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Abstract

The Flagship Project1 was a research collaboration between the University of Manchester,
Imperial College London and International Computers Ltd. The project was unusual in that
it aimed to produce a complete computing system based on a declarative programming style.
Three areas of a declarative system were addressed: (1) programming languages and
programming environments; (2) the machine architecture and computational models; and (3)
the software environment. This overview paper discusses each of these areas, the intention
being to present the project as a coherent whole.

Capsule review

The Flagship project was a large declarative language research project involving the University
of Manchester, Imperial College London and International Computers Ltd. The project was
concerned with the design of the entire system, from language and programming environment
down to the machine architecture and the system software. The language used in the project
was an extension of Hope, called Hope+. A prototype Flagship machine with 16 68020
processors has been built. The system software was designed on the assumption that a
Flagship-like system would be commercially available in the early 1990s. This resulted in a
complex system, and only a subset was implemented on the prototype. Experimental results are
somewhat limited and run-time performance was less than had been anticipated from
simulation studies. Nonetheless, many interesting results have come out of the Flagship
project. The work is continuing as the European Declarative System, an Esprit II project. This
paper is a survey of the overall Flagship project, with numerous pointers into the literature for
readers desiring more information about particular aspects of the project.

1 The Flagship project

Flagship was a collaborative research project between the University of Manchester,
Imperial College London and International Computers Ltd (ICL). Flagship was
unusual in that it aimed to build a complete declarative system. In doing so, it
addressed a wider area of activity than many other parallel machine projects. The
project involved the following areas:

1 Flagship was an Alvey project, IK.BS 049. This work was partly supported by SERC grant GR/E
21070.
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• Exploration of the relationship between different declarative language classes and
their programming environments. This area involved Imperial College, and is
discussed in section 2.

• The design both of a machine architecture for the execution of computations in
parallel, and of low-level computational models to serve as targets for translations
of higher-level language systems. This involved the University of Manchester. The
work on the ALICE machine involved Imperial College. These areas are dealt with
in section 3.

• The design of a software environment for the parallel machine. This area involved
the University of Manchester, and is the subject of section 4.

Contributions to each of the areas were made by teams at ICL, in particular to the
work on developing the prototype machine and to all aspects of the software
environment.

The long-term aim of the project (and its successors) is to combine the ease and
correctness of programming using declarative languages with the significant increases
in performance expected from parallel computers (Broughton et al., 1987). Although
the project ended in funding terms in late 1989, work has continued in most of the
areas. This paper draws together much of the work connected with the project as a
coherent whole to the middle of 1992.

There are two major classes of declarative languages (Darlington, 1987): (1)
functional languages that are based on the lambda-calculus; and (2) logic languages
that are based on first-order predicate calculus; the fundamental unit being the
relation. The primary example of a logic language is Prolog.

Because of the relatively short time-scale of the project it was decided to
concentrate on one class of declarative language. The functional class was chosen for
the following reasons:

• Abstractness: declarative languages allow an abstract description of a solution to
be given. However, with 'pure' Prolog one must often be aware of the procedural
interpretation of the language to write programs that will terminate. The
declarative meaning is not sufficient, i.e. two programs with the same declarative
interpretation may have such different procedural interpretations that one of them
may fail to terminate. With functional languages, equivalent declarative meanings
imply equivalent results will be obtained. Even with a knowledge of the procedural
interpretation of Prolog, it is necessary to introduce features such as cut. Such
additions do not have a semantics in first-order logic and constitute 'impure'
Prolog. Functional languages do not require such additions.

• Expressiveness: first-order languages, by definition, are unable to express higher-
order concepts. The higher-order facilities provided in Prolog are built-in, limited
and cannot be given a first-order semantics. It is believed that a higher-order
facility is necessary for complete expressiveness, and that its semantics should be
expressed in the same way as the semantics of the rest of the language.

• Strong typing: although strong typing is orthogonal to the class of language,
Prolog is an untyped language. Strong typing is viewed as being a necessary part
of both a programming methodology and a declarative language. It is felt that
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functional languages have typing systems in advance of any available in all other
language classes.

• Efficiency considerations: it appears to be difficult to build efficient, extensible
parallel machines that provide the low-level synchronisation and communication
logic programs need. It appears to be easier to build machines that support
functional languages (Greenberg and Woods, 1990).

2 Programming languages and programming environments

The work on the programming environment had two major aims: (1) the development
of a more powerful and commercially viable functional language; and (2) the design
and construction of a prototype program development and maintenance system
based on the ideas of formal correctness-preserving program transformation. The
primary references for this section are Darlington (1987) and Darlington et al.
(1989a, b).

2.1 Language development

The basis of this work was the functional language Hope (Burstall et al., 1980). Hope
includes most features considered necessary in a modern functional language, but was
chosen primarily for its familiarity, having been used extensively at Imperial College.

Hope has been extended in various directions to produce more generally
applicable languages. This has led to a number of experimental language designs:

• Hope+ (Perry, 1987 a) is based on Hope with minor extensions for large-scale
programming. The aim was to extend Hope so that it could be used to implement
the Flagship software environment. Hope* is the example language used in Field
and Harrison (1988).

• Hope+ with Unification: logic languages have two features that functional ones do
not: (1) a logic program makes no commitment to which variables in a relation are
considered as inputs and which as outputs; and (2) the results produced by a logic
program need not be in ground form, i.e. they may involve variables. In Flagship,
logic programming extensions to functional languages have been provided by
introducing a programming structure, termed absolute set abstraction, which
allows sets of values to be specified by the conditions that the members of the set
must satisfy. The conditions are expressed as equalities between functional
expressions. A full semantics and details of the implementation of Hope* with
Unification are given in Darlington and Guo (1989). Other work on absolute set
abstraction and its functional interpretation is discussed by Liu (1990).

• SIAN: there exist classes of problems, usually involving communication with
entities outside the computer system, which require an explicit order of evaluation
to ensure correct behaviour. An advantage of functional languages is that there is
no need to give a precise evaluation order. For functional languages to be used for
problems that require an explicit evaluation order there must be some way of
controlling the order in which the reductions of the graph representing the program
occur. SIAN, a language based on temporal logic, allows temporal constraints on
the execution of the program to be expressed. A pure functional program together

https://doi.org/10.1017/S0956796800000927 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000927


22 J. A. Keane

with the temporal constraints is then automatically transformed to produce a
simple, augmented functional program that satisfies the constraints. This work is
described by Darlington and While (1987).

• Hope+C: the absence of side effects in functional languages makes it difficult to
express input-output activity. Continuations provide a means of systematically
expressing such behaviour by putting the non-referentially transparent parts into
the underlying system, while the programs remain determinate and referentially
transparent. Continuations are essentially functions representing the work
remaining to be done in a partially evaluated function application. A continuation
may be viewed as a mapping that, when applied to an object representing some
'current state', will yield some 'final state' from which a desired result can be
extracted (Field and Harrison, 1988). The language Hope+C (Perry, 1987*) has
extended Hope+ with continuations. Other work, using Hope+ extended with
continuations, is discussed by McLoughlin and Hayes (1990).

• X/Haskell/Hope+ with annotations: in the early stages of the Flagship project a new
language, X, was planned that would specifically exploit the machine architecture.
Much of this work evolved to be contributions, from members of Flagship at
Imperial College and ICL, to the design of Haskell (Hudak et al, 1992). Work on
annotations to Hope+ to fully exploit the parallelism of the Flagship machine is
discussed by Kewley and Glynn (1990). This work involves experimenting with
different evaluation strategies for the language: Hope+ has a mixed evaluation
strategy, with strict function application combined with lazy data constructors.
This strategy can result both in redundant evaluation and loss of parallelism. The
intention of the work on annotations is that such problems can be avoided by
allowing user control of the evaluation strategies.

2.2 Transformation schemes

Program transformation is the process of converting a program into an alternative,
semantically equivalent form that differs from the original in some quantitative
aspect, e.g. execution time or space utilization. The transformation capability in the
Flagship programming environment seeks to give formal, mechanized interactive
support. The algebraic approach to transformation has been concentrated on because
it is considered to have a number of advantages over the unfold/fold transformation
methodology. In particular, it is felt that the algebraic approach allows greater scope
for automation. There are several transformation schemes that have been developed
in the project based on the algebraic approach, the following describes two of these.

Memoisation is a method to assist in the efficient implementation of non-linear
functions. A memo-function (Michie, 1968) is a function that retains details about all
the arguments to which it has been applied, and the corresponding results. When a
memo-function is re-applied to an argument, the argument is used to look up a table
for the corresponding result. The saving in computation from using memo-functions
is obvious. The major difficulty is knowing when an entry can be deleted from the
table, i.e. when the memo-function will no longer be applied to a particular argument.
The work reported by Khoshnevisan (1988) has been concerned with developing a
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space-efficient implementation of memo-functions. This technique is claimed to
achieve improvements comparable to existing program transformation schemes.

As discussed earlier, functional languages lack the facility of logic languages to use
relations in different modes, i.e. variables in functions must be defined as either input
or output. One approach is to augment functional languages with such facilities, as
for example in Hope1 with Unification. However, supporting unification is less efficient
than supporting the reduction system used for functional languages. An alternative
approach is to use function inversion. A method for automatically generating the
inverses of many first-order functions is described by Harrison (1987). This method
requires extensions to functional languages to include logical variables and function-
level unification to express inverses. The logical variables are removed from the
program at transformation-time and thus the execution mechanism remains
conventional reduction. InvX, a mechanized system for function inversion, is
described by Khoshnevisan and Sephton (1989).

The Flagship programming environment provides support for the development,
implementation and modification of programs written in Hope+, and various
program analysers and transformation tools. It is believed that this represents one of
the first attempts to construct a formally based, but practical, transformation system
and embed it inside an execution environment.

The environment was completed in two years, and became available as an
integrated whole in June 1988. The environment is almost totally written in Hope+.
This development, in such a relatively short time-scale using limited resources,
appears to support the claims made about the advantages of using declarative
(specifically functional) languages for software development.

More recent work in the general area is discussed by Darlington et al. (1991).

3 Machine architecture and computational models

The operational semantics of functional languages is to regard equations as rewrite
rules that permit elements of an expression that match the left hand side of an
equation to be replaced with the corresponding right hand side. Each such rewrite
represents a change of form in keeping with the equations, i.e. each change preserves
the meaning (Kennaway and Sleep, 1984).

The reduction model of computation was considered to be the most appropriate
one for parallel execution. The model can be summarized as followed (Peyton Jones,
1987):

1. Executing a functional program consists of evaluating an expression.
2. A functional program has a natural representation as a tree (or more generally a

graph).
3. Evaluation proceeds by means of a sequence of simple steps called reductions.

Each reduction performs a local transformation of the tree/graph.
4. Reductions of redexes at different places in the expression (tree or graph), that

exist at the same time, may safely take place in a variety of orders, or in parallel,
as they cannot interfere with each other.

5. Evaluation is complete when there are no further reducible expressions.
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There are two distinct types of reduction model (Kennaway and Sleep, 1984). With
string (tree) reduction, when a function is applied to an argument, a copy is made of
the function body with a copy of the argument substituted for each occurrence of the
formal parameter. FFP (Mago and Stanat, 1989) is a parallel string reduction
machine. In such a machine the distribution of reducible expressions is relatively easy
because they are all self-contained and, as a result, there is no need for a globally
addressable memory space. String reduction systems generally evaluate expressions
eagerly, reducing arguments to normal form before supplying them to functions.
When infinite data structures, and thus lazy evaluation, are considered string
reduction becomes unacceptable because of the re-evaluation of expressions that is
necessary.

With graph reduction pointers to sub-expressions are copied rather than the full
text. The expression being evaluated is stored as ̂ graph. On a parallel machine the
sharing of sub-expressions means that a globally addressable memory space is
required for full flexibility in distribution of reducible expressions. The alternative is
to only distribute self-contained sub-graphs as in the ZAPP machine (Sleep and
Kennaway, 1984). Combinator reduction is a special case of graph reduction in which
all functions are combinators. A combinator is defined as a lambda expression that
contains no occurrences of a free variable (Peyton Jones, 1987). A transformation
using combinators by which all variables are removed from a functional program is
described by Turner (1979). Each combinator has a fixed rewrite rule associated with
it. Because combinators are higher-order functions having no free variables in their
bodies there is no need for an environment holding values associated with free
variables. Furthermore, combinators can be reduced in parallel. A problem with these
types of fixed combinators is that the granularity of each reduction is extremely small.
Super combinators generalize the class of combinators (Hughes, 1982). They are not
fixed but are compiled from user-defined functions. The granularity of the reduction
of a supercombinator can be much larger than a fixed combinator thus increasing
efficiency. In addition, a supercombinator is 'pure code' so its internal structure is of
no importance, and any suitable, efficient representation may be used.

In the Flagship system a functional program is represented as a graph of super-
combinators.

3.1 Major influences on the Flagship machine

The Flagship machine was developed as a synthesis of dataflow and reduction
principles, allied to techniques used to gain cost-performance in conventional
approaches. In this section, dataflow principles are summarized and the ALICE
reduction machine is discussed.

The dataflow model of computation is based on dataflow graphs. Nodes of the
graph contain operations, and the arcs of the graph allow tokens containing values
to flow from the operations that produce them to the operations that consume them.
Operations can execute when they have the values they require, and can do so in
parallel with other operations without limit (Kirkham, 1990). Dataflow languages can
be regarded as first-order functional languages.

Because dataflow is entirely data-driven, machines built to accommodate the model
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only allocate resources when computation is required. Thus a processor allocated to
a task can proceed to perform the task without having to pause while required input
becomes available: all input to a task is available before allocation and when the task
is performed an output is produced. Therefore, the machine structures require only
uni-directional communication. As a result such machines are highly extensible with
linear speed-up characteristics. However, the dataflow model is regarded as having
two limitations (Watson et al., 1986):

• Expressiveness: pure dataflow is considered to be an inadequate general-purpose
computational model, for operating systems for example, because it has no
concept of storage. Consequently, to express such systems there is a need to
introduce either explicit storage, that loses the functional nature of the model and
also introduces the need for access synchronization, or infinite structures that
require demand-driven evaluation that is not a natural part of the dataflow model.

• Cost-effectiveness: the tagged dataflow model used by most practical machines, e.g.
the Manchester Dataflow Machine (Kirkham, 1990), requires data to carry a large
amount of context information. When physically implemented this not only
requires a large amount of store but, more importantly, the token-matching
requires an associative mechanism so that the availability of data for computation
can be detected. In the Manchester Dataflow Machine this was implemented using
a hardware hashing mechanism that is both complex and expensive. Further,
because of the very fine granularity that most dataflow machines have used, the
costs of scheduling and communication are very high.

The Applicative Language Idealized Computing Engine (ALICE) parallel graph
reduction machine (Darlington and Reeve, 1981), designed at Imperial College, was
the major influence on the Flagship machine. Although the design of ALICE predates
Flagship, the prototype ALICE machines were built, and experimentation carried
out, as part of the project.

The abstract architecture of ALICE (and all reduction machines) is a collection of
reducible tasks and a collection of reduction agents that can access these tasks. In the
physical machine the reducible tasks are graphs of packets held in separate,
distributed store, and the reduction agents are processing elements connected to the
store via a delta network (see Fig. 1). A delta network is a multistage shuffle-exchange

Communication network |

Store | | Store | • • • | Store |

Fig. 1. The ALICE physical machine architecture.

network. It has the total connectivity of a crossbar network with better cost
scalability but increased network latency (Almasi and Gottlieb, 1989; Greenberg and
Woods, 1990).

The reduction model is a slight variant of supercombinator reduction. The process
size on the ALICE machine is somewhat larger than dataflow being at the level of a
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Communication network

Store | pStore 1 | Store

Fig. 2. The Flagship physical machine architecture.

language function definition. ALICE uses code-copying, and hence there is no need
for associative mechanisms.

The major limitation of the ALICE approach is that the granularity of a rewrite is
at the level of a programming language function. Most functions contain conditional
computation thus most rewrites will involve access to remote store that results in the
rewrite being suspended while the required packets are fetched. The suspending and
restarting of rewrites make it unlikely that ALICE would be linearly extensible
beyond a relatively small number of processors (Watson et ai, 1986).

3.2 The Flagship machine

Flagship is a parallel, data-driven, graph reduction machine. In a data-driven
execution model resources are allocated only to processes that have a complete set of
inputs, and this condition is achieved by the arrival of data at a point where other
process information is stored. Such data-driven properties are considered essential to
an efficient parallel machine implementation. A machine with such a data-driven
property should be capable of exploiting the principles that make dataflow machines
linearly extensible (Watson et ai, 1986).

The following sections discuss the representation and rewriting of programs as
graphs on the machine, and the physical architecture. The primary references for
these sections are Watson et al. (1989) and Watson (1990).

3.2.1 Model of graph representation and rewriting

A program to be evaluated on the machine is compiled into a graph. This graph is
reduced according to rewrite rules until a normal form is reached that represents the
result of the computation. The nodes of the graph are represented as packets in the
store of the machine. Conceptually, all packets contain an identifier by which they can
be referenced by other packets. Most packets consist of a header, containing
housekeeping information, and a number of item fields, containing atomic values or
pointers to other packets. A packet header contains its type and its state. This state
denotes what stage of reduction the packet is in:

• Active - the packet is a candidate for reduction. An active packet is the root of a
rewritable sub-graph (RSG), i.e. a reducible task in the abstract architecture.

• Suspended - the packet will become active once the evaluation of its arguments has
been completed.

• Dormant - the packet is an application that has not yet been reduced.
• Ground - the packet is in ground form and cannot be reduced further, e.g. packets

holding integers or code.
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A reducible task, represented by RSG, is selected and then reduced. The reduction
involves examining the type field of the root packet and then rewriting the packet and
its arguments according to the ' rules' associated with that packet type.

3.2.2 Physical architecture

The physical architecture of the machine consists of a set of closely-coupled processor
(PE)-store pairs connected together by a high performance delta network (see Fig. 2).
The difference from ALICE is motivated by the observation that high performance
in conventional machines is obtained by a close coupling between store and
processors. The reducible tasks are divided among the PE-store pairs in the physical
architecture. Each PE can directly access that part of the store to which it is closely-
coupled. Access to a non-local store is achieved by sending a request message to the
PE coupled to that store. Each PE simplifies the RSGs contained in its own local
store. The computational graph is distributed dynamically among the PE-store pairs
as evaluation proceeds; details of load balancing on Flagship can be found in
Sargeant (1987).

Although the store is physically distributed, it is globally addressable by any PE
because it is felt that a more flexible and general-purpose parallel architecture results
from not placing any restriction on the way a computational graph can be distributed
across the physical machine. One immediate consequence is that the potential
parallelism is increased. With this approach it is essential, for efficiency, to localize
activity as much as possible. Mechanisms to exploit locality on Flagship are discussed
in Section 3.2.4.

A consequence of global addressability is that garbage collection must to an extent
also be global. Two new garbage collection schemes were proposed for Flagship: (1)
weighted reference counting, which removes the synchronization necessary for
ordinary reference counting in a distributed system (Watson and Watson, 1987); and
(2) real-time process-based mark-scan (Derbyshire, 1990). A combination scheme
using weighted reference counting for general garbaging, with mark-scan acting as a
background collector for garbage that reference counting was unable to detect, was
also proposed (Derbyshire, 1990). On the prototype machine, two schemes were
embodied in different run-time systems either of which could be selected when the
machine was loaded: (1) ordinary reference counting on a per-PE basis, with weighted
reference counting between PEs; and (2) the mark-scan scheme. No comparative
performance figures are available.

The Flagship global addressability approach contrasts with the ZAPP machine
(Sleep and Kennaway, 1984) where only self-contained sub-graphs can be exported
to other PEs. In this case, all accesses to store are necessarily local, and garbage
collection can be performed locally. However, potential parallelism within the self-
contained sub-graph is lost.

Although it is desirable to localize all arguments to a rewrite, the Flagship machine
must also deal with the case where an argument is in a remote store. Consequently,
before a PE begins a rewrite, all packets within the rewritable sub-graph (RSG) must
be localized on that PE-store pair, where the RSG is defined as a graph of packets that
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Fig. 3. Flagship PE-store pair.

must be available to a PE performing a reduction (Watson, 19876). The root packet
of the RSG contains information to allow the machine to bring together all of the
sub-graph into a single PE-store pair before rewriting is attempted. Usually, this pair
will be the one in which the root of the RSG is located, however, rewrites involving
state are handled differently (discussed in Section 4.1.1). Autonomous hardware
connected to each PE can organize this gathering while the PE is reducing another
sub-graph, and so the performance of the machine is, to an extent, independent of the
latency of the network provided there are enough RSGs to keep the machine busy.

A most important consequence of all packets being available locally when a rewrite
is begun is that a rewrite on the Flagship machine is an indivisible action, i.e. either
completed or not yet started. This overcomes the major limitation of the ALICE
design where rewrites can be suspended. This feature of indivisible rewrites is
discussed in more detail in Section 4.1.1.

3.2.3 Implementation of graph representation and rewriting

A simplified block diagram of a PE-store pair is given in Fig. 3. The local packet store
holds the part of the packet pool that is local to the PE. The active packet pool
contains currently active locally-held packets. The rewrite unit is essentially a
conventional sequential processor. The primary references for this Section are
Watson (19876, c).

A packet is physically just a collection of contiguous storage locations in a linearly
addressable store. In practice, the identifier of a packet is the address where it can be
located in this store. Similarly, an active packet is recognized by the presence of its
address in the active packet pool of the local PE. The action of rewriting an RSG
involves the following:

1. An active packet is obtained from the active packet pool, and the rewrite unit
performs the actions appropriate for its packet type.

2. If the rewrite generates new active packets, they are allocated positions in the local
packet store and the active packet scheduler is passed their addresses. The active
packet scheduler determines when and where a packet is to be processed.

3. When a rewrite results in more than one new active packet then their associated
RSGs can be reduced in parallel. Work can be exported to other PEs via the
interconnection network. When a PE receives an active packet it is added to its
own active packet pool.
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The implementation of rewriting is split into two levels: (1) the basic execution
mechanism; and (2) the computational models. This enabled the two levels to be
developed independently.

Basic execution mechanism

The basic execution mechanism defines the primitives of the machine: (1) the packet
representation of graph nodes; (2) packet states; (3) the firing of packets; (4) the
returning of values as the result of evaluations; (5) primitive packet types; (6) garbage
collection; and (7) the localizing of the RSG.

Computational models

A computational model for a language defines the packet types of the model being
supported, how expressions in that model are represented, and how the building
blocks provided by the basic execution mechanism are used to rewrite those
expressions.

DACTL, the Declarative Alvey Compiler Target Language (Glauert et al., 1989),
is the target intermediate language for Flagship. DACTL can be used as a
specification language for computational models for Flagship because the basic
execution mechanism aims to implement DACTL. Several different models can be
supported simultaneously because they can use different packet types.

The MONSTR model (Banach and Watson, 1989), discussed in Section 4.1.1,
supports extensions to declarative programming. A packet-based model for Prolog
(Syed-Mustaffa, 1992), and a coarse operation-grain packet-based model for a
parallel object-oriented language (POOL) (Sharifi, 1991), have also been developed.

The models for functional languages include one based on the lambda-calculus
(Watson, 1986), one based on SKI combinators (Cheese, 1990) and one based on
supercombinators (Watson, 1987c). The supercombinator model is between 10 and
100 times more efficient than the others because it increases the granularity of the
reductions, and it reaches the result in fewer reductions. As a consequence, it is used
to implement the Hope+ language. The source program is compiled into a set of
supercombinator definitions and an expression to be evaluated that contains the
application of supercombinators to arguments. The expression is then reduced to
Weak Head Normal Form, i.e. with no top-level reducible expressions.

The model can be considered to contain two sub-models. The first sub-model
provides a general reducer that can reduce an application of a supercombinator to
arguments independent of how the arguments are split into packets. This general
reducer is capable of handling higher-order functions. The second sub-model is a
reducer for a restricted type of application in which a function is applied to its arity
of arguments. This is just a special case of the general reducer but, as it is the most
common, it is important to deal with it as efficiently as possible.

In general, a rewrite may need to distinguish between strict and non-strict
arguments, and to evaluate in a demand-driven fashion both its non-strict arguments
and some of its strict arguments, e.g. lazily evaluated lists. A field in the packet header
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determines the number of strict arguments. Pointers to argument packets are tagged
with a bit that indicates whether they are evaluated or not. Unevaluated arguments
can be evaluated by firing the argument's packet. Firing involves activating any
argument packets that are not already active.

The general reducer is used where code is to be planted for an unknown function
applied to arguments. The arity and strictness of the arguments of the function are
not known at compile-time. This lack of arity information is a problem because a
supercombinator cannot be executed unless all the arguments it needs are available.
The model uses IPAP (Incomplete Processable Application) packets for applications
of unknown functions. An IXAP (Incomplete executable APlication) packet is used
for the application of a function to less than its full arity of arguments. When an
unknown function is rewritten the function field is evaluated, as are the arguments
known to be strict. A suspended Build packet is left waiting for the results of
evaluating the function and any strict arguments. When the Build packet becomes
active, further checks are required to ensure that the number of arguments in the
Build packet are sufficient for the supercombinator to be executed.

The special reducer uses two types of application packet: XAPP (executable
Application) and PAPP (Processable APPlication). Data-driven evaluation is
achieved by using the XAPP packet to represent a function application. The XAPP
contains a pointer to a CODE packet (the function), and pointers to the arguments.
Demand-driven evaluation is achieved using the PAPP packet type. A PAPP fires its
unevaluated strict arguments and turns into a suspended XAPP that becomes active
when the evaluated arguments are returned.

Data structures can be built using Constructor packets provided by the
supercombinator model. A Constructor packet when activated merely returns a
pointer to itself.

The execution process is a combination of novel and conventional computational
mechanisms. At one level there is a process of graph reduction where parallel
synchronization and dynamic scheduling of any available rewrite is provided by the
packet-based graph. At a lower level, all the detailed computation that involves store
access and data manipulation to modify the graph is executed with the efficiency of
serial code.

The failure of one or more of the PEs of the machine should be tolerated, such that
the behaviour of the system will be the same. One approach to fault-tolerance has
concentrated on the specification and verification of an algorithm that can ensure
the successful execution of a program in the presence of the failure of a PE of the
machine. To ensure that a recovery can be made from a failure each node of
the graph is replicated on another PE. The objectives of the algorithm are to recover
the computational graphs that are lost due to PE failure. The specifications of the
algorithm, the graph reduction model and the enhanced graph reduction model that
can tolerate the failure of a PE are described formally using CSP notation (Hoare,
1985). The algebraic transformation rules of CSP are used to prove that, in the
presence of PE failure, the fault-tolerant graph reduction model behaves correctly.
Greater detail on the fault-tolerant graph reduction model can be found in Ye et al.
(1990).
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3.2.4 Mechanisms to exploit locality

The Flagship packet abstraction is mapped onto a set of contiguous addresses in a
physical linearly addressable memory, i.e. a packet corresponds to a 'block of
memory'. The links between packets, i.e. the arcs, are pointers to (the addresses of)
the appropriate packets.

Functional programs, in general, tend to manipulate large data structures. As a
consequence most rewrites will contain references to data. When a copy of a packet
representing data is made to a store, it is possible to use it in the requesting rewrite
and then discard it. Such a method is safe, but ignores the working set model of
program behaviour, i.e. data access tends to be grouped into small localities of
address space. In functional programs, where the execution of a function is performed
as a series of rewrites as on Flagship, the working set model manifests itself in a high
probability that a child rewrite may require access to a packet copied as a result of
a request from its parent rewrite (Greenberg and Woods, 1990). If the original copy
has been discarded then another copy will have to be made, thus wasting resources.
If a copy of a packet p is not discarded then further rewrites that are scheduled on
that PE that reference packet p should use the existing local copy of p. Another copy
will not be made although, if necessary, a local copy can always be garbage collected
and re-copied when a subsequent request is made.

In Flagship, the working set model is exploited by each PE having a cache in which
remote, global addresses are mapped to local addresses. Caching is a well-known
technique for increasing locality by keeping copies of recently-referenced data so that
the copy is rapidly available if the same data are referenced again. Cache coherency
and the problems it introduces are not relevant in a pure graph reduction machine due
to the property of referential transparency. Unevaluated subgraphs are evaluated
before they are copied to avoid the potential for re-evaluation (Greenberg, 1989).

The cache is a very general mechanism that ensures that any packet that is shared
globally (via its identifier) is also shared locally. Before a copy of a remote packet is
requested the local cache is checked to see if a local copy already exists. Thus, copies
of remote packets are made only once, although local copies of packets. can be
garbage collected if necessary.

The major problem with the cache mechanism is efficiency: the mechanism requires
an association to be made between the global address and the local address. Such a
calculation is expensive to implement and is required on every access. On the Flagship
prototype machine, the cache is implemented in firmware as a dynamic hash table
that adds to the inefficiency.

A complementary approach has been adopted based on the following analysis:
information that a functional program contains can be divided into two categories:

• Information that is static at the language level but dynamic in the way that local
copies of packets representing this information are made in individual PEs, e.g.
function definitions and constant data (the term function definitions will be used to
refer to both).

• Information that is 'dynamic' in both senses, e.g. data created at run-time.
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By exploiting the static information, a fixed relative address can be allocated at
compile time for each function definition. This address provides sufficient information
to indicate where on each PE the copy of that function definition will be held at run-
time. The fixed relative address is an index into a table held on each PE. The entry
associated with an index is the address where a packet, representing a function
definition, will be held at run-time. The table is termed the Static Copying
Environment Table (SCET). A SCET is a tuple {Master SCET, set-of {Local SCET)).
The Master SCET and each Local SCET are located on different PEs. Each Master
and Local SCET consists of {SCET index, SCET entry) tuples. Each SCET entry is
a tuple {global-address, local-address). The global address indicates where the master
copy of the packet associated with this index is stored. The local address indicates
where the local copy, if any, of this packet is stored. When a SCET index is accessed,
if the local address contains a NULL value then a local copy does not exist, and a
copy is made from the Master SCET. The local SCET is updated appropriately with
the address of the local copy, and any subsequent references to that SCET index on
that PE will make use of the local copy. The SCET look-up involves a base
address + offset calculation rather than the more complex calculation required in the
cache scheme. The basic execution mechanism of the machine does not distinguish
between a pointer containing a 'real' address and the 'indirect' address that is a
SCET index (pointer).

Evidence from other projects suggests the benefits of locality mechanisms.
Simulation figures for Rediflow (Keller, 1987) (a parallel graph reduction machine
with a similar physical architecture to Flagship) suggest that, typically, between 5 %
and 20 % of data references generated by a processor were to a non-local physical
store (quoted by Almasi and Gottlieb, 1989). The combination of both mechanisms,
the SCET to deal with constant data and the cache to deal with run-time created data,
should reduce the percentage of non-local references to data. The SCET also provides
efficient access to function definition, i.e. code. It is encouraging to note that the 'rule
of thumb' adopted in the IBM RP3 parallel machine project was that two-thirds of
all memory references are instructions, i.e. references to code (Almasi and Gottlieb,
1989). Thus, the effort spent on lowering the access time to local copies of code by
using the SCET mechanism should further improve efficiency.

This section is based on Watson (1987a) and Keane (1989, 19906).

The prototype Flagship machine: Structure and performance

A prototype machine was built at ICL, consisting of 16 68020 processor boards, each
with 16 megabytes of store, connected by a custom-built, delta network (Townsend,
1987).

There are few detailed performance figures for the prototype. Figures for the
following' benchmarks' are available: nqueens, Tak (a recursive algorithm with cubic
explosion), Triangle (a board game) (the figures for these three benchmarks are given
as run-time in seconds) and a Transaction Processing System {TPS) (the figures for
which are given as the number of transactions per second, no.t.p.s). The Flagship
figures are from programs in Hope+, and programs hand-coded in the Flagship
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assembler-like language, IIS. The figures, in comparison with various other systems,
are given in Table 1 (Robertson, 1990; Trinder, 1989).2

Table 1. Flagship figures

Machine

Flagship
Flagship
Sun 3/260
Sun 3/50
iPSC 16 nodes
DEC VAX 8830
IBM 4381-P22

Language

IIS
Hope+

Hope+ (FPM)
Hope+ (FPM)
CCLISP
—
—

nqueens

1
11

11
3-5
—
—
—

Tak

18
172

6-9
191
—
—
—

Triangle

80
2400

387
1088

68
—
—

TPS — no.t.p.s.

140
45

—
5

—
27
22-1

It is believed that the performance of the Hope"1" versions could be considerably

improved. The performance figures for the Transact ion Processing System are

impressive, and indicate that a Flagship-type machine may be suited as a relationship

database engine.

Overall, the performance of the machine was less than anticipated from simulation

results because of: (1) the medium granularity of the rewrites (Watson and Watson ,

1990); (2) the overhead of the scheduling requirements imposed by the system

software; and (3) the work distribution mechanism, that is considered to be overly

sophisticated (Peyton Jones et al., 1989).

Very large grained rewrites appear to solve this problem (this work is part of the

E D S project; see Section 5). They have two effects: (1) the amoun t of work done by

the rewrites becomes larger (in the general case); and (2) there is a less frequent need

for scheduling, thus reducing this cost because it occurs less often.

A problem with increasing the granularity is that some potential parallelism is

likely to be lost, and this reduces the possibility of near-linear extensibility. However,

all potential parallelism is made available at run-time and performance is improved

either by combining serial parts of computa t ion into single larger grain parts, or by

dynamically combining parallel parts based on information of the current load-

balancing in the machine (Watson and Watson, 1990).

More recent work on large-grain rewriting is described by Sargeant and Watson

(1991).

The prototype ALICE machines: Experimentation

In the early stages of Flagship the first A L I C E prototype was built by ICL and

delivered to Imperial College in June 1986 (Townsend, 1988). Two further prototype

machines have been constructed.

A L I C E has been used to assess the value of the t ransformation activity that

improves the efficiency of the execution of functional programs on different type of

parallel machines. An example of this type of machine-specific transformation would
2 FPM (see Table 1) is a stack-based abstract machine developed at Imperial College (Field and

Harrison, 1988).
2 FPR 4
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be data structures that are most naturally accessed sequentially, e.g. lists. This
sequential access means that there is little possibility for parallel computations. Such
data structures can be transformed into equivalent, distributed structures that give
the potential for increased parallelism (Darlington et ai, 19896).

ALICE has been used to measure the effect of transformations of this sort on the
execution time of some example functional programs. ALICE has also been used to
predict the effect of such transformations on the execution of the same set of
programs on the Flagship machine despite the difference in physical architecture
(Darlington et ai, 19896). Performance figures for the ALICE machine are discussed
by Reeve and Wright (1990).

4 Software environment

In this section, the software environment of the Flagship machine is described. A
development route to assist in the design and implementation of the software
environment is also discussed.

It is unusual in a parallel graph reduction machine project to concentrate effort into
the design of a software environment. The motivation came from the belief that,
despite the properties of declarative languages and the availability of specially
tailored engines for their efficient execution, such systems would not generally be
used unless they provided an environment similar to that of conventional machines
(Broughton et ai, 1987).

It was hoped that functional languages would help in the very difficult area of
parallel operating system development and that the implicit parallelism of the
languages would increase efficiency. Thus the software environment was implemented
in a declarative style using Hope"1".

4.1 Dealing with non-determinism

The major problem in using functional languages for operating systems is that the
languages are deterministic, whereas operating systems must handle non-determinism.
Extensions to functional languages to implement operating systems are surveyed in
Jones and Sinclair (1991); very few of the systems described were specifically designed
to exploit a parallel machine.

The Flagship approach is that it is both natural and efficient to express the
behaviour of operating systems using a collection of state variables that are updatable
over the course of time, and whose value at any instant represents the state of the
computation at that instant (Banach et al., 1988). This led to an object-oriented
approach allied to the declarative style.

The unit of abstraction, design and decomposition for the system software is the
Flagship ADT (FADT). FADTs are effectively objects with the following
characteristics (Leunig, 1987):

• Each instance of a FADT can have its own state. The state is encapsulated in that
access to it, from outside the FADT, can only occur via the interfaces provided.
State is introduced as part of the basic building block; its encapsulation is based
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on the principle of information hiding. A mechanism is provided to ensure the
consistency of the state.

• A 'state transition function' style of definition. The general form of an FADT
operation will be f: S x I ->• O, where f is the operation, S is the type of the state of
the FADT, I is the type of the input parameter, and O is the type of the result of
the operation.

• A procedural style for the interfaces to the FADTs. For the state transition
function above, an interface to the function would be f: I^-O.

The following sections discuss the implementation of FADTs at three levels of
abstraction: (1) the execution mechanism level; (2) the system software level; and (3)
the PRM level. The requirement is that access to the state of the FADT should be
serializable at each level, i.e. concurrent execution of multiple operations have the
same effect as some serial execution.

4.1.1 Execution mechanism level

The MONSTR (Maximum of One Non-root STateholder per Rewrite) computational
model ensures the consistency of the state of an FADT at the execution mechanism
level. MONSTR is the base computational model supported by the hardware, and
imposes some minor restrictions on the DACTL rulesets that can be allowed on
Flagship. The MONSTR model is designed to permit state to be used in a clean and
controlled way while eliminating opportunities for performing side-effects through
other mechanisms in the model (Banach and Watson, 1989).

The basic execution mechanism defines a state-holder packet type with the
following properties: (1) it cannot be copied, i.e. once a state-holder packet is created
it is unique and is located on a single processing element (PE)-store pair; and (2) at
most one state-holder can be involved in a rewrite (Watson, 19876). These two
properties, allied with the indivisibility of a rewrite, allow serialized update and
interrogation of state-holder packets.

The root packet of a rewritable sub-graph (RSG) involving a state-holder is moved
to the PE-store pair where the state-holder packet is located. The rest of the RSG is
in turn copied to that PE-store pair and then the rewrite occurs. Because a single
state-holder is involved in the rewrite only one PE is involved. This PE is the only one
able to access the state-holder and, because a rewrite is indivisible, the state-holder
can never be involved in two rewrites at the same time. Consequently, access to the
state-holder is serializable.

FADTs implemented at the MONSTR level are constrained in two ways: (1) the
state of an FADT must be representable as a single state-holder packet; and (2) all
operations on an FADT must be the size and complexity of a single rewrite.

4.1.2 System software level

FADTs at the system software level, generally, have the following properties: (1) the
operations are of the size of a Hope+ function (implemented as a series of rewrites);
and (2) the state is of arbitrary size and complexity. Consequently, the two restrictions

2-2
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on an FADT at the execution mechanism level are lifted and a mechanism is required
to ensure serialized access to a number of state-holder packets by a series of rewrites.
This mechanism is built upon MONSTR.

The guardian mechanism is used to implement FADTs in the kernel of the system
software. Guardians build a stream processing function from a state transition
function, and then hide the stream from the interface seen by users (Broughton et al.,
1987). The concept was introduced by Dennis (1981), and is similar to that of
managers (Arvind and Brock, 1984).

The guardian mechanism ensures that an operation application has sole access to
the state value of the FADT for the duration of the application. The guardian
mechanism accesses the current state value in the stateholder, allows the application
of an operation to this value, updates the state in the stateholder with the new value
and delivers the result of the operation to the caller (Mayes et al., 1991).

The Flagship guardian consists of a state component and a set of state transition
functions. Both the state and the state transition functions are inaccessible to the
caller. Instead, the caller sees a set of interface functions that have no explicit
reference to the state in their signatures. The interface to the state transition function
is represented by a pseudo-function that has the state parameter stripped. The state
manipulation is handled internally by the guardian mechanism. The pseudo-functions
are termed currencies.

An FADT instance consists of a set of currencies, one currency for each interface
function. Guardians were chosen because the guardian mechanism maps efficiently
onto the basic execution mechanism. The currencies of a guardian are implemented
using an Incomplete executable Application (IXAP) packet, an application without
its full arity of arguments, and the application of a currency is implemented as an
Incomplete Processable Application (IPAP) packet, an application of an unknown
function (Holdsworth, 1988).

Multiple entries into a guardian/manager must be serialized, consequently entry to
the guardian/manager effectively acts as a merge operation (see Fig. 4). Guard-
ians/managers are, however, significantly more powerful than merely adding a
merge primitive to a language (as have many of the attempts to use functional
languages to handle non-determinism), because they allow systems that dynamically
determine the use of resources (Arvind and Brock, 1984).

4.1.3 Programming reference model (PRM) level

The architectural style of the Flagship system as viewed by language users and
compilers is guided by the PRM (Thomson, 1987). The PRM is based on declarative
programming using graph reduction as the computational mechanism. However, it is
recognized that real applications need to represent entities that have changeable state.
The PRM deals with this directly by adding the notions of state and update of state
to declarative programming.

An object is the smallest entity that can have state. The action of changing the state
is called an update. To accommodate the non-determinism introduced by objects and
updates, the ' pure' graph reduction computational mechanism must be extended to
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Merge
Initial
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Request

Guardian mechanism

Response

FADT
state

Fig. 4. The Guardian/Manager approach (Holdsworth, 1988).

provide: (1) control over the number of times a particular reduction is done; (2)
control over the order in which reductions are performed; and (3) the possibility that
distinct reductions of the same sub-graph will produce different results. Un-
constrained use of the 'enhanced' mechanism will neutralize almost all the benefits
gained from a declarative approach. Thus, a concept is needed to deal with objects
and their updating in some more controlled way. This concept is the atomic action
that collects a group of non-declarative actions into a single operation that is
effectively atomic. This atomicity implies that an atomic action cannot be affected by
partial completion of another atomic action (Thomson, 1987).

FADTs above the kernel of the system software, therefore, would be implemented
using objects and atomic actions. Little work has been done at this level, but it has
been shown how, as the guardian mechanism is built upon the atomicity provided by
MONSTR, PRM objects and atomic actions can be constructed using guardians
(Holdsworth, 1988).

4.2 The structure of the Flagship system software

The structure of the Flagship system software is hierarchical. The base software has
been divided into four main layers (Leunig, 1988) (see Fig. 5):

1. The process kernel: the basic concepts provided by this layer are processes and
interprocess communication, and store. In addition, the Kernel Object Store
Manger is to support basic protection mechanisms and objects.

2. The basic abstract machine: the objective of this layer was to add the interfaces for
driving devices and communication connections.

3. The raw persistent object store abstract machine: the objective of this layer was to
provide the concept of persistent objects.

4. The PRM abstract machine: this layer was to be an implementation of the PRM.

Mayes et al. (1991) present the system software as a series of abstract machines each
providing a more coarse-grained 'atomic' action, e.g. the MONSTR machine
provides an atomic rewrite, the guardian machine provides an atomic function, and
the PRM machine provides an atomic action.

As can be seen in Fig. 5, the layers of the system software have been further
subdivided. In particular, the kernel has been divided into a number of resource

https://doi.org/10.1017/S0956796800000927 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000927


38 / . A. Keane

PRM abstract machine
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Fig. 5. The Flagship system software.

manager subsystems. An important consideration in the design of these subsystems
has been their structuring into FADTs (it should be recognized that little work has
been done above the kernel level).

An important consideration in a parallel machine is the global-to-local mappings
that occur. Ideally, the vast majority of accesses to system facilities should be done
locally. This principle has been emphasized in the design of the resource manager
subsystems of the Flagship kernel. The subsystems, in general, are structured as a
tuple {global-resource-manager, set-of {local-resource-manager)). The global-resource-
manager is used when there is a need to co-ordinate kernel activity across two or more
PEs in the management of its associated resource. The vast majority of requests to
access resources by rewrites are handled by the local-resource-manager on the PE
where the rewrite is being performed thus causing no network traffic. In most cases,
there should be no need to make use of their associated global manager. These local-
resource-managers manage their particular resource on the PE on which they are
situated (Keane and Mayes, 1992).

The state-handling aspects of the system software have led to a different use of the
Static Copying Environment Table (SCET) mechanism (see Section 3.2.1) by the
process kernel. The distributed implementation of the SCET binding mechanism
allows nodal variants, i.e. the same SCET index binds to different packets on different
PEs (Keane, 19906). When a rewrite requires access to resource manager interfaces
a SCET index is planted at compile-time. When the rewrite calls the resource manager
the nodal variant SCET ensures that the local resource manger is always used, thus
reducing cross-system activity. Each of the interface functions of the local resource
manager is addressed via the same index in each local SCET. However, each local
SCET contains a different reference to its local resource manager. The difference
being that the local interfaces of a resource manager will be associated with a different
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FADT instance. The nodal variant SCET requires a mapping between each PE and
the local packet representing the interface of the local resource manager. This
mapping is used to place the appropriate instance reference in the appropriate local
SCET. Consequently, the usual SCET copying from the Master SCET to the Local
SCET is inhibited because of the presence of a local copy before any reference is made
to that entry.

Protection/security in the software environment

The security system is based upon the PRM object model. A process receives its access
rights from the principal object under whose auspices it is run. A principal object is
the system representation of a user. Computations occur within a process and inherit
the access rights of their owning process. Access is regulated in two ways, i.e. an
access must be allowed by both:

• Static security controls the type of access permitted to each object (usually termed
discretionary access controls). For any two objects a and b, there is a set of
operations s that computations that derive their access rights from object a can
perform on object b. When an operation o is requested on b, a check is made to see
whether oes.

• Dynamic security is based on the 'B2' class (US Department of Defense, 1983).
Access to objects is based on classification levels (usually termed mandatory access
controls). A set of classifications is used to limit the flow of information from
highly classified objects to objects of lower classification. Each object in the system
has a classification, and each process has a current classification and an upper limit
classification. A computation is restricted to reading from objects with a
classification less than or equal to the current classification of the process at which
it is rooted. If the accessed object's classification is higher than the current
classification of the process, then the classification of the process is set to the
object's classification, provided that the new current classification of the process
will not exceed its upper limit classification. A computation can only write to
objects that have a classification higher than the current classification of the process
at which it is rooted. It is possible to override the classification check if the static
access permissions include a write down operation.

It was felt that to provide the PRM security, the basic execution mechanism of the
machine required protection mechanisms. During reduction, the current protection
domain, i.e. the domain of entities that may be accessed by the computation, is
established by the basic execution mechanism. The crossing of the boundary of a
protection domain is controlled by 'capability packets' that depend on the secure
implementation of pointer and store management. A capability {cap) pointer type is
provided by the basic execution mechanism. If the root packet of a rewrite references
a packet in a different protection domain, then that reference must be via a cap
pointer. The presence of a cap tag in a pointer item of a packet transforms that item
into a capability for the referenced packet.

This section is based on Holdsworth et al. (1989).
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4.3 Software environment development route

The aim of the development route was to enable a rigorous approach to the design
and implementation of the software environment to be adopted. The development
route activity placed particular emphasis on the specification and design stages of the
software lifecycle, and so was complementary to the work described in Section 2 on
the programming environment.

The model-oriented specification language VDM (Jones, 1990) was chosen because
it provides both functions and operations (that specify state changes). Flagship VDM
(Boddy, 1988) is a hybrid that adds some of the properties of Hope+, such as
polymorphic data types, to a VDM framework. A specification of a Flagship ADT
in Flagship VDM consists of data type definitions together with functions and
operations on those data types. This specification is then transformed into Hope+ to
allow rapid prototyping. For this transformation to occur, non-executable parts of
Flagship VDM, such as quantification over infinite sets and implicit functions, must
be manually removed or modified to be executable.

4.4 Status of software environment activity

All the subsystems in the process kernel layer of the system software were specified
in Flagship VDM and prototyped using Hope+. A subset of this kernel has been
demonstrated running on the prototype machine. A semantics of the parallel
execution of the subsystems in terms of the possible effects on state using rely and
guarantee conditions (Jones, 1983) is discussed by Keane and Hussak (1992). The
development route was implemented using PS-algol (Atkinson et al., 1983), and used
in the development of the Process Kernel.

Because only a subset of the kernel was put onto the prototype, very little
experimentation of running a number of programs concurrently (i.e. multipro-
gramming) on the prototype has been carried out. A process in the system software
was intended to approximately correspond to a functional program.

A 32-processor Flagship machine has been simulated running four benchmark
programs (nfib. nqueens, matrix multiply & binary integration), sequentially and
concurrently (the four programs run at the same time). In comparison to running the
programs sequentially, running them concurrently gives enhanced speedup (an
improvement of approximately 25 %), throughput (an improvement of approximately
25%), better processor utilization (an improvement of approximately 15%) and a
reduction in network activity (a reduction of approximately 25 %). The speedup,
throughput and processor utilization improvements are due to there being more
rewritable sub-graphs to keep the machine busy. The reduction in network activity
appears to come about because the load balancing mechanism is more effective with
larger loads. Because the machine load is better balanced and the processors are less
idle, there is less need to export work and network traffic is reduced (Tan and Woods,
1990).

Various distributed algorithms suited to a Flagship-style architecture have been
developed, these include deadlock detection (Hilditch and Thomson, 1989), relational
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queries (Hilditch and Thomson, 1990) and termination detection (Ye and Keane,
1992).

5 Conclusions

This section summarizes the achievements of Flagship. Some conclusions about the
approaches taken are also presented. The achievements are:

• The language Hope+, based on Hope, has been designed and extensively used in the
project. A number of other experimental languages that extend Hope+ in various
directions have been developed. A programming environment supporting these
languages and providing many other facilities has been developed. This work has
been highly innovative and has shown that many of the benefits claimed for
functional languages are valid.

• A prototype 16 processor Flagship machine has been designed and built to support
graph reduction. The performance of this machine has been studied. In addition,
three prototype ALICE machines have been built, and performance studies carried
out.

• A number of computational models for various declarative languages have been
developed for this machine. These include three models for functional languages,
models for object-oriented languages, and a model for Prolog.

• A software environment has been designed and the kernel of this environment has
been formally specified and modelled. A subset of this kernel has been implemented
on the prototype machine. A development route to assist in this work has been
built.

By concentrating on an entire system, the higher layers were able to provide a
certain amount of feedback at design time to the machine architecture and
computational models. However, in some ways, the breadth of the project has been
a weakness. For example, it can be argued that GRIP (Peyton Jones et ai, 1989), a
less ambitious project than Flagship, has been more successful as an experimental
parallel machine.

The software environment activity focused on aspects that are rarely considered in
experimental declarative systems, e.g. security/protection mechanisms. However, its
interface was highly complex (based on the view that a Flagship-like system would be
commercially available in the early 1990s and would require a 'conventional'
interface). This complexity was reflected in the design of the system software, and as
a result only a subset of the kernel was actually put onto the prototype. Thus, the
prototype machine did not have a usable interface which meant experimentation was
time-consuming and error-prone. In retrospect, a very minimal interface would have
sufficed for early experimentation, and an evolutionary approach could have been
taken if and when a commercial version was required. It is difficult from this work to
make any firm conclusions with regard to the usefulness of functional languages in
this area.

Much of the specific work started in the project is continuing. This paper has
covered most of this work to the middle of 1992. A follow-on Esprit II project, the
European Declarative System (EDS), has developed some of the achievements of
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Flagship (for a brief overview of EDS, see Keane, 1990 a). The success of the Flagship
machine in performing database queries and the importance of this application
commercially has made this area the main focus of the EDS project. As the machine
architecture will remain the same, the EDS machine and its successors may be seen
as commercial derivatives of the Flagship machine.
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