I, J ⊂ [0, 1] be closed intervals intersecting X intersecting along Cantor sets. The
arguments above also show that there exists a diffeomorphism ϕ : (I,X ∩ I) → (J,X ∩ J) if and
only if I = J and ϕ|X ∩ I is the identity. From the proof of Theorem 3 (see § 3.2.3) we deduce
that diff1M (X) = 1 for any manifold M containing the C1-interval [0, 1].

5.3 Sparse Cantor set with trivial diffeomorphism group

Start from the interval I(0) = [0, 1] by removing a central gap J
(1)
1 of size (1− ε). By recurrence

at the nth step we have 2n intervals I
(n)
j , j = 1, . . . , 2n, numbered from the left to the right. To

go further we remove a central gap J
(n+1)
j from I

(n)
j of length |J (n+1)

j | = (1− εn)|I(n)
j |. The set

so obtained is obviously a sparse Cantor set C0.

Let a ∈ C0. Let bn be the right endpoint of the interval I
(n)
jn

to which a belongs. Then set

(xn, yn) for the gap J
(n+1)
jn

⊂ I(n)
jn

. There is no loss of generality of assuming that a < xn < yn < bn.

Given ϕ ∈ Diff1
a(R, C0), with ϕ′(a) 6= 1, there are infinitely many n for which the gap J

(n)
jn

is not
fixed by ϕ. It follows that either ϕ(yn) < xn, or ϕ(xn) > yn, for infinitely many n. By symmetry
we can assume that the second alternative holds. Then

ϕ(xn)− xn
xn − a

>
|yn − xn|
|xn − a|

>
(1− εn)|bn − a|
|xn − a|

>
(1− εn)|bn − a|
εn|bn − a|

=
1− εn
εn

. (50)

Letting n →∞ we obtain that ϕ′(a) =∞, contradiction. This proves that diff1,+a (C0) = 1.
From Remark 8 we have diff1,+(C0) = 1. Moreover, the proof of Theorem 3 implies that

diff1,+M (C0) = 1 for any manifold M containing the C1-interval [0, 1].
Another potential example. In order to convert the non-sparse example above X into a sparse

Cantor set with the same properties, we have to mix ordinary gaps and very small gaps. Start
as above from the interval I(0) = [0, 1] by removing a central gap LG(1) of size 1

3 and two very

small gaps each one centered within an interval component of I(0) − LG(1), namely SG
(1)
1 and

SG
(1)
2 of lengths 2−2α and 2−2α+1

, respectively. Here α is chosen so that

1
3 − 2−2α > 1

6 .

We obtain at the next stage four intervals I
(1)
1 , I

(1)
2 , I

(1)
3 , I

(1)
4 , labeled from the left to the right.
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By recurrence at the nth step we have 4n intervals I
(n)
j , j = 1, . . . , 4n. To go further we remove

first a central gap LG
(n+1)
j from I

(n)
j of length |LG(n+1)

j | = 1
3 |I

(n)
j |. Further we remove two very

small gaps each one centered within an interval component of I
(n)
j −LG(n)

j , namely SG
(n)
2j+1 and

SG
(n)
2j+2 of lengths 2−2α+j+4n

and 2−2α+j+1+4n

. Letting n go to ∞ we obtain a 1
3 -sparse Cantor

set MC. We believe that diff1,+(MC) = 1.

5.4 Split Cantor sets
Two Cantor sets Ci ⊂ Rn are locally smoothly non-equivalent if for any pi ⊂ Ci there is no
C1-diffeomorphism germ (Rn, C1, p1) → (Rn, C2, p2).

A Cantor set in C ⊂ Rn is said to be smoothly split if we can write C = C1 ∪ C2 as a union
of two Cantor sets with C1 and C2 locally smoothly non-equivalent and contained in disjoint
intervals.

We have the following proposition.

Proposition 2. Let n > 1 and C ⊂ Rn be a Cantor set which is smoothly split as C1 ∪ C2.
Then diff1,+(C) = diff1,+(C1)× diff1,+(C2).

Proof. In this situation, Ci are contained into disjoint intervals Ui. Then diffeomorphisms
preserving C should also send each Ci into itself. Furthermore all elements from diff1,+(C1) ×
diff1,+(C2) can be realized as classes of pairs of commuting diffeomorphisms supported in Ui. 2

According to Remark 4 the central Cantor sets Cλ are pairwise locally smoothly non-
equivalent. In particular the union Cλ ∪ 2 + Cµ of two distinct Cantor sets, one of which is
translated by 2 is a split Cantor set. It follows that

diff1,+(Cλ ∪ 2 + Cµ) = diff1,+(Cλ)× diff1,+(Cµ) ∼= F × F,

for distinct λ and µ. It is not clear what would be diff1,+(Cλ ∪ Cµ) or diff1,+(Cλ+Cµ) (for those
parameters for which the sum is still a Cantor set).

5.5 Questions
The countability of diff1M (C) relies on the description of the group of germs of the stabilizer Ga
of a point a ∈ C for a finitely generated group G ⊂ Diff1(M,C): it is cyclic when dimM = 1
and C is sparse and (a finite extension of) a subgroup of Zn if dimM = n and C is a product of
n sparse Cantor subsets of the line. We think that a similar result holds for any sparse enough
Cantor subset of M in higher dimensions, not necessarily a product. One should note that if
the action of a group G ⊂ Diff2(S1) admits a Markov partition (see [DKN09, DKN13]) and an
exceptional minimal set C then C must indeed be sparse.

It seems presently unknown whether for any C1-locally discrete group G of Diff2(S1) with
an exceptional minimal set every point stabilizer should have a cyclic group of germs. Recall
that a group G ⊂ Diff2(S1) is C1-locally discrete if the restriction of the identity to any interval
intersecting its minimal set is isolated in the C1-topology among the restrictions of elements of
G. In particular groups G ⊂ Diffω(S1) with an exceptional minimal set are C1-locally discrete,
as well as Fuchsian groups. One believes that the action of every C1-locally discrete subgroup of
Diffω(S1) has a Markov partition (see [AFKM+15, Main Conjecture]).

A well-known conjecture of Dippolito (see [Dip78, pp. 448–449]) states that for a finitely
generated group G ⊂ Diff2(S1) with a minimal exceptional C such that the groups of germs
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of stabilizers are cyclic the Radon–Nikodym derivative of every element of G (with respect to
an invariant measure) should be locally constant. This suggests that our results describing the
elements of diff1M (C) for Cantor sets associated to generic affine IFS might be extended to more
general Cantor sets. For instance, when C = ΛΓ ⊂ S1 is the limit set of a second kind Fuchsian
group Γ then diff1,+M (C) should also be isomorphic to one of the Greenberg generalizations TΓ

or V ±Γ of the Thompson groups associated to Γ (see [Gre91]). More generally, if Γ ⊂ Diff1(M)
is a finitely generated group having an exceptional minimal set C, the group diff1M (C) is closely
related to the group of piecewise-Γ homeomorphisms of (M,C). Note that an exceptional minimal
set of a Denjoy C1-diffeomorphism (i.e. without periodic points and whose derivative has bounded
variation) of the circle is not generic in our sense, as the spectrum of ratios of lengths of gaps
contains 1 in its closure (see [Mcd81, Por09]). On the other hand Triestino conjectured that any
finitely generated C1-locally discrete subgroup of Diff2(S1) is C1-semi-conjugate to a subgroup
of a generalized subgroup TΓ, where now Γ ⊂ Diffω(S1) is Gromov-hyperbolic and C1-locally
discrete. Similar questions arise for C1-locally discrete subgroups of Diff2(M,C) in relation to
the generalized groups V ±Γ , associated to Γ ⊂ Diffω(M,C).

Every couple of Cantor sets which are attractors of IFS arising from C1-diffeomorphisms of
the line have arbitrarily small perturbations in the C1-topology which makes them disjoint and
generically their arithmetic difference is still a Cantor set, according to a remarkable result of
Moreira [Mor11]. We don’t know how the group diff1M (C) varies under a C1-perturbation of the
IFS and in particular whether it might be larger than the Thompson-type group associated to
the IFS.

The validity of some version of the Tits alternative for diffeomorphism groups has its
counterpart both for diff1M (C) and the smooth mapping class groups: does any finitely generated
subgroup contains a free subgroup on two generators or else it has a finite orbit on the Cantor
set C? This was recently settled in the affirmative by Hurtado and Militon (see [HM15]) for
M1(M,Cλ) where Cλ is the standard ternary Cantor set. Whether a strong Tits alternative
could hold for the groups associated to some Cantor sets comprises the question on finding the
solvable subgroups of diff1M (C), which started to be investigated in [BMNR17]. Recall that the
Thompson group F does not contain any free non-abelian group though is not virtually solvable.
Notice that, by slightly extending [CJN14], every finitely-generated torsion-free nilpotent group
can be made act on the interval with an invariant Cantor set, but we do not know whether there
exists a non-virtually-abelian, nilpotent group of C1-diffeomorphisms of a generic Cantor set.
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intermédiaire, Acta Math. 199 (2007), 199–262.

DKN13 B. Deroin, V. Kleptsyn and A. Navas, On the ergodic theory of free group actions by real-
analytic circle diffeomorphisms, Invent. Math., to appear. Preprint (2013),
arXiv:1312.4133.

DM10 J. J. Dijkstra and J. van Mill, Erdös space and homeomorphism groups of manifolds, Mem.
Amer. Math. Soc. 208 (2010), no. 979.

Dip78 P. R. Dippolito, Codimension one foliations of closed manifolds, Ann. of Math. (2) 107
(1978), 403–453.

Fal03 K. J. Falconer, Fractal geometry: mathematical foundations and applications (Wiley,
Chichester, 2003).

FM92 K. J. Falconer and D. T. Marsh, On the Lipschitz equivalence of Cantor sets, Mathematika
39 (1992), 223–233.

FK04 L. Funar and C. Kapoudjian, On a universal mapping class group of genus zero, Geom.
Funct. Anal. 14 (2004), 965–1012.

FK08 L. Funar and C. Kapoudjian, The braided Ptolemy–Thompson group is finitely presented,
Geom. Topol. 12 (2008), 475–530.

FN16 L. Funar and M. Nguyen, On the automorphisms group of the asymptotic pants complex of
an infinite surface of genus zero, Math. Nachr. 289 (2016), 1189–1207.
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