
J. Appl. Prob. Spec. Vol. 51A, 249–265 (2014)
© Applied Probability Trust 2014

CELEBRATING 50 YEARS
OF THE APPLIED
PROBABILITY TRUST
Edited by
S. ASMUSSEN, P. JAGERS, I. MOLCHANOV and L. C. G. ROGERS

Part 6. Heavy tails

TWO-NODE FLUID NETWORK WITH A HEAVY-TAILED
RANDOM INPUT: THE STRONG STABILITY CASE

SERGEY FOSS, Heriot Watt University and Novosibirsk State University
Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh EH14 4AS, UK.
Email address: s.foss@hw.ac.uk

MASAKIYO MIYAZAWA, Tokyo University of Science
Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
Email address: miyazawa@rs.tus.ac.jp

APPLIED PROBABILITY TRUST
DECEMBER 2014

https://doi.org/10.1239/jap/1417528479 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1417528479


TWO-NODE FLUID NETWORK WITH A HEAVY-TAILED
RANDOM INPUT: THE STRONG STABILITY CASE

BY SERGEY FOSS AND MASAKIYO MIYAZAWA

Abstract

We consider a two-node fluid network with batch arrivals of random size having a heavy-
tailed distribution. We are interested in the tail asymptotics for the stationary distribution
of a two-dimensional workload process. Tail asymptotics have been well studied for two-
dimensional reflecting processes where jumps have either a bounded or an unbounded
light-tailed distribution. However, the presence of heavy tails totally changes these
asymptotics. Here we focus on the case of strong stability where both nodes release fluid
at sufficiently high speeds to minimise their mutual influence. We show that, as in the
one-dimensional case, big jumps provide the main cause for workloads to become large,
but now they can have multidimensional features. We first find the weak tail asymptotics
of an arbitrary directional marginal of the stationary distribution at Poisson arrival epochs.
In this analysis, decomposition formulae for the stationary distribution play a key role.
Then we employ sample-path arguments to find the exact tail asymptotics of a directional
marginal at renewal arrival epochs assuming one-dimensional batch arrivals.

Keywords: Fluid network; Poisson and renewal arrivals; heavy-tailed distribution of batch
size; workload process; stability; strong stability
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1. Introduction

Problems concerning tail asymptotics have been studied in queueing networks and related
reflecting processes for many years; new developments continue to arise. A key feature of this
is an influence of the multiple boundary faces in a multidimensional state space. This requires
analysis that differs from the traditional. Recent studies of these multidimensional processes
have been done mainly in the light-tail regime where no heavy tails arise (see, e.g. [4, 9] and
the references therein). Heavy-tail asymptotics have mostly been studied for processes with
single boundary faces or for certain monotone characteristics.

It is natural to ask how the presence of heavy tails changes the tail asymptotics in multi-
dimensional reflecting processes in more complex queueing networks. The aim of this paper is
to address this problem for the stationary distribution of a continuous-time reflecting process
in the two-dimensional nonnegative quadrant. For this, we consider a two-node fluid network
with a compound input with either Poisson or renewal arrivals; this is a simple model that
nevertheless retains the feature of being a multidimensional reflecting process. It can be viewed
as a continuous-time approximation of a generalised Jackson network in which there can be
simultaneous arrivals of large batches of customers.

We analyse the tail asymptotics for this fluid network as follows. First we assume the input
to be Poisson, and derive two new decomposition formulae for a one-dimensional marginal
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250 S. FOSS AND M. MIYAZAWA

of the stationary distribution of the workload in an arbitrary direction. These are used to
derive stochastic lower and upper bounds for the marginals (Lemmas 4.3 and 4.4). From
these bounds, we find the weak tail asymptotics for the stationary marginal distribution in an
arbitrary direction, assuming subexponentiality of the batch size distributions (Theorem 2.1).
Next we take the sample-path approach to obtain the exact tail asymptotics of the marginal
stationary distribution in an arbitrary direction, assuming that the arrival batch sizes are one
dimensional and have subexponential distributions, where arrival instants constitute a renewal
process (Theorem 2.2). To do so requires new derivations for the corresponding fluid model as
in Appendix C.

Our results relate to the tail asymptotics in both generalised Jackson networks and more
general classes of max-plus systems, with heavy-tailed distributions of service times and
Markovian routeing; these have been studied in [1] (see also [2, 10]). In these papers, the
exact tail asymptotics were found only for the ‘maximal dater’ (time needed to empty the
system in the steady state after stopping the input process). In tandem queues, the maximal
dater coincides with the stationary sojourn time of a ‘typical’ customer. But the two notions
differ when the routing includes feedback.

There is an extensive literature on feedforward networks with heavy-tailed distributions that
include fluid queues with jump inputs, Lévy-driven queues, parallel queues, coupled queues,
etc. (see, e.g. [11, 13] and the references therein). Here we consider stochastic fluid networks
with feedback loops, for which in general the techniques developed in those papers cannot
be applied. We do not restrict our analysis to the case of regularly varying distributions but
consider a more general subexponential class. We hope this paper may stimulate further studies
of networks with heavy-tailed inputs.

The paper is organised as follows. In Section 2 we introduce a fluid network with
random jumps and present our main results and assumptions, including stability conditions.
In subsequent sections we assume that a strong stability condition holds. For a model with
Poisson arrivals, decomposition formulae are obtained in Sections 3 and 4. These results
yield stochastic bounds and weak tail asymptotics for the marginal stationary distribution in
an arbitrary direction in Section 4. In Section 5 we present sample-path analyses, establishing
exact tail asymptotics in the case of one-dimensional jumps. We list some open problems in
Section 6. In the appendices we provide auxiliary material that includes two short proofs and
an analysis of a corresponding fluid model, and we recall basic definitions and properties of
subexponential distributions.

Our results can be generalised to any dimension. The sample-path approach does not require
any significant change. For the analytic approach, we need decomposition formulae which may
require further restrictions on the model parameters.

2. Fluid network with compound input

Consider a two-node fluid network where nodes i = 1, 2 receive an input process �(·) =
(�1(·), �2(·)), which is a compound process generated by the point process {N(·)} and
independent, identically distributed (i.i.d.) jumps {(J1n, J2n) : n = . . . ,−1, 0, 1, 2, . . .}, where,
for convenience, the sequence {(J1n, J2n)} is assumed to be doubly infinite. Define the
components of � by

�i(0, t] =
N(0,t]∑
n=1

Jin, t > 0, i = 1, 2.
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Throughout the paper, all vectors are considered as column vectors, but we omit the transpose
sign for simplicity. In this section we assume only that the point processes Ns(·) := {N(s, s +
t] : t ≥ 0} converge weakly as s ↓ −∞ to a stationary point process {N∗(·)} on (0, ∞) with
finite intensity λ := E[N∗(0, 1]]. In subsequent sections we require {N(·)} to be either a Poisson
process (for the analytic approach) or a renewal process (for the sample-path approach). In
what follows, J := (J1, J2) denotes a random vector having the same distribution as (J1n, J2n).
Denote the joint distribution of (J1, J2) by F , with marginals Fi , and set mi = E[Ji] and
αi = λmi for i = 1, 2.

Both nodes have infinite capacity buffers and release fluid at respective rates μi, i = 1, 2.
For i, j = 1, 2 with i �= j , a proportion pij of the outflow from node i goes to node j , while
the remaining proportion 1 − pij leaves the system. Assume that

0 ≤ p12p21 < 1, 0 < p12 + p21; (2.1)

this excludes trivial boundary cases (including parallel queues, when p12 = p21 = 0), and,
without loss of generality, we may put pii = 0.

Remark 2.1. We could assume that, in addition to the jump input, both nodes have continuous
fluid inputs at rates β1 and β2, respectively, say, so that � is now defined for t > 0 by

�i(0, t] = βit +
N(0,t]∑
n=1

Jin.

Given stability, such a model is reduced to the original model by using smaller release rates,
namely, replacing μi, i = 1, 2, by μi[1 − (βi + β3−ip3−i,i )/(1 − p12p21)]. This is readily
checked via (2.2) and (2.3) below where the buffer content processes are defined. Accordingly,
in this paper we assume that β1 = β2 = 0.

Introduce next a buffer content process Z(t) := (Z1(t), Z2(t)), defined as a nonnegative
solution to the equations

Z1(t) = Z1(0) + �1(0, t] + p21(μ2t − Y2(t)) − μ1t + Y1(t), (2.2)

Z2(t) = Z2(0) + �2(0, t] + p12(μ1t − Y1(t)) − μ2t + Y2(t), (2.3)

for t > 0, where Yi(t) is the minimal nondecreasing process ensuring that Zi(t) remains
nonnegative. As usual, we assume that sample paths are right continuous and have left-hand
limits. Recalling �(·) and setting μ = (μ1, μ2), let

X(t) = �(0, t] −
(

μ1 − μ2p21
μ2 − μ1p12

)
t = �(0, t] − R μ t, R =

(
1 −p21

−p12 1

)
.

Then (2.2) and (2.3) may be rewritten as

Z(t) = Z(0) + X(t) + R Y (t), t ≥ 0, (2.4)

where Y (t) = (Y1(t), Y2(t)). This is the standard definition of a reflecting process (in the
nonnegative quadrant R

2+) for a given process X(t), where Y (t) is a regulator such that Yi(t)

increases only when Zi(t) = 0. Here R is a reflection matrix (see, e.g. [12, Section 3.5]). The
conditions at (2.1) ensure that the inverse R−1 exists and is nonnegative. This guarantees the
existence of the process {Z(t) : t ≥ 0}. We refer to this process as a two-dimensional fluid
network with compound inputs.
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Recall that αi = E[�i(0, t]], so R−1α is the total inflow rate vector. Hence, the fluid
network is stable if and only if

R−1α < μ, (2.5)

where the inequality is strict in both coordinates (a formal proof for this stability condition
is given in [8]). Write δ = R μ, where δ = (δ1, δ2), so that E[X(t)] = α − δ; writing
�i = δi − αi , E[Xi(1)] = −�i , and the stability condition (2.5) is equivalent to both

�1 + �2p21 > 0 and �1p12 + �2 > 0. (2.6)

Under this condition, there are in fact two different stability scenarios, namely,

min{�1, �2} > 0, (2.7)

min{�1, �2} ≤ 0; (2.8)

we refer to these as conditions of strong stability and weak stability, respectively.
Under condition (2.6), which we assume to hold throughout the paper, there exists a unique

stationary distribution for Z(t), π say; we let Z := (Z1, Z2) denote a random vector subject
to π . We are interested in the tail behaviour of P{c1Z1 + c2Z2 > x} as x → ∞ for a given
directional vector c := (c1, c2) ≥ 0 satisfying c1 + c2 > 0. In this paper we study this
asymptotic behaviour mostly under the strong stability condition; the other case is to be studied
in a companion paper [6]. Under the strong stability condition (2.7), both nodes are sufficiently
fast to process fluids given the input is always maximal, and the following result holds.

Lemma 2.1. (i) Sample-path majorant. On any elementary event, consider an auxiliary model
of two parallel queues, one at each of the two nodes i = 1, 2, and at each of which there is a
continuous input of rate μ3−ip3−i,i , release rate μi , and jump input process �i . Let Z̃i(t) be
the content of node i at time t (i.e. queueing process i). If Z̃i(0) ≥ Zi(0) then Z̃i(t) ≥ Zi(t)

for all t > 0.

(ii) Stable majorant. Assume that the input is a renewal process and (2.7) holds. Then the
processes Z̃i(t) admit a unique stationary version, and, under the natural coupling of the input
processes, Z̃i ≥ Zi almost surely (a.s.).

Proof. Between any two jumps, the trajectories of Zi(t) and Z̃i(t) are Lipschitz, and at any
regular point t with Zi(t) > 0 and Z̃i(t) > 0, the derivative of Zi is smaller than that of Z̃i .
So the inequality Z̃i(t) ≥ Zi(t) is preserved between any two jumps. Since the jumps are
synchronous and the jump sizes are equal, an induction argument completes the proof of (i).
Then statement (ii) is straightforward.

Thus, we have natural upper bounds under (2.7). Similarly, easy lower bounds can be
obtained by cancelling internal flow transfers. However, they hold only for the marginal
stationary distributions in the coordinate directions. Even in these cases, it is unclear how
they (and, in particular, the lower bounds) can be improved. We will answer these questions
assuming that one of the following extra conditions holds.

(A1) {N(·)} is a Poisson process at rate λ.

(A2) The point process {N(·)} is a renewal process with i.i.d. interarrival times having a general
distribution with finite mean a := 1/λ, and the batch sizes are one dimensional:

F(x, y) = p1F1(x) + p2F2(y), x, y ≥ 0.
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Recall that jumps {Jn} are assumed to be i.i.d., so (A1) means that {�(·)} is a compound
Poisson process. We need more notation. For each nonzero vector c ≡ (c1, c2) ≥ 0, define the
distribution Fc by

Fc(x) = P{c1J1 + c2J2 ≤ x}, x ≥ 0,

and its integrated distribution FI
c by

FI
c (x) = 1 − 1

mc

∫ ∞

x

P{c1J1 + c2J2 > y} dy, x ≥ 0,

where mc = c1m1 + c2m2. Here c can be normalized as c1 + c2 = 1, but we do not require
it because it does not affect any computation. Distribution functions F and G are weakly tail
equivalent if, forF (x) = 1 − F(x) andG (x) = 1 − G(x),

0 < lim inf
x→∞

F (x)

G (x)
≤ lim sup

x→∞
F (x)

G (x)
< ∞;

denote thisF (x) 
 G (x). WriteF (x) ∼ G (x) and say that F and G are tail equivalent (or
have the same tail asymptotics) if

lim
x→∞

F (x)

G (x)
= 1. (2.9)

We can now formulate our main results.

Theorem 2.1. Assume that (A1) and the strong stability condition (2.7) hold. For each i = 1, 2,
if FI

i is subexponential then
P{Zi > x} 
 F I

i (x). (2.10)

For a fixed c > 0, if FI
1 , FI

2 , and FI
c are subexponential, then

P{c1Z1 + c2Z2 > x} 
 F I
c (x). (2.11)

Remark 2.2. In the particular case that FI
1 and FI

2 have regularly varying tails (seeAppendix D
for a definition), FI

c also has a regularly varying tail for any c > 0. However, subexponentiality
of FI

1 and FI
2 does not imply that of FI

c in general; furthermore, there are examples where FI
c

is subexponential for some but not all c > 0.

Theorem 2.2. Assume that (A2) and the strong stability condition (2.7) hold. For each i = 1, 2,
if FI

i is subexponential then

P{Zi > x} ∼ αi

�i + �3−ip3−i,i

F I
i (x) as x → ∞.

For fixed c > 0, if both FI
1 and FI

2 are subexponential and F 1(x/c1) 
 F 2(x/c2), then

P{c1Z1 + c2Z2 > x} ∼ α1

�1 + �2p21
F I

1

(
x

c1

)
+ α2

�2 + �1p12
F I

2

(
x

c2

)
. (2.12)

Remark 2.3. Asymptotics (2.12) also hold in the two particular cases that (a) both distributions
FI

i have regularly varying tails, and (b) one of the tails FI
i is negligible with respect to the other.

If (a) or (b) holds, we do not need to assume the weak tail-equivalence condition preceding
(2.9).

We prove Theorem 2.1 using decomposition formulae obtained in Section 3, and Theorem 2.2
is proved in Section 5. In Section 4 we derive general bounds for the tail probabilities under
assumption (A1) without assuming subexponentiality.
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3. Decomposition formula under (A1)

In this section we assume that (A1) holds, and derive decomposition formulae for the
stationary distribution in terms of moment generating functions. We first derive the stationary
balance equation under the stability condition (2.6).

Let C1(R2) be the set of all functions from R
2 to R having continuous first-order partial

derivatives. Write f ′
i (x1, x2) = ∂f (x1, x2)/∂xi for short. It follows from (2.4) that, for

f ∈ C1(R2), the increment f (Z(1)) − f (Z(0)) can be expressed in terms of integrals on
[0, 1] with respect to dt , �(dt), and dYi(t) (formally by Itô’s integral formula). Then, taking
expectations with respect to Z(0) subject to the stationary distribution π and recalling the
stationary version Z := (Z1, Z2),

2∑
i=1

(−δiE[f ′
i (Z)]) + λE[f (Z + J ) − f (Z)]

+ E1[f ′
1(0, Z2) − p12f

′
2(0, Z2)] + E2[−p21f

′
1(Z1, 0) + f ′

2(Z1, 0)]
= 0, (3.1)

provided that all expectations are finite, where the jump size vector J is independent of
everything else. Here Ei denotes the expectation with respect to the Palm measure for {Yi(t)},
that is, for any bounded measurable function g on R+,

Ei[g(Z3−i )] = Eπ

[∫ 1

0
g(Z3−i (u)) Yi(du)

]
, i = 1, 2,

where Eπ denotes the expectation subject to Z(0) having the stationary distribution π . These
expectations uniquely determine finite measures νi on (R+, B(R+)), where B(R+) is the Borel
σ -field on R+. They are called boundary measures. Let Vi denote a random variable with the
probability distribution π

(0)
i := ν3−i/ν3−i (R+).

The stationary equation (3.1) uniquely determines the stationary distribution π if it holds
for a sufficiently large class of functions f . For this, we may choose a class of exponential
functions f (x) = e〈θ ,x〉 on R

2+ for each θ := (θ1, θ2) ≤ 0, where 〈a, b〉 denotes the inner
product of vectors a, b ∈ R

2. Let δ = (δ1, δ2), and let

ϕ(θ) = E[e〈θ ,Z〉], ϕ3−i (θi) = E3−i[eθiZi ], i = 1, 2,

F̂ (θ) = E[e〈θ ,J 〉], κ(θ) = 〈δ, θ〉 − λ(F̂ (θ) − 1).

Here −κ(θ) is the Lévy component of X(t). Then (3.1) is expressible as

κ(θ)ϕ(θ) = (θ1 − p12θ2)ϕ1(θ2) + (θ2 − p21θ1)ϕ2(θ1), (3.2)

as long as ϕ(θ), F̂ (θ), and ϕi(θi) are finite. Clearly, (3.2) is always valid for θ ≤ 0. This kind
of equation can sometimes be solved explicitly by Wiener–Hopf factorization in the case of
independent input streams (see, e.g. [3]).

For computational convenience, we first findνi({0}) andνi(R+). Clearly, νi({0}) = ϕi(−∞)

and νi(R+) = ϕi(0). Denote the respective traffic intensities at nodes 1 and 2 by

ρ1 = α1 + α2p21

μ1(1 − p12p21)
, ρ2 = α2 + α1p12

μ2(1 − p12p21)
.
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Lemma 3.1. Under the stability condition (2.6), for i = 1, 2,

ϕi(−∞) = μiπ(0), ϕi(0) = �i + �3−ip(3−i)i

1 − p12p21
= μi(1 − ρi). (3.3)

In particular, π(0) = P{Z = 0} < min{1 − ρ1, 1 − ρ2}, and, for i = 1, 2,

P{Vi > x} = δ3−i

μ3−i (1 − ρ3−i )
P{Zi > x, Z3−i = 0}, x ≥ 0.

We defer proof of this lemma to Appendix A. From the equations in (3.3), it is easy to
see that (ϕ1(0), ϕ2(0)) = μ − R−1α > 0. Also, the second equality for ϕi(0) yields another
representation for �i , namely,

�1 = μ1(1 − ρ1) − μ2p21(1 − ρ2), �2 = μ2(1 − ρ2) − μ1p12(1 − ρ1).

For each nonzero c ≥ 0, we now consider the distribution of c1Z1 + c2Z2, whose moment
generating function is ϕ(sc). It is generally hard to find this distribution, so we aim to find
its tail asymptotics, namely, the asymptotics of P{c1Z1 + c2Z2 > x} as x → ∞. To this
end, we extract the moment generating function ϕ(sc) from the stationary equation (3.2);
specifically, we express ϕ(sc) as a linear combination of the moment generating functions of
certain measures, which may include the unknown boundary measures ν1 and ν2. This may
be viewed as a distributional decomposition that is very useful in finding the asymptotics of
P{c1Z1 + c2Z2 > x} when the jump size distributions are heavy tailed.

These arguments may look similar to those used in deriving the Pollaczek–Khinchine formula
from the stationary equation of the M/G/1 queue. However, there is a crucial difference arising
from the boundary of the state space when the reflecting process is two dimensional. This is
in marked contrast to the M/G/1 queue for which the boundary is a single point: this is what
facilitates the simple analysis there.

Set θ = sc in the stationary equation (3.2). Then

(c1δ1 + c2δ2 − (c1α1 + c2α2)F̂
I
c (s))ϕ(sc)

= (c1 − p12c2)ϕ1(c2s) + (c2 − p21c1)ϕ2(c1s), (3.4)

where F̂ I
c is the moment generating function of the distribution FI

c defined in Section 2. To
single out ϕ(sc) in a tractable form, consider its coefficient in (3.4). For positive r < 1, let

ŜI (r)
c (s) = 1 − r

1 − rF̂ I
c (s)

,

which is the moment generating function of the geometric sum with parameter r of i.i.d. random
variables having distribution FI

c . Let S
I (r)
c denote a random variable that has the moment

generating function Ŝ
I (r)
c (s).

From the strong stability assumption (2.7),

c2δ1 + c2δ2 − (c1α1 + c2α2) = c1�1 + c2�2 > 0,

and, therefore, rc := (c1α1 + c2α2)/(c1δ1 + c2δ2) < 1. Then, the results in Lemma 3.2 below
follow directly from (3.4) since

1

1 − rc
= c2δ1 + c2δ2

c2�1 + c2�2
.
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Lemma 3.2. For each nonzero vector c ≥ 0,

ϕ(sc) = (c1 − p12c2)ϕ1(c2s) + (c2 − p21c1)ϕ2(c1s)

c2�1 + c2�2
ŜI (rc)

c (s), (3.5)

and, for B ∈ B(R+), P{c1Z1 + c2Z2 ∈ B} equals

η(1)
c μ1(1 − ρ1)P{c2V2 + SI (rc)

c ∈ B} + η(2)
c μ2(1 − ρ2)P{c1V1 + SI (rc)

c ∈ B}, (3.6)

where V1 and V2 are independent of S
I (rc)
c , and

η(1)
c = c1 − p12c2

c1�1 + c2�2
, η(2)

c = c2 − p21c1

c1�1 + c2�2
. (3.7)

4. Stochastic bounds and weak tail equivalence

In this section we consider upper and lower bounds for P{c1Z1 + c2Z2 > x} for c ≥ 0 with
c �= 0, provided (A1) holds. For this, we use (3.6), but we must take care with the signs of the
coefficients c1 −p12c2 and c2 −p21c1. If both signs are negative then c1(1 −p12p21) ≤ 0 and
c2(1 −p12p21) ≤ 0, which contradicts (2.1) and c �= 0. Hence, under (2.7), only the following
three cases are possible.

(C0) c1 − p12c2 ≥ 0 and c2 − p21c1 ≥ 0 (in this case, we must have c > 0).

(C1) c1 − p12c2 ≥ 0 and c2 − p21c1 < 0.

(C2) c1 − p12c2 < 0 and c2 − p21c1 ≥ 0.

Since (C1) and (C2) are symmetric, it is enough to consider only (C0) and (C1).
Since η

(1)
c μ1(1 − ρ1) + η

(2)
c μ2(1 − ρ2) = 1 from (3.6) with B = R+ and η

(i)
c for i = 1, 2

are positive for (C0), we obtain the following lower bound.

Lemma 4.1. When (C0) holds,

P{SI (rc)
c > x} ≤ P{c1Z1 + c2Z2 > x} for all x > 0.

When (C1) holds, we can no longer use (3.6) to obtain a lower bound. Instead we use the
following representation (it is proved in Appendix B):

ϕ(sc) = ϕ+(sc) + ϕ2(c1s)

δ2
+ ϕ1(c2s)

δ1
− d0. (4.1)

Here ϕ+(θ) = E[e〈θ ,Z〉1{Z>0}] and d0 = μ1μ2(1 − p12p21)π(0)/δ1δ2.

Lemma 4.2. For the case (C1), let r ′
c = (c1α1 + c2α2)/c1(δ1 + δ2p21); then 0 < r ′

c < 1 and

ϕ(sc) =
[
d

(1)
c

δ1
ϕ1(c2s) + d(2)

c (ϕ+(sc) − d0)

]
Ŝ

I (r ′
c)

c (s), (4.2)

where

d(1)
c = δ1(c1 − p12c2) + δ2(p21c1 − c2)

c1(δ1 + δ2p21)(1 − r ′
c)

, d(2)
c = δ2(p21c1 − c2)

c1(δ1 + δ2p21)(1 − r ′
c)

.

Therefore, for x ≥ 0,

P{SI (r ′
c)

c > x} ≤ P{c1Z1 + c2Z2 > x}. (4.3)
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Proof. Multiply (4.1) by (p21c1 − c2)δ2 and add to (3.5). This yields

[c1(δ1 + δ2p21) − (c1α1 + c2α2)F̂
I
c (s)]ϕ(sc)

= 1

δ1
[δ1(c1 − p12c2) + δ2(p21c1 − c2)]ϕ1(c2s) + δ2(p21c1 − c2)(ϕ

+(sc) − d0)

and, hence, (4.2) because

c1(δ1 + δ2p21) − (c1α1 + c2α2) = c1(�1 + �2p21) + α2(c1p21 − c2) > 0.

Since d
(1)
c > 0 and d

(2)
c > 0, the right-hand side of (4.2) represents the convolution of two

distributions on [0, ∞), and this leads to (4.3).

We continue to assume that (A1) holds, and consider the tail probability P{c1Z1 + c2Z2 >

x} for directional vectors c ≥ 0. First we obtain results for c = (1, 0) but under weaker
assumptions.

Lemma 4.3. Assume that (A1) holds, that the system is stable, and that �1 > 0. Then, for
x > 0,

P{SI (r ′
1)

1 > x} ≤ P{Z1 > x} ≤ P{SI (r1)
1 > x}, (4.4)

where r1 = α1/δ1 and r ′
1 = α1/(δ1 + δ2p21).

Proof. The upper bound follows directly from Lemma 2.1 because Z̃1 is subject to the
stationary workload distribution of the M/G/1 queue (it can also be obtained analytically from
(3.5)). We obtained the lower bound earlier in Lemma 4.2.

Remark 4.1. Clearly, �1 > 0 and μ2 − μ1p12 = δ2 > 0 imply that
α1

μ1
< r ′

1 = α1

μ1(1 − p12p21)
< r1 = α1

μ1 − μ2p21
< 1.

By arguments similar to those used in the proof of Lemma 2.1, P{SI (p1)
1 > x} with p1 = α1/μ1

also provides a lower bound, but the lower bound in (4.4) is tighter because p1 < r ′
1.

We next consider the case of nonzero c ≥ 0 for options (C0) and (C1).

Lemma 4.4. Assume that (A1) holds, let the strong stability condition (2.7) hold, and recall
the definition of η

(i)
c given in (3.7). Let x ≥ 0 and c ≥ 0, c �= 0. For the case (C0),

P{SI (rc)
c > x} ≤ P{c1Z1 + c2Z2 > x}

≤ δ1η
(1)
c P{c2S

I (r2)
2 + SI (rc)

c > x} + δ2η
(2)
c P{c1S

I (r1)
1 + SI (rc)

c > x}. (4.5)

In the case (C1),

P{SI (r ′
c)

c > x} ≤ P{c1Z1 + c2Z2 > x} ≤ δ1η
(1)
c P{c2S

I (r2)
2 + SI (rc)

c > x}. (4.6)

In both (4.5) and (4.6) the random variables S
I (r1)
1 , SI (r2)

2 , and S
I (rc)
c are mutually independent.

Remark 4.2. For the case (C0), c > 0, so (4.5) does not contradict (4.4).

Proof of Lemma 4.4. In the case (C0), by Lemma 3.1, Lemma 4.3, and its symmetric version,

ϕ3−i (0)P{Vi > x} ≤ δ3−iP{Zi > x} ≤ δ3−iP{SI (ri )
i > x}, i = 1, 2.

Hence, Lemma 3.2 yields the upper bound of (4.5), and its lower bound is obtained by
Lemma 4.1. In the case (C1), the upper bound of (4.6) is immediate from Lemma 3.2, while
we obtained the lower bound earlier in Lemma 4.2.
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4.1. Proof of Theorem 2.1

By property (P5) in Appendix D, as x → ∞,

P{SI (r1)
1 > x} ∼ r1

1 − r1
F I

1(x), P{SI (r ′
1)

1 > x} ∼ r ′
1

1 − r ′
1
F I

1(x).

These relations with Lemma 4.3 yield (2.10).
Assume now that all three distributions FI

1 , FI
2 , and FI

c are subexponential. Then

P{ciS
I (ri )
i > x} ∼ ri

1 − ri
F I

i

(
x

ci

)
, i = 1, 2, P{SI (rc)

c > x} ∼ rc

1 − rc
F I

c (x).

Similar asymptotic equivalence relations hold on replacing rc by either r ′
c or r ′′

c , where r ′′
c =

(c1α1 + c2α2)/c2(δ2 + δ1p12). Clearly,

F I
c (x) = 1

mc

∫ ∞

x

P{c1J1 + c2J2 > y} dy ≥ c1

mc

∫ ∞

x/c1

P{J1 > y} dy = c1m1

mc
F I

1

(
x

c1

)
,

so

P{c1S
I (r1)
1 > x} ≤ [1 + o(1)]mcr1

(1 − r1)c1m1
F I

c (x) ≤ [1 + o(1)](1 − rc)mcr1

rc(1 − r1)c1m1
P{SI (rc)

c > x}

and, finally,

P{c1S
I (r1)
1 + SI (rc)

c > x} ≤ [1 + o(1)]KF I
c (x).

Here the constant K := (1 − rc)mcr1/rc(1 − r1)c1m1 + rc/(1 − rc) is positive and finite.
These observations and Lemma 4.4 imply (2.11).

5. Proof of Theorem 2.2

Throughout this section, assume that (A2) and the strong stability condition (2.7) hold.
Based on the fluid dynamics considered in Appendix C, we provide a lower bound for the tail
probabilities assuming only that the integrated tail distributions FI

1 and FI
2 are long tailed (see

Appendix D for the definition). We derive the exact asymptotics in the case of subexponential
distributions.

5.1. Lower bounds

Assume that the system runs in the discrete-time stationary regime starting from time −∞,
and that (Z1, Z2) is the workload vector observed at time 0 when the 0th batch arrives. In what
follows, LB(x) denotes a lower bound on the probability P{c1Z1 + c2Z2 > x}. Represent the
random variables (J1n, J2n) as

(J1n, J2n) = νn(σ1n, 0) + (1 − νn)(0, σ2n),

where the random variables on the right-hand side are mutually independent, and also indepen-
dent for distinct n, P{νn = 1} = 1 − P{νn = 0} = p1, and the random variables {σin} have
distribution Fi . In other words, P{σin ∈ ·} = P{Jin ∈ · | Jin > 0}, where P{Jin > 0} = pi .
Then E[σin] = mi/pi and the integrated distribution of σin coincides with FI

i .
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Lemma 5.1. Let the distributions FI
1 and FI

2 be long tailed. Then, for c1, c2 ≥ 0 with c1 +
c2 > 0,

LB(x) = [1 + o(1)] α1

�1 + p21�2
F I

1

(
x

c1

)
+ [1 + o(1)] α2

�2 + p12�1
F I

2

(
x

c2

)
, (5.1)

where, by convention, x/0 = ∞ and F I
i (∞) = 0 (recall that αi = pimi/a for i = 1, 2).

Remark 5.1. In particular, for c = (1, 0),

r ′
1

1 − r ′
1

= α1

μ1(1 − p12p21) − α1
<

α1

�1 + p21�2
<

α1

�1
.

Hence, lower bound (5.1) is tighter than that in (4.4).

Proof of Lemma 5.1. First, apply to our model the arguments from Lemma 2 of [5] (see also
Theorem 14 of [1]) to conclude that the lower bound asymptotics in our model are equivalent
to those in an auxiliary model with deterministic arrival times −na, n = 1, 2, . . .. Second, we
can use the strong law of large numbers for the i.i.d. jump sizes and Corollary C.1 to conclude
that, for any ε > 0 and x → ∞,

LB(x) = [1 + o(1)]p1P

(⋃
n≥1

{
σ1,−n >

x

c1
+ na(�1 + p21�2 + ε)

})

+ [1 + o(1)]p2P

(⋃
n≥1

{
σ2,−n >

x

c2
+ na(�2 + p12�1 + ε)

})
. (5.2)

Apply property (P7) from Appendix D to each of the probabilities on the right-hand side of
(5.2). Then letting ε ↓ 0 leads to (5.1).

5.2. Weak tail equivalence

It is known that, for a single-server queue with subexponential service time distributions, the
stationary workload is large due to a single large service time (see property (P7) inAppendix D).
For a single-server queue, there is no difference in having a single customer with service time
J and a batch of customers whose total service time is of size J . Then, from the upper bound
in Lemma 2.1 and lower bound (5.1) with c = (1, 0), P{Zi > x} for stationary Zi is weakly
tail equivalent to F I

i (x). A similar result holds for the linear sum c1Z1 + c2Z2 if we assume
the tailsF 1(x) andF 2(x) to be weakly equivalent. But here we can get more.

5.3. Exact asymptotics

We first consider the exact tail asymptotics for c = (1, 0), applying the ‘squeeze principle’
(see Theorem 8 of [1]). Thus, we focus on the tail asymptotics for Z1. We do this in the
following two steps.

Step 1. Let the distribution FI
1 be subexponential. Consider the upper bound random variable

Z̃1 introduced in Lemma 2.1 (it is a one-dimensional stationary workload random variable). It
is easy to see that the model does not change if we assume, analogously to the discussion before
that lemma, that there is no fluid input from node 2 and the release-cum-service rate for node 1 is
μ̃1 = μ1−p21μ2. Furthermore, we can rescale time by assuming a unit service rate and that the
interarrival times to node 1 are i.i.d. with mean b1 = a/μ̃1p1 (this comes from the geometric
argument). We can then speak about a single-server queue with customer n having service
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time σ1n (instead of a batch of size σ1n). Consider again the discrete-time stationary regime,
and let T1,0 = 0 > T1,−1 > T1,−2 > · · · denote the arrival times of customers 0, −1, −2, . . . ,

with i.i.d. interarrival times t1,−n = T1,−n+1 −T1,−n and E[t1,−n] = b1 for n = 1, 2, . . . . Then

Z̃1 = Z̃1(0) = max

{
0, sup

n≥1

−1∑
i=−n

(σ1i − t1i )

}
+ σ10.

We now follow the lines of the appendix of [1]. For any ε ∈ (0, b1 −m1/p1), consider another
stable single-server queue with service times σ1n and constant interarrival times b1 −ε. Denote
the stationary workload in that queue by

Ẑ1 = max

{
0, sup

n≥1

−1∑
i=−n

(σ1i − (b1 − ε)i)

}
+ σ10.

Then Z̃1 ≤ Ẑ1 + M1ε, where M1ε := supn{
∑−1

i=−n(b1 − ε − t1i )}+ does not depend on Ẑ1
and has a light-tailed distribution.

Since the distribution FI
1 is subexponential, properties (P3), (P6), and (P7) in Appendix D

imply that
P{Ẑ1 + M1ε > x} ∼ P{Ẑ1 > x}

∼ P

{
sup
n≥1

−1∑
i=−n

(σ1i − (b1 − ε)i) > x

}

∼
∑
n>0

P{σ1,−n > (b1 − ε)n + x},

where the right-hand side is of the same order as the lower bound LB(x). Since Z1 ≤ Z̃1 ≤ Ẑ1+
M1ε a.s., we can write

P(Z1 > x) = P{Z1 > x, Ẑ1 + M1,ε > x}
∼

∑
n

P{Z1 > x, σ1,−n > (b1 − ε)n + x}. (5.3)

Step 2. If there is only one big jump before time 0 and all other jump sizes are replaced by
their means, then it follows from Lemma C.1 that Z1 > x can occur only if, for some n, the
(−n)th service time is large. Note that b1 < a(�1 + p21�2). Applying to (5.3) arguments
similar to those used in the proof of Theorem 8 of [1], for any γ in (0, �1 + p21�2), a single
big jump of size σ1,−n < x + an(�1 + p21�2 − γ ) is not sufficient for the inequality Z1 > x

to hold, so, for x → ∞, we must have

P{Z1 > x) ≤ [1 + o(1)]
∞∑

n=0

P{Z1 > x, σ1,−n > x + an(�1 + p21�2 − γ )}.

Letting γ → 0 leads to an upper bound for P{Z1 > x} that, up to the term o(1), coincides with
the lower bound.

By symmetry, a similar result holds for c = (0, 1).
Assume finally that c1 > 0 and c2 > 0. Let FI

1 (x/c1) and FI
2 (x/c2) be weakly tail

equivalent. Introduce by analogy b2, Ẑ2, and M2ε. Then, with Mε := c1M1ε + c2M2ε,

c1Z1 + c2Z2 ≤ c1Ẑ1 + c2Ẑ2 + Mε,
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where on the right-hand side the three terms are mutually independent, the first two having
heavy-tailed distributions, and the last a light-tailed distribution. Then, from condition (3.32)
of Theorem 3.33 of [7], the distribution of c1Ẑ1 + c2Ẑ2 is also subexponential and, furthermore,

P{c1Ẑ1 + c2Ẑ2 + Mε > x} ∼ P

{
Ẑ1 >

x

c1

}
+ P

{
Ẑ2 >

x

c2

}
.

Then, similarly to (5.3), we obtain

P{c1Z1 + c2Z2 > x} ∼ P

{
Z1 >

x

c1
, Ẑ1 >

x

c1

}
+ P

{
Z2 >

x

c2
, Ẑ2 >

x

c2

}
, (5.4)

and, as before, we can proceed with each term in (5.4) separately to obtain the second statement
of Theorem 2.2.

6. Concluding remarks and related open problems

We have obtained a number of results for the tail asymptotics of linear functionals c1Z1+c2Z2
of a stationary two-dimensional workload using two approaches, under different stochastic
assumptions. The open questions below are closely related to the results in this paper.

(Q1) The exact asymptotics for P{Zi > x} are obtained in Theorem 2.2 only when arrival
batches are one-dimensional. Can they be obtained in the two dimensional case? Since
P{Zi > x} is weakly tail equivalent to F I

i (x), we may conjecture that P{Zi > x} ∼
KF I

i (x) for some K > 0 under (A1) and subexponentiality of FI
i . If this is correct, it

follows from (3.4) that P{Vi > x} ∼ K ′F I
i (x) for some K ′ > 0. For example, this is

satisfied for i = 1 since (3.4) with c = (1, 0) implies that, for x ≥ 0,

α1P{J I
1 + Z1 > x} − δ1P{Z1 > x} = p21ϕ2(0) P{V1 > x},

where J I
1 is a random variable with distribution FI

1 and independent of Z1. Once the exact
asymptotics for P{Vi > x} are known, we can derive exact asymptotics for P{c1Z1 +
c2Z2 > x} for c > 0 from (3.6) under the assumptions in Theorem 2.1.

(Q2) Might it be possible to obtain the weak tail asymptotics of Theorem 2.1 using the sample-
path approach? It is unclear how to construct a majorant, while a lower bound may be
easily given. For example, one may introduce an auxiliary model with smaller batch
sizes (Ĵ1, Ĵ2) = α(J1, 0) + (1 − α)(0, J2), where α is an independent random variable,
P{α = 1} = 1 − P{α = 0} = 1

2 , and compare the two models.

(Q3) Find the tail asymptotics for the two-dimensional stationary vector (Z1, Z2) or for
functionals of that vector which are not linear.

(Q4) Find the tail asymptotics for the stationary sojourn time in a stable generalized Jackson
network with heavy-tailed service time distributions. Our asymptotic results provide
only lower bounds for that, since the arrival of a large batch to one of the nodes does not
delay service in the other node, while this is the case for a single customer with a large
service time.

Appendix A. Proof of Lemma 3.1

Dividing (3.2) by θ1,(
δ1 + δ2

θ2

θ1
− λ

θ1
(F̂ (θ) − 1)

)
ϕ(θ) =

(
1 − p12

θ2

θ1

)
ϕ1(θ2) +

(
θ2

θ1
− p21

)
ϕ2(θ1).
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Letting θ1 → −∞ in this equation yields

ϕ1(θ2) = δ1ϕ(−∞, θ2) + p21ϕ2(−∞), (A.1)

implying that
ϕ1(−∞) = δ1ϕ(−∞, −∞) + p21ϕ2(−∞).

Similarly,
ϕ2(−∞) = δ2ϕ(−∞, −∞) + p12ϕ1(−∞).

Since ϕ(−∞, −∞) = π(0), solving these equations yields ϕi(−∞) = μiπ(0). On the other
hand, putting θ2 = 0,

�1 + p21ϕ2(0) = ϕ1(0), �2 + p12ϕ1(0) = ϕ2(0).

Solving these equations yields the first equality of (3.3) for ϕi(0). The second equality is
immediate from the definitions of �i and ρi .

Appendix B. Proof of (4.1)

From the definitions of ϕ and ϕ+, we have

ϕ(θ) = ϕ+(θ) + ϕ(θ1, −∞) + ϕ(−∞, θ2) + π(0).

Substitution in this equation for ϕ(θ1, −∞) and for its symmetric form from (A.1), and then
setting θ = sc, yields (4.1) because

δ1p12ϕ1(−∞) + δ2p21ϕ2(−∞) + δ1δ2π(0) = μ1μ2(1 − p12p21)π(0) = δ1δ2d0.

Appendix C. Analysis of a pure fluid model

Assume again, for i = 1, 2, that �i > 0, and consider an auxiliary pure fluid model
with continuous fluid input rates αi , service rates μi , and transition fractions p12 and p21 as
described in Section 2. We use the same notation Zi(t) as before, but now for deterministic
buffer quantities.

Fix t > 0, and assume that the fluid model starts at negative time −t from levels yi (meaning
Zi(−t) = yi); we want to identify conditions on yi for

c1Z1 + c2Z2 ≥ x

to hold, where again ci ≥ 0 and c1 + c2 = 1 are given constants, and where Zi = Zi(0).
Cases c = (1, 0) and c = (0, 1). We want to find conditions for Z1 ≥ x (and then by

symmetry for Z2 ≥ x). From the monotonicity properties of fluid limits (see, e.g. [10]), under
the stability conditions, if the fluid model starts from a nonzero initial value at time −t and if
some coordinate, i say, becomes 0, Zi(u) = 0 at time u > −t , then it stays at 0, Zi(v) = 0 for
all u ≤ v ≤ 0.

Let L2 = y2/�2. Suppose first that L2 ≥ t . Then at any time instant u ∈ (−t, 0), and, for
i = 1, 2,

(i) the input rate to queue i is αi + μ3−ip3−i,i ; and

(ii) the output rate from queue i is μi .
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Then Z1 ≥ x if and only if
y1 ≥ x + t�1. (C.1)

Suppose now that L2 < t . Then, for any u ∈ (−t, −t + L2) and i = 1, 2,

(iii) the input rate to queue i is αi + μ3−ip3−i,i ; and

(iv) the output rate from queue i is μi ;

while, for any u ∈ (−t + L2, 0),

(v) the input and output rates to/from queue 1 and the input rate to queue 2 are as in (iii) and
(iv); but

(vi) the output rate from queue 2 equals the input rate, i.e. it equals α2 + μ1p12.

Then the condition Z1 ≥ x is the same as

y1 − x ≥ L2�1 + (t − L2)(μ1 − [α1 + p21(α2 + μ1p12)]) = t�1 + tp21�2 − y2p21. (C.2)

Combining (C.1) and (C.2),

y1 ≥ x + t�1 + p21(t�2 − y2)+.

Case c1 > 0, c2 > 0. Following the same logic as just given, if L2 ≤ t then Z2 = 0, and
the condition on y1 coincides with (C.2) on replacing x by x/c1, i.e.

y1 ≥ x

c1
+ t�1 + p21(�2 − y2).

Similarly, if L1 ≤ t then Z1 = 0 and

y2 ≥ x

c2
+ t�2 + p12(t�1 − y1).

Otherwise, if both L1 > t and L2 > t , then y1 = Z1 + t�1, y2 = Z2 + t�2, and

c1Z1 + c2Z2 = c1(y1 − t�1) + c2(y2 − t�2) ≥ x.

Combining these three cases leads to the following result.

Lemma C.1. For i = 1, 2, let a purely fluid model have input rates αi , service rates μi , and
transition fractions p12 > 0 and p21 > 0; let ci ≥ 0 have c1 + c2 > 0. Let t > 0, and
let the system start at time −t from Zi(−t) = yi ≥ 0. If both �i > 0 then the inequality
c1Z1 + c2Z2 ≥ x holds if and only if

c1(y1 − t�1 − p21(t�2 − y2)+)+ + c2(y2 − t�2 − p12(t�1 − y1)+)+ ≥ x. (C.3)

Corollary C.1. When y1y2 = 0 but y1 + y2 > 0, (C.3) is equivalent to

max{c1(y1 − t�1 − p21t�2), c2(y2 − t�2 − p12t�1)} > x,

and this last inequality is equivalent to the union of the two events{
y1 >

x

c1
+ t�1 + p21t�2

}
∪

{
y2 >

x

c2
+ t�2 + p12t�1

}
,

where if ci = 0 then the corresponding event is empty.
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Appendix D. Heavy-tailed distributions

D.1. Definitions

The distribution F of a positive random variable X is

(D1) heavy tailed if E[ecX] := ∫ ∞
0 ecx dF(x) = ∞ for all c > 0, and light tailed otherwise;

(D2) long tailed if F (x) > 0 for all x > 0 and F (x + 1)/F (x) → 1 as x → ∞;

(D3) subexponential if, as x → ∞, F ∗ F (x) ∼ 2F (x), or, equivalently, P{X1 +X2 > x} ∼
2P{X > x} as x → ∞ (here X1 and X2 are two independent copies of X).

(D4) The distribution F of a real-valued random variable X is subexponential if the distribution
of max{X, 0} is subexponential.

(D5) The distribution F is regularly varying if F (x) = l(x)x−k , where k ≥ 0 and the
positive function l(x) is slowly varying at infinity. Regularly varying distributions are
subexponential.

D.2. Key properties

For details, see, e.g. [7].

(P1) Any subexponential distribution is long tailed, and any long-tailed distribution is heavy
tailed.

(P2) If distribution F is long tailed then there exists a function h(x) → ∞ as x → ∞ such
thatF (x + h(x))/F (x) → 1 as x → ∞.

(P3) If distribution F is long tailed and if G (x) = o(F (x)), then the convolution F ∗G is also
long tailed andF ∗ G (x) ∼ F (x). In particular, if a random variable X has a long-tailed
distribution and a random variable Y is nonpositive, then P{X + Y > x} ∼ P{X > x} as
x → ∞.

(P4) If F is subexponential andG (x) ∼ F (x), then G is subexponential.

(P5) If X1, X2, . . . are i.i.d. with common subexponential distribution F and if τ is a light-
tailed counting random variable, then

∑τ
i=1 Xi also has a subexponential distribution

and P{∑τ
i=1 Xi > x} ∼ E[τ ]F (x).

(P6) Let nonnegative random variable X have distribution F , mean m, and integrated dis-
tribution FI (x) = (1/m)

∫ x

0 F (t) dt . ThenF (x) = o(F I (x)) if and only ifF I is long
tailed.

(P7) If X1, X2, . . . are i.i.d. nonnegative random variables with mean m and whose integrated
distribution FI is long tailed, then, for any c > 0 and as x → ∞,

P

(⋃
n≥1

{Xn > x + nc}
)

∼
∑
n≥1

P{Xn > x + nc} ∼ m

c
F I (x).

Here the first equivalence follows from Bonferroni inequalities: for any events {An} with∑
n P(An) < ∞,

∑
n P(An) ≥ P(

⋃
n An) ≥ ∑

n P(An) − ∑
n�=m P(AnAm) and from

observing that
∑

n�=m P(AnAm) = o(
∑

n P(An)) in our case. The second equivalence
follows from the long tailedness of FI .

(P8) ‘The principle of a single big jump’ for a single-server queue with i.i.d. service times σn

with mean m and subexponential integrated tail distribution FI , and with i.i.d. interarrival
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times with meanb > m. LetZ be the waiting time of customer 0 that arrives in a stationary
queue at time 0. Then, as x → ∞,

P{Z > x} ∼ P

(⋃
n≥1

{σ−n > x + n(b − m)}
)

∼ m

b − m
F I (x),

where the second equivalence follows from property (P6).
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