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Abstract
In relational event networks, endogenous statistics are used to summarize the past activity between actors.
Typically, it is assumed that past events have equal weight on the social interaction rate in the (near) future
regardless of the time that has transpired since observing them. Generally, it is unrealistic to assume that
recently past events affect the current event rate to an equal degree as long-past events. Alternatively one
may consider using a prespecified decay function with a prespecified rate of decay. A problem then is that
the chosen decay function could be misspecified yielding biased results and incorrect conclusions. In this
paper, we introduce three parametric weight decay functions (exponential, linear, and one-step) that can
be embedded in a relational event model. A statistical method is presented to decide which memory decay
function and memory parameter best fit the observed sequence of events. We present simulation studies
that show the presence of bias in the estimates of effects of the statistics whenever the decay, as well as the
memory parameter, are not properly estimated, and the ability to test different memory models against
each other using the Bayes factor. Finally, we apply the methodology to two empirical case studies.

Keywords: relational event model; social network analysis; network dynamics; memory decay; memory retention process;
profile likelihood; Bayes factor

1. Introduction
In relational event networks, the past relational event history between the actors can have an
enormous impact on future relational events (Butts, 2008). Research has shown that the past
can generally be well-summarized using so-called endogenous statistics to model the events to
be observed. These endogenous statistics typically quantify the activity between actors in the past.
For example, the endogenous statistic Inertia of actor i towards j for eventm is generally computed
as the total volume of past events from i to j until the previous event, that is,

inertia(i, j, tm)=
∑

e′∈Etm−1

I(s(e′)= i, r(e′)= j), (1)

where Etm−1 denotes the event history until eventm− 1, s(e′) is the sender of event e′, and r(e′) is
the receiver of event e′. Thereby the assumption is that the (logarithm of the) relational event rate
between two actors depends proportionally on the number of past events between these actors.
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Other examples of endogenous statistics include reciprocity, transitivity, or evenmore complex
higher-order dynamic patterns.

By defining the endogenous statistics as the total number of past events the assumption is that
all past events equally contribute to the event rate of the dyads in the subsequent period. This
however may not be likely in real-life social networks. As an example let us consider a group
of friends who send text messages to each other. At some point, let us assume that James sent
about 24 messages to Keira, and that Vicky also sent about 24 messages to Roberto (since the
observational period). Out of the 24 messages sent by James to Keira, let us assume that 22 were
send more than one month ago, and 2 messages were send two weeks ago. Out of the 24 messages
sent by Vicky to Roberto, all 24 messages were send in the last 5 days. Now the question is whether
it is more likely that James will send a message to Keira next, or that Vicky will send a message to
Roberto next? Under the assumption that sendingmessages is mainly driven by inertia, and inertia
is computed as the total volume of past messages between actors (which is equal for both dyads),
there would be an equal probability that for James to send a message to Keira, as for Vicky to send
a message to Roberto. Given the fact that Vicky has been much more active to send message to
Roberto in the recent past however it may be much more plausible that Vicky will send a message
to Robert next than James to Keira. This would imply that recently past relational events have a
stronger impact on what happens next than long-past events. Thus one could say that recently
past social events are fresh in the memory of actors while long past events may not.

Alternatively it can be assumed that the weight of past events decays according to an exponen-
tial function of the transpired time of the past event (Brandes et al., 2009). Indeed, it is likely
that over time actors differently weigh past events according to their time recency. The time
recency of an event is defined as the time transpired at the present time point since its occur-
rence. This measure increases over time after the event happens and can be a crucial information
in understanding whether and how the weights of events decay as time goes by and their time
recency decreases. This would provide value insight to learn how the past affects the future in
relational event networks. As proposed in Brandes et al.(2009), the formula for inertia is the
following:

exponential-inertia(i, j, tm)=
∑

e′∈Etm−1 :
s(e′)=i∧r(e′)=j

ln (2)
θhalf-life

exp
{
−(tm − te′)

ln (2)
θhalf-life

}
(2)

where the weight of each event (s(e′), r(e′))= (i, j) in the current history of events (Etm−1 ) follows
an exponential decay governed by the half-life parameter θhalf-life, which is assumed to be known.
The transpired time of the event e′, measured as tm − te′ , is updated at each time point. Because it
increases over time, the transpired time decreases the event weight over time. The speed of such
decrease depends on the value of the half-life parameter (θhalf-life) that describes the waiting time
before the weight of the past event (i, j) halves. Thus, the larger the θhalf-life, the slower will be the
decrease in weight and, in turn, long-passed events will keep having a high contribution in the
calculation of the statistic, reflecting a long-lasting memory of actors. When a researcher changes
the parameters governing the decay, the model statistics (such as the value of inertia) change with
it and, in turn, their effect on the event rate changes as well. For this reason, the use of such pre-
specified half-life parameters should be used with care. This is even more the case because the
weight of past events may even decrease with a different shape than with an exponential shape in
real life networks. The change of effects due to a change in the memory parameter was already
explored by Brandenberger (2018), where the author shows the different estimated model effects
resulting from pre-specifying different half-life values.

Another approach to modeling weight decay in relational event data was proposed by Perry &
Wolfe (2013), where the past history of events at each time point is divided according to a set of
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K + 1 increasing time widths γ = (γ0, γ1, . . . , γK) and endogenous statistics are calculated within
each of the K resulting intervals. For instance, inertia for the k-th interval is calculated as

interval-inertia(i, j, tm, k)=
∑

e′∈Etm−1 :
(tm−te′ )∈(γk−1,γk]

I(s(e′)= i, r(e′)= j) for k= 1, . . . ,K (3)

Therefore, the effect of inertia in each interval is estimated and finally described by the vector
of effects β inertia = (βinertia1 , . . . , βinertiaK ). No assumptions are made about the steps (which may
either decrease, increase, etc.) and the estimation can be done relatively easy using existing soft-
ware. Note that there is a clear relation between this stepwise approach and the above weighted
approach according to the following equation⎡

⎢⎢⎢⎣
βinertia1
...

βinertiaK

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
βinertiaw1

...

βinertiawK

⎤
⎥⎥⎥⎦ (4)

where on the right side: (w1, . . . ,wK) is the step-wise function of the weights of the events which
is based on the widths (γ0, . . . , γK) and assumes that events belonging to the same interval have
the same weight, βinertia is the effect of the network dynamic on the event rate. For an extended
description of the relation in (4) see Appendix A1. Also the step-wise approach has potential limi-
tations. First, in some applications it may not be natural to assume that the relative importance of
a past event is relatively high and one second later (say) its importance drops considerably which
is the case in such step-wise models. Second, it is generally unclear how the intervals should be
chosen such that thememory (decay) in the data is accurately captured [see also Arena et al. (2022)
for a related discussion]. Finally note that by considering many different intervals for all endoge-
nous effects, the number of unknown parameters can unduly blow up resulting in a tremendous
increase of our uncertainty about the model parameters.

In this paper, an alternative methodology is proposed to better learn about past events affect-
ing future events. We assume a continuous, parameterized decay function which can either be
exponential, linear, or step-wise. Each of these functions has a single memory parameter that is
optimized using the observed data. A Bayesian test is proposed to determine which decay function
(exponential, linear, or step-wise) fits the data best. Thereby, the methodology builds on previous
approaches by (i) allowing the weight of past events to decrease in continuous time [as in Brandes
et al. (2009)] but at the same time estimate the rate of the decay from the data, and (ii) finding the
best fitting shape of the weight decay [as in Perry & Wolfe (2013)] without overparameterizing
the model.

Related to the current work, the time sensitivity in relational event modeling has also been
discussed in various other studies. The effect of time recency of past interactions was discussed
by Tranmer et al. (2015), and a weekend effect was investigated by Amati et al. (2019) in a net-
work of health care organizations, in which authors show the different network mechanisms that
can be observed between week days and weekends. In another work, Bianchi & Lomi (2022)
study short-term and long-term effects in network dynamics and provide examples on a high-
frequency network (financial markets) as well as on a low-frequency network (patient-sharing
relations among health care organizations). Furthermore, methods for estimating time-varying
networks effects were proposed by Mulder & Leenders (2019), Meijerink-Bosman et al. (2022),
and Meijerink-Bosman et al. (2022) using moving window approaches, and by Fritz et al. (2021)
using B-splines.

Furthermore, some work has been done on external decays and on the presence of right-
censoring. Stadtfeld & Geyer-Schulz (2011) discussed the problem of using external decay
functions in a discrete state space and examined the use of exponential decays combined with
an arbitrary threshold on the decay. They observed that despite external decays as well as events
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of other types might affect the network of events under study, if the Markov process transition
rates are defined over very short time spans, the impact of such factors would only be marginal.
In another work, Stadtfeld & Block (2017) discussed about the hurdle of right-censoring in rela-
tional event networks and proposed a discrete time window approach that overcomes the issues
generated from right-censored events.

The remainder of this paper is organized as follows: in Section 2, we introduce parametric
memory decay functions and define three potential decays: (i) the one-step decay, (ii) the expo-
nential decay, and (iii) the linear decay. Then, in Section 3, we look into the methodological
consequences of treating the memory parameters as parameters to be estimated from the data,
introduce the use of the profile log-likelihood in relational event models (REMs), and finally pro-
pose some possible optimization methods which aim to find the maximum likelihood estimate
for the memory parameter. In Sections 4 and 5, we show the results on simulated relational event
histories as well as on two real case studies.

2. Parametric functions for modeling memory decay
Recently occurred events generally have a larger impact on the next relational event that will occur
in a social network than long-past events. To model this we define a weighting function, which is
denoted by w(γe(t), θ) where

1. γe(t)= t − te is the transpired time of event e at time t with t> te;
2. θ is a memory parameter with support S(θ) ∈R, which determine the resulting shape of

the decay;
3. the outcome of the weight is a non-negative real number, that is w(γe(t), θ) ∈R

+
0 .

The weight of a past event can reflect to what degree a past event is remembered, and thus, the
weighting function can be viewed as an operationalization of the memory decay of actors about
past events. For this reason, we shall use the term weighting function and memory decay function
interchangeably in this paper.

The above weighting function is then used for computing the endogenous statistics which sum-
marize the past event history at time t. For example, inertia, which is normally computed as the
total count (volume) of past events between two actors (i, j), is now computed as a weighted count
of past events weighted according to the chosen weighting function with memory parameter θ ,
that is,

weighted-inertia(i, j, tm, θ)=
∑

e′∈Etm−1

I(s(e′)= i, r(e′)= j)w(γe′(tm−1), θ) (5)

Note that the transpired time is computed from the time of the previous event tm−1, which is when
the waiting time starts for observing themth event. During the waiting time, the weight is assumed
to stay constant so that the assumption of constant hazards between events is not violated.

In contrast to previous approaches we assume the memory parameter to be unknown.
Regarding the memory function, many possible shapes could be considered. To keep the model
computationally feasible however, three parametric functions of the memory decay are consid-
ered in this paper: a one-step decay function, an exponential decay function, and a linear decay
function.

One-step decay

The one-step decay is defined as

wstep(γe(t), θmax)=
{
1 if γe(t)≤ θmax
0 otherwise

(6)
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(a) (b) (c)

Figure 1. Three examples of memory decay: (a) One-step decay where θmax ≈ 2 months and the height of the step is fixed
to 1; (b) exponential decay where θhalf-life ≈ 7 days; (c) linear decay where θhalf-life ≈ 2 months.

where θmax ∈ (0,+∞) is the memory parameter and the decay describes a one-step function.
Thus, events will contribute to the statistic only if their transpired time is less than the thresh-
old θmax. Moreover, the model is simplified to the case where the weight is unitary. Note that the
interpretation of a coefficient of an endogenous statistic that is computed using a one-step mem-
ory function is similar to the interpretation of coefficients of count statistics which ignore memory
decay. The only difference is that in the step-wise model only the events with transpired time that
do not exceed the threshold value θmax contribute to the rate with a value equal to the corre-
sponding coefficient of the parameter. An example of the shape of the one-step decay is shown in
Figure 1(a) where θmax ≈ 2 months. In this case, weighted inertia between actors i and j would be
equal to the total number of past events between i and j in the last 2 months.

Substantively a one-step decay may be appropriate in social networks where actors only have
a relatively short-term memory. It may then be reasonable to assume that only the past events
within this short window affect the endogenous statistics, and that the past events in this window
affect the endogenous variables (approximately) equal. Computationally the one-step model is
convenient as we would only need to look back until θmax to compute the endogenous statistics.

The one-step function was used by Mulder & Leenders (2019) using a prespecified memory
length. Mulder & Leenders (2019) also assumed that network parameters may change over time.
This was achieved by estimating the network parameters within a time window which was set
equal to the chosen memory length while moving the window over the observed event history. In
the current paper we do not consider a model where network parameters can change over time.
Instead we assume that the network parameters are homogeneous over time but, in the case of a
one-step decay, we do assume that the past events affect the endogenous statistics until a certain
threshold value (i.e., θmax), which is assumed unknown.

Exponential decay

The functional form for the exponential decay is

wexp(γe(t), θhalf-life)= exp
{
−γe(t) ln (2)

θhalf-life

}
(7)

for γe(t) ∈ (0,+∞) where θhalf-life ∈ (0,+∞) is the memory parameter that measures the mini-
mum elapsed time after which the event weight is halved. In this formulation, we let the weights
start decaying from 1 instead of ln (2)

θhalf-life
as it is defined in Brandes et al. (2009) and this will only

affect the scaling of the effects β . One of the possible shapes of an exponential decay is shown in
Figure 1(b) where θhalf-life ≈ 7 days.

The interpretation of a coefficient of an endogenous statistic that is computed using an expo-
nential decay function is slightly more complicated than for a regular count statistic because the
contribution of each past event to the rate (and the hazard) depends on the transpired time
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since the event was observed. For example, when the coefficient of inertia is equal to 3 and
the decay function in Figure 1(b) is considered with a half-life of 7 days which starts at 1, the
last event that was observed has a maximal contribution to the rate (and hazard) equal to 3.
Furthermore, the contribution of events that were observed approximately 7 days ago contribute
with approximately 1.5, and events that were observed approximately 14 days ago contribute with
approximately 0.75 to the rate and hazard.

Theoretically an exponential memory decay implies that the weight reduces to half its value
in a fixed amount of time, regardless of the current weight. Furthermore the model assumes that
past events are never “forgotten” as in the one-step model. Depending on the context this may
be realistic. Computationally the exponential decay is somewhat demanding as it requires one to
look back at the entire past history for computing endogenous statistics. However eventually the
weights become negligible, and thus, can be approximated as zero.

The exponential model was proposed by Brandes et al. (2009) to model relational events
between political actors (e.g., countries) during conflicts. Instead of estimating the half-life param-
eter from the observed data, the model was fitted using different prespecified half-life parameters.
This yielded fairly consistent results in their empirical applications. It is yet unknown whether
this result holds in general. This will be explored later in this paper when fitting the model using
misspecified memory parameters.

Linear decay

The linear decay function is defined as

wlinear(γe(t), θhalf-life)=
(
1− 1

2θhalf-life
γe(t)

)
I(γe(t)≤ 2θhalf-life) (8)

for γe(t) ∈ (0,+∞) and with θhalf-life ∈ (0,+∞), which quantifies the time until the weight is
halved, similar as in the exponential decay in (7). Unlike the exponential decay on the other hand
the weight becomes 0 after the transpired time reaches 2θhalf-life, similar as the one-step model. In
this sense the linear decay model can be seen as a middle ground between the one-step decay and
the exponential decay function. An example of a linear weight decay is shown in Figure 1(c) for
θhalf-life = 2 months.

The interpretation of a coefficient of an endogenous statistic that is computed using a linear
decay function may be slightly more complicated than for a regular count statistic (because we
need to take the transpired time of past events into account) but possibly the interpretation is eas-
ier than for statistics with the exponential decay function because linear trends are relatively easy
to understand. For example, if inertia would be equal to 3 and the decay function in Figure 1(c) is
considered having a half-life of 2 months, the last event that was observed has a maximal contri-
bution to the rate (and hazard) equal to 3, and events that occurred approximately 1, 2, 3, and 4
months or more contribute to the event rate with 2.25, 1.5, 0.75, and 0.

The linear decay model may be appropriate where the contribution of past events to the
endogenous statistics (and thus to the logarithm of the event rate) is an approximately linear
function of the transpired time, which, at some point, becomes approximately zero. Similar as the
one-step model, the model is computationally convenient because one would not need to take the
entire past history into account in the computation of the endogenous statistics. It may be some-
what less realistic however that the decay is assumed to be exactly 0. To our knowledge a linear
decay model has not yet been considered for relational event modeling.

Normalizing decay functions and updating statistics

All the three weight decays start at 1, decay towards zero but are not normalized. However, they
can be normalized by multiplying them with a normalizing constant of log(2)

θ
for the exponential
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decay and 1
θ
for the one-step and the linear decay. The effect of the normalization of the weights

directly translates into a re-scaling of the effect β of each endogenous statistic on the event rate,
without changing nor re-scaling the estimate of the memory parameter. Normalization is recom-
mended whenever it is needed to compare effects β across different parametrizations or across
network dynamics with different memory parameter but following the same parametrization.

When endogenous statistics at each time point are updated according to one of the weight
decays introduced in this section, the transpired time of events in the history is updated with
respect to the time point that precedes the present one. For instance, if we need to update statistics
at time tm, the history of events that we are going to consider will be Etm−1 , that is the collection
of events from the onset until and including the event occurred at tm−1 and the time we consider
to compute the time transpired of each event in the history will be the time of the last event in
Etm−1 , that is tm−1. Therefore, since statistics are assumed to be updated at the last observed time
point and not during the waiting time between two subsequent events, no right-censoring has to
be taken into account in our analysis and the assumption of constant hazards during waiting times
is not violated.

3. The profile log-likelihood in REM
The functions to model memory decay presented in Section 2 are three examples of univariate
decays that can be embedded in the likelihood function of a REM [Butts (2008)] as well as in an
actor-oriented model [DyNAM; Stadtfeld & Block (2017)]. In these decay functions, the memory
parameter has support in (0,+∞). Thus, with the purpose of avoiding a constrained optimization
for the memory parameter, we can re-parametrize it as θ = exp {ψ}, where ψ ∈R is the natural
logarithm of the memory parameter θ .

We now consider a sequence EtM of M relational events occurring among N actors where the
likelihood function of a REM, which depends on the memory decay parameter ψ , is written as

L(
β ,ψ ; EtM

)
=

M∏
m=1

[
λ
(
sem , rem , Xem , Etm−1 , β ,ψ

) ∏
e′∈R

exp
{−λ(se′ , re′ , Xe′ , Etm−1 , β ,ψ

)
(tm − tm−1)

}]

(9)

where at each time point a vector of endogenous and exogenous statistics in Xem is available for
every possible dyad in the risk set (R). Although we assume a time-invariant risk set the method
can straightforwardly be applied to dynamic risk sets. Parameters β describe the effect of the statis-
tics on the event rate and ψ represents the logarithm of the memory parameter under a specific
memory decay, which is assumed to be the same for all the endogenous statistics. In the context
of maximization of the likelihood function we are interested in finding the vector of parameters
(β ,ψ) that maximizes the likelihood given the observed sequence of events which is equivalent to
minimizing the negative log-likelihood:

arg min(β ,ψ){− lnL(β ,ψ ; EtM )} (10)

The optimization problem in (10) is generally solved by calculating the derivatives of the function
up to and including the second order. In the case of a REM with an unknown memory param-
eter, endogenous statistics are no more sufficient for the estimation of the corresponding vector
of effects β , because their value changes depending on the value of the memory parameter ψ .
Thus, only the sequence of events can be referred to as sufficient statistic both for the endogenous
effects in β and for ψ . Moreover, derivatives for the memory parameter can either increase the
computational burden or fail to exist (for instance, in the one-step decay function). In light of
this, we can take advantage of the negative profile log-likelihood for a given memory parameter
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Figure 2. Negative profile log-Likelihood for the log-half-life parameter (exponential memory decay with true value ψ =
ln (4)≈ 1.386, dashed vertical line) for one randomly simulated event history.

and investigate whether the memory decay assumption is supported from the data and where the
minimum potentially lies in. The profile negative log-Likelihood for ψ can be written as,

− lnLp(ψ)=min
β

{− lnL(β ,ψ ; EtM )} (11)

where the value of − lnLp(ψ) is obtained as the minimum value of the negative log-likelihood
where the memory parameter is fixed and the optimization is carried over β (as in a regular REM).
Equation (11) comes down to one optimization for each fixed value of ψ ∈R. If there exists a
minimum for − lnLp(ψ), that value will correspond to the global minimum of both ψ and the
optimized vector β , thus they will be a solution for the optimization of the negative log-likelihood
− lnL(β ,ψ ; EtM ).

An example of the negative profile log-likelihood based on one randomly simulated relational
event history with an exponential memory decay is shown in Figure 2 where the function reaches
its minimum close to the true value of the log-half-life parameter (ψ = ln (4)≈ 1.386, indicated by
the dashed vertical line). The slight deviation from the true value can be explained from random
sampling (explored in more detail in the next section).

A drawback of the optimization of the negative Profile log-likelihood is that such methods do
not provide a measure for the standard error of the memory parameter nor its covariances with
the vector of effects β . A way to estimate the accuracy of the estimate for the memory parameter
and the related covariances consists in embedding the weight decay function in the model and in
optimizing the complete log-Likelihood in (9). However, this approach requires the weight decay
function to be differentiable at least twice.

Even though we cannot obtain standard errors for the memory parameters in a straightfor-
ward manner, the profile log-Likelihood can be used to quantify our relative uncertainty (from a
Bayesian perspective) about different models that assume different values for the memory param-
eter as in a model selection problem. For example, when looking at the example data that was
used in Figure 2, we could think of a set of models M1 :ψ = −5.0, M2 :ψ = −4.9, M3 :ψ =
−4.8, . . . ,M101 :ψ = 5. The Bayesian information criterion for modelMt [BIC; Schwarz (1978)]
is then defined by
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BIC(Mt)= k log(M)− 2 lnL(β̂ ,ψ ; EtM ), (12)

where β̂ is theMLE assuming the memory parameter of length k, andψ is given under modelMt .
Thus, this BIC is directly available using standard statistical software. Consequently the Bayes
factor (BF) between one model, say, Mt1 assuming a certain value for the memory parameter
against another model, say, Mt2 , assuming another value (possibly assuming another memory
function as well), is then given by

BF(Mt1 ,Mt2 )= exp{BIC(Mt2 )/2− BIC(Mt1 )/2}, (13)

which quantifies the relative evidence in the data in favor ofMt1 againstMt2 . Thus, via this route
we can even test non-nested models having different memory functions and assuming different
memory parameters.

4. Simulations: Synthetic relational event histories with memory decay
Numerical simulations were conducted to explore the bias and the change in fit observed when
memory decay values and/or decay parametrization are misspecified. Furthermore, we explored
the performance of the BF to test between models with different memory decays. Finally, a sim-
ulation was carried out to investigate the behavior of the estimates in the scenario were the
assumption of piece-wise-constant hazard is no longer met. The simulations studies under four
different populations will be referred to as Simulations 1, 2 3, and 4.

Simulation 1: Exponential memory decay
In Simulation 1, 100 relational event histories are generated, each with M = 5, 000 events occur-
ring amongN = 20 actors. The log event rate for any dyad (i, j) ∈R at time t is specified as follows:

ln λ(i, j, t)= βIntercept + βDyadic1Dyadic1(i, j)+
+βDyadic2Dyadic2(i, j)+ βInertiaweighted-Inertia(i, j, t, θhalf-life)+

+βReciprocityweighted-Reciprocity(i, j, t, θhalf-life)+
βTClosureweighted-TClosure(i, j, t, θhalf-life)+

+βABAYABAY(i, j, t) (14)

where Dyadic1 and Dyadic2 are two exogenous variables that are time-invariant and asym-
metric (i.e. Dyadic1(i, j) 
=Dyadic1(j, i)). Weighted inertia, weighted reciprocity, and weighted
transitivity closure [TClosure, based on the definition presented in Arena et al. (2022)]
are endogenous statistics based on a weighted count using an exponential memory decay
with θhalf-life = 4 (with ψ = ln (θhalf-life)≈ 1.386). ABAY is an endogenous turn-continuing
participation shift (Butts, 2008) which does not follow any memory decay. The vector of
true parameters is (βIntercept = −3.5, βDyadic1 = 0.5, βDyadic2 = −0.3, βInertia = 0.2, βReciprocity =
0.3, βTClosure = 0.1, βABAY = 0.2).

Simulation 2: Linear memory decay
In Simulation 2, 100 relational event histories are generated, each with M = 5, 000 events occur-
ring among N = 20 actors. The log event rate for any dyad (i, j) ∈R at time t is specified as in
(14). However, in this simulation the memory decay for weighted inertia, weighted reciprocity,
and weighted transitivity closure follows a linear decay with θhalf-life = 4 (with ψ = ln (θhalf-life)≈
1.386). The vector of true parameters is the same as the one used in Simulation 1 except for the
Intercept which is βIntercept = −3.
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Simulation 3: One-stepmemory decay
The same configuration is considered as for Simulation 2 but with a one-step memory decay for
weighted inertia, weighted reciprocity and weighted transitivity closure using threshold θmax = 4
(with ψ = ln (θmax)≈ 1.386).

Simulation 4: Exponential memory decay and decreasing hazard
In this simulation, 100 relational event histories are generated, each withM = 5, 000 events occur-
ring among N = 20 actors. To explore the effect of violations of the piece-wise constant hazard
assumption, the waiting times are generated from a Weibull distribution where the shape param-
eter is assumed equal to 0.5. With such value of the shape parameter, hazards decrease over
the waiting times. The scale parameter of the Weibull is still a function of the rates and the
log event rate for any dyad (i, j) ∈R at time t is specified as in (14) with the exception of the
Intercept that is assumed βIntercept = −10. The weight decay of the endogenous statistics fol-
lows the same exponential decay as in Simulation 1 with a half-life parameter θhalf-life = 4 (with
ψ = ln (θhalf-life)≈ 1.386).

4.1 Exploring bias based on amisspecifiedmemory decay
The first purpose of the first three simulations studies is to understand whether and to what degree
maximum likelihood estimates of the effects of the statistics in a REM are affected by the value of
the memory parameter. This is important as memory decay is often prespecified in an ad hoc
manner.

In Figures 3, 5, and 7, the trend for each estimated effect over the logarithm of the memory
parameter, ψ , is shown under the three memory decays (exponential, linear and one-step). The
shaded areas delimit the first and the third quartile of the distribution (based on the 100 simula-
tions) of the estimated effect at any given value ofψ . The black lines show the trend of the median
of each effect over the 100 simulations, and they have a different line type according to each
parametrization. The diamond-shaped point marks the coordinates of the true memory param-
eter (ln (4)≈ 1.386) and the true value of each specific effect. In all the simulations we see that
all the endogenous variables which were assumed to follow a memory decay (Inertia, Reciprocity,
and Transitivity Closure) as well as the Intercept are considerably affected by bias in the case of
a misspecified memory parameter. Only if (i) the memory model assumed is the correct one and
(ii) the memory parameter is around its maximum likelihood estimate, the distribution of the esti-
mates across the simulations tend to concentrate around the true β . As a consequence of this, it is
evident that by not accounting for the memory parameter in the maximum likelihood optimiza-
tion of a REM as well as not investigating different memory decays will likely lead the researcher
to biased estimates.

Furthermore, Figure 4, 6, and 8 show a comparison between rescaled negative profile log-
Likelihoods across 100 simulations within each simulation study (Simulation 1, 2, and 3). In each
simulation study, each of the 100 simulated event sequences were optimized under each of the
three parametrizations of the memory decay (Exponential, Linear, and One-Step). Therefore, for
each event sequence a negative profile log-Likelihood is found for each parametrization. The set
of negative profile log-Likelihoods under each parametrization and per each event sequence are
then rescaled based on the global minimum across the three parametrizations and the local mini-
mumwithin each parametrization, resulting in the new scale on the y-axis (− ln (Lp)rescaled). Each
Figure shows three regions with different line types, one per each parametrization. Each region
represents the (rescaled) value assumed by the 95% of the simulations in one parametrization
across different values of the log-memory parameter (on the x-axis). The vertical dashed bold line
marks the true value for the logarithm of the memory parameter (ψ = ln (4)≈ 1.386). The results
suggest that the proposed method using the profile log likelihood results in accurate estimates of
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Figure 3. Simulation 1 (the true decay is exponential). Trend of themaximum likelihood estimates over the logarithm of the
memory parameter,ψ , and under each of the three memory decays (exponential, linear, and one-step). The shaded regions
delimit the first and the third quartile of the distribution (based on 100 simulated event sequences) of the estimated effect β
overψ . The black lines show the trend of themedian of each effect across the 100 simulations, and they have a different line
type according to each parametrization. The diamond-shaped point marks the coordinates of the true memory parameter
(ln (4)≈ 1.386) and the true value of each specific effect.

thememory parameter in a well-specifiedmodel. Moreover, the true data generatingmodel results
in the best fit overall. Finally we see that in all three simulation studies, the three parametrizations
result in roughly the same fit when towards small values of the memory parameter (negative val-
ues on the logarithmic scale) as well as towards larger values (greater than 3.0 on the logarithmic
scale). This implies that in the case of a complete mismatch of the true decay parameter and the
decay parameter that is used for model fitting, it does not matter which decay function would be
used.

When including memory decay parameters in REMs it is also important to verify whether the
assumption of proportional hazards is violated or not. In order to accomplish this, we analyzed
the Schoenfeld’s residuals (Schoenfeld, 1982) calculated for those endogenous statistics which are
assumed to follow a weight decay (Inertia, Reciprocity and Transitivity Closure). In each of the
three simulations, residuals in the 100 replicates distributed around zero and showed no trend
over time, which implies that the assumption of proportional hazard was not violated.

4.2 Testing different decay functions via the Bayes factor
The second purpose of simulation studies 1, 2, and 3 is to explore the performance of the BF to test
different memory models. We measured the relative evidence in favor of the true model given the
simulated relational event sequence. In each of the three simulations, for every generated event
sequence, we computed the BF of the model of the true weight decay function against the best
model under the remaining other two decays using Equation (13) for each simulated dataset. The
formulation of the BF is such that BF(M1,M2)> 1 (<1) implies evidence for M1(M2). If the
BF is on the log scale the cutoff value equals 0. By investigating the distribution of the BF across
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Figure 4. Simulation 1 (comparison between rescaled negative profile log-Likelihoods across simulations). The y-axis is the
− ln (Lp) that is rescaled based on the global minimum across the three parametrizations and the local minimum within
each parametrization. The figure shows three regions with different line types, one per each parametrization. Each region
represents the (rescaled) value assumed by the 95% of the simulations in one parametrization across different values of
the memory parameter (here on its logarithmic scale on the x-axis). The vertical dashed bold line marks the true value for
the logarithm of the memory parameter (ψ = ln (4)≈ 1.386). The three weight decays result in showing about the same
evidence towards small values of thememory parameter (negative values on the logarithmic scale) as well as towards larger
values (greater than 3.0 on the logarithmic scale). However, when in the neighborhood close to the true value of thememory
parameter, the tree parametrizations show a diverging evidence, with the Exponential model being the lowest, which is the
true parametrization used in the generation of the 100 event sequences.

the 100 sequences for all the simulations we get insights how well the BF can distinguish between
different memory models. Figure 9 plots the distribution of the BFs.

In each of the three simulations, the distributions of the ln (BF) concentrates on positive val-
ues (>0), with at least the 95% of the generated sequences supporting the true memory decay and
values of the BF (on its logarithmic scale) show a somewhat strong evidence as well. The worst per-
formance was observed in the case of Simulation 1 (exponential decay) when it was compared with
a linear decay, where the BF pointed towards the linear model in 20% of the simulated data sets.
This result shows that the linear decay can potentially mimic an underlying exponential decay. Of
course note that because the BF is consistent, the error probability would go to 0 when increasing
the sample size of the simulated event history and the evidence for the true model would go to
infinity.

4.3 Exploring estimation errors due to amisspecified hazard function
In Simulation 4, we explore the potential estimation error of the proposed REM with an expo-
nential memory decay while the data were generated using Weibull waiting times (which violate
the piece-wise-constant hazard assumption). Figure 10 shows the distribution of the endogenous
and exogenous REM parameters β based on the optimized memory parameter ψ for each gener-
ated dataset. The Figure shows that the distribution of the maximum likelihood estimate of each
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Figure 5. Simulation 2 (the true decay is linear). Trend of themaximum likelihood estimates over the logarithm of themem-
ory parameter, ψ , and under each of the three memory decays (exponential, linear, and one-step). The shaded regions
delimit the first and the third quartile of the distribution (based on 100 simulated event sequences) of the estimated effect β
overψ . The black lines show the trend of themedian of each effect across the 100 simulations, and they have a different line
type according to each parametrization. The diamond-shaped point marks the coordinates of the true memory parameter
(ln (4)≈ 1.386) and the true value of each specific effect.

effect is generally centered around its true value which suggests practically no clear estimation
error, except for the intercept which roughly ranges between−4.95 and−4.70 while the true value
was −10.0. This suggests that the decreasing hazard under the data generating model is mainly
picked up by the intercept of the fitted model while leaving the other model parameters generally
unchanged on average. This suggests that the estimated network parameters are safe to interpret
in the case of a misspecified model due to a decreasing hazard underlying the data.

5. Investigate memory decay in empirical relational event networks
In this section we apply the methodology to the following two real-life case studies:

• A network of Indian socio-political actors sending demands to one another;
• A network of students sending text messages among each other.

The goal was to learn which memory decay function best describes the weight decrease of
past events when modeling future events using endogenous network statistics. We also illustrate
the impact of misspecified memory parameters on the network coefficients. Moreover, the fit and
predictive performance of the best fittingmemory decaymodel was compared with amodel which
ignores memory decay to study the importance of memory decay in empirical relational event
networks. Finally we provide insights about the computational costs of the approach for relational
events with different numbers of actors and different numbers of events.
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Figure 6. Simulation 2 (comparison between rescaled negative profile log-Likelihoods across simulations). The y-axis is the
− ln (Lp) that is rescaled based on the global minimum across the three parametrizations and the local minimum within
each parametrization. The figure shows three regions with different line types, one per each parametrization. Each region
represents the (rescaled) value assumed by the 95% of the simulations in one parametrization across different values of
the memory parameter (here on its logarithmic scale on the x-axis). The vertical dashed bold line marks the true value for
the logarithm of the memory parameter (ψ = ln (4)≈ 1.386). The three weight decays result in showing about the same
evidence towards small values of thememory parameter (negative values on the logarithmic scale) as well as towards larger
values (greater than 3.0 on the logarithmic scale). However, when in the neighborhood close to the true value of thememory
parameter, the tree parametrizations show a diverging evidence, with the Linear model being the lowest, which is the true
parametrization used in the generation of the 100 event sequences.

5.1 Demands among Indian socio-political actors
The Indian data were retrieved from the Integrated Crisis Early Warning System (Boschee et al.,
2015). This database is available in the Harvard Dataverse repository and it collects relational
events that describe interactions (found in news articles) occurring between socio-political actors
all over the world. We focus our analysis on the sequence of requests that were recorded within
the Indian territory. In the original data, such requests were further classified in humanitarian,
military or economic ones but we avoid such distinction in our analysis.

The relational event sequence consists ofM= 7,567 demands recorded between June 2012 and
April 2020 and sent among the 10most active actor types: citizens, government, police, member of
the Judiciary, India, Indian National Congress Party, Bharatiya Janata Party, ministry, education
sector, and “other authorities.” The time variable is recorded at a daily level, therefore events
that co-occurred are considered evenly spaced throughout a day and the memory parameter is
measured in days. The logarithm of the rate (λ) for the demand sent by actor i to actor j at time t
is modeled as

ln λ(i, j, t)= βIntercept + βInertiaweighted-Inertia(i, j, t,ψ)
+ βReciprocityweighted-Reciprocity(i, j, t,ψ)+ βTClosureweighted-TClosure(i, j, t,ψ)
+ βABAYABAY(i, j, t) (15)
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Figure 7. Simulation 3 (the true decay is one-step). Trend of the maximum likelihood estimates over the logarithm of the
memory parameter,ψ , and under each of the three memory decays (exponential, linear, and one-step). The shaded regions
delimit the first and the third quartile of the distribution (based on 100 simulated event sequences) of the estimated effect β
overψ . The black lines show the trend of themedian of each effect across the 100 simulations, and they have a different line
type according to each parametrization. The diamond-shaped point marks the coordinates of the true memory parameter
(ln (4)≈ 1.386) and the true value of each specific effect.

where weighted-Inertia, weighted-Reciprocity and weighted-Transitivity Closure (TClosure) are
assumed to follow a weight decay governed by ψ , the logarithm of the memory parameter.

We first investigated the three weight decays presented in Section 2 (exponential, linear, and
one-step decay) by optimizing the negative log-Likelihood for eachmodel (a plot of the− ln Lp(ψ)
is shown in Figure 11). Finally we chose the best fitting model among the three models, that is the
one with the lowest BIC. In Table 1 the BIC’s of the three best models are reported along with
the BIC of a model in which no memory decay was specified. In the same table, the log-BF is cal-
culated by considering as reference the model with the lowest BIC among the three, that is the
exponential one. We see that there is convincing evidence in the data in favor of the exponen-
tial decay model as the data were approximately exp (10.97), exp (58.27), and exp (1952.88) times
more likely under the exponential model than under the linear decay model, the one-step model,
and the model without memory, respectively. Thus, we choose to continue the analysis with the
exponential decay model. In Figure 12 the trend of the MLEs is plotted over the logarithm of the
memory parameter (ψ) for the exponential decay model. Again, we see a considerable impact of
the choice of the memory parameter which suggests that choosing the memory parameter in an ad
hocmanner is not advised. For example, we see that transitivity closure can vary from approximate
0 to more than 1 within the considered range of the memory parameter.

The estimated half-life of the exponential memory decay in this network is exp (ψ̂)≈ 64
days. Thus the weight of past requests tends to halve after about 2 months. This case study
has been already shown in Arena et al. (2022) where a semi-parametric strategy was applied to
model memory decay by means of an ensemble of many step-wise decay models. In that analy-
sis, which does not make parametric assumptions about memory decay function (and is therefore
computationally much more expensive), the shape of the decay also followed an approximate
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Figure 8. Simulation 3 (comparison between rescaled negative profile log-Likelihoods across simulations). The y-axis is the
− ln (Lp) that is rescaled based on the global minimum across the three parametrizations and the local minimum within
each parametrization. The figure shows three regions with different line types, one per each parametrization. Each region
represents the (rescaled) value assumed by the 95% of the simulations in one parametrization across different values of
the memory parameter (here on its logarithmic scale on the x-axis). The vertical dashed bold line marks the true value for
the logarithm of the memory parameter (ψ = ln (4)≈ 1.386). The three weight decays result in showing about the same
evidence towards small values of thememory parameter (negative values on the logarithmic scale) as well as towards larger
values (greater than 3.0 on the logarithmic scale). However, when in the neighborhood close to the true value of thememory
parameter, the tree parametrizations show a diverging evidence, with the One-Step model being the lowest, which is the
true parametrization used in the generation of the 100 event sequences.

exponential shape, which is the same as we find here using the parametric approaches presented
in this paper.

In Table 2, the estimates of the effects β at the optimized memory parameter are reported.
When interpreting these coefficients it is important to note that the memory function was nor-
malized such that the surface underneath the line equals 1. Given the half-life parameter of 64
days, this implies that the function in Figure 1(b) would be multiplied with ln (2)/64. Thus, given
the estimated inertia effect of 6.9, the contribution of the last observed event to the last observed
dyad is equal to a factor of exp (6.9× ( ln (2)/64))≈ 1.08, that is, an increase of 8% (which is the
maximal contribution), and if an event was observed for this dyad approximately 64 days ago, this
would have resulted in a contribution to the rate with a factor of exp (6.9× ( ln (2)/64)× 0.5)≈
1.04, that is, an increase of 4%.

To illustrate the importance of modeling memory decay, we evaluated the predictive perfor-
mance of the best fitting REM with an exponential decay function and compared it with a REM
which ignores memory decay by giving all past events an equal weight.

The plot in Figure 13 shows the ROC curves of both models which clearly shows the superior
performance of the model with an exponential memory decay function.

5.2 Text messages among students
The sms data consist of a sequence of text messages sent among a group of university students
(freshmen) during a period of four weeks. The original event sequence is part of the interaction
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(a) (b)

(c)

Figure 9. Distribution of ln (BF) (where ln (BF)> 0 translates to as evidence in favor of the true model) : (a) in Simulation 1
the trueweight decay is exponential, thus the twoBayes factors are BF(MExponential,MLinear) andBF(MExponential,MOne-Step) and
the number of simulations where ln (BF)> 0 is respectively 80 and 98 out of 100; (b) in Simulation 2 the true weight decay is
linear, thus the two Bayes factors are BF(MLinear,MExponential) and BF(MLinear,MOne-Step) and the number of simulations where
ln (BF)> 0 is respectively 95 and98out of 100; (c) in Simulation 3 the trueweight decay is one-step, thus the twoBayes factors
are BF(MOne-Step,MLinear) and BF(MOne-Step,MExponential) and the number of simulations where ln (BF)> 0 is respectively 99
and 100 out of 100.

data collected in the Copenhagen Networks Study (Sapiezynski et al., 2019) and it consists of 568
students and 24,333 events (number of text messages).

We ran the same analysis on three sub-sequences of events (increasing in both number of
actors and number of events) so as to have a better understanding of the computational complex-
ity of the methodology presented in this paper as well as to explore the method for networks of
different sizes, both in terms of the number of actors and the number of events. For the selection
of the three sub-sequences: (i) we ran a clustering algorithm that works on the optimization of a
modularity score (Clauset et al., 2004; Csardi & Nepusz, 2006), (ii) we sorted the clusters based on
the length of the event sequences, from the longest to the shortest, and (iii) we considered three
sub-networks where the first was based on the first cluster of actors, the second was based on the
first two clusters and, finally, the third was based on the first eight clusters. Each sub-sequence of
events also includes the interactions between actors belonging to a different cluster. In Table 3, we
show the size of each network in terms of number of students (# Actors) and text messages sent (#
Events).
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Figure 10. Simulation 4 (the true waiting time in the 100 simulated event sequences is distributed as a Weibull with shape
parameter equal to 0.5). Distribution of themaximum likelihood estimates of the effects of the statistics as well as themem-
ory parameter in a REM (with piece-wise constant hazard assumption). Each vertical dashed line corresponds to the true
value of each effect.

In all the three selected relational event sequences, the time variable is available as timestamp
which is converted to hours transpired since the beginning of the observation time. Thus the
memory parameter will be measured in hours as well. In addition to the event sequence we also
know the gender of the students and whether they are friends on Facebook or not. With these two
information we specified two dyadic variables: (1) SameGender which assumes the value 1 if the
two actors interacting have the same gender, 0 otherwise; (2) FBfriends that assumes the value 1
where the sender and the receiver of the text message are friends on Facebook, 0 otherwise.

We specify the same model for the three sub-networks; thus, the logarithm of the rate (λ) for a
text message sent by actor i to actor j at time t is modeled as

ln λ(i, j, t)= βIntercept + βSameGenderSameGender(i, j)+ βFBfriendsFBfriends(i, j)
+ βInertiaweighted-Inertia(i, j, t,ψ)+ βReciprocityweighted-Reciprocity(i, j, t,ψ)
+ βABAYABAY(i, j, t) (16)

Also in this application weighted-Inertia and weighted-Reciprocity are assumed to follow a weight
decay governed by ψ and the three parametrizations were examined, in the same fashion as with
the Indian data.

In Figure 14, we see that for all three networks the negative profile log-Likelihood for the expo-
nential model is lowest, suggesting the best fit for an exponential decay. This is also confirmed

https://doi.org/10.1017/nws.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2023.5


Network Science 285

Table 1. (Indian data) BIC of the best model (where the memory parame-
ter is optimized) under each of the three memory decays (exponential, linear,
and one-step) and for the model w/o memory. The lowest BIC is the one of
the exponential model (56,753.55), and the two log-Bayes-factor are calcu-
lated based on the following model comparisons: BF(MExponential,MLinear),
BF(MExponential,MOne-Step), and BF(MExponential,Mw/omemory).

Decay

Exponential Linear One-Step w/o memory

BIC 56,753.55 56,775.5 56,870.08 60,659.31
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ln (BF) - 10.97 58.27 1952.88

Table 2. (Indian data) Maximum likelihood estimates for the exponential decay. The estimate
of the logarithm of the memory parameter is 4.156, that is an half-life of exp(4.156)≈ 64 days.
Estimates of effects β are all significant.

Exponential decay

ψ̂ Intercept Inertia Reciprocity TClosure ABAY

β̂ 4.156 −4.373 6.912 2.888 0.146 0.229
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

se(β̂) - 0.018 0.074 0.111 0.005 0.033

Figure 11. (Indian data) negative profile log-Likelihood (− ln Lp(ψ)) under each of the three memory decays (exponential,
linear, and one-step).
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Figure 12. (Indian data) trend of the maximum likelihood estimates (MLEs) for the exponential decay over ψ (logarithm of
the memory parameter). The dashed black lines in each plot mark the estimate for the log-memory-parameter ψ̂MLE (ver-
tical lines) and the estimates of the effects β (horizontal lines) at the corresponding ψ̂MLE. The shaded regions are the 95%
confidence intervals for the effects β estimated at any value ofψ .

Figure 13. (Indian data) ROC curve of model with exponential memory decay andmodel without memory.

by comparing the three optima, thus by the BIC’s and the BFs shown in Table 4. For the expo-
nential model, the trend of the estimates β over ψ for the model with eight clusters are shown in
Figure 15, where the dot marks the maximum likelihood for each effect at the ψ̂MLE. The trends
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Table 3. (Sms data) Dimensions of the three sub-
networks used in the example

Network of sms # Actors # Events

1 cluster 23 3,678
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 clusters 53 7,311
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 clusters 199 13,943

Figure 14. (Sms data) negative profile log-Likelihood (− ln Lp(ψ)) under each of the three memory decays (exponential,
linear, and one-step) and for each sub-network (one cluster, two clusters, and eight clusters).

of the other two networks (1 cluster and 2 clusters) are shown in Appendix A2. The optimal half-
life ranges between approximately 84 and 92 h, which implies that text messages become half as
important to predict future observations after a little bit more than 3.5 days.

The maximum likelihood estimates for the exponential model regarding the three networks
are shown in Table 5 using normalized decay functions, which should be taken into account when
interpreting the endogenous effects. For example, for the network based on eight clusters, inertia
was estimated to be equal to 1.423, which implies that the rate of the last observed dyad is multi-
plied with exp (1.423× ( ln (2)/ exp(4.519)))≈ 1.011, which implies an increase of about 1.1%,
and if an event was observed, say, exp(4.519)≈ 92 hours ago, this would have resulted in an
increase of about 0.5% of the rate. Furthermore, both the variables SameGender and FBfriends
show clear effects on the event rate. A negative effect for SameGender suggests that the text
messages are more likely to be exchanged between students of a different gender. Indeed, the
parameter β̂SameGender = −0.714 suggests that the hazard (sms) rate for a dyad where both actors
have the same gender will be ( exp(−0.714)− 1)≈ −51% lower than the rate in which the two
actors have different gender (holding all the other statistics constant). The effect for the variable
FBfriends shows that the sequence of sms is strongly represented by students that are also friends
on Facebook, since such variable results to have a large positive effect on the sms rate.
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Table 4. (Sms data) Per each sub-network (one cluster, two clusters, eight clusters) the BIC of
the best model (where the memory parameter is optimized) under each of the three mem-
ory decays (exponential, linear, and one-step) and for the model w/o memory. In all the
sub-networks, The lowest BIC is the one of the exponential model, and the two log-Bayes-
factor are calculated based on the following model comparisons: BF(MExponential,MLinear),
BF(MExponential,MOne-Step) and BF(MExponential,Mw/omemory).

Decay

Exponential Linear One-Step w/o memory

1 cluster BIC 12,882.49 13,408.32 14,004.85 16,092.17
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ln (BF) - 262.92 561.18 1,604.84
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 clusters BIC 38,178.28 39,332.40 40,810.29 44,540.81
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ln (BF) - 577.06 1,316.01 3,181.26
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 clusters BIC 118,548.10 120,438.30 122,899.70 128,520.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ln (BF) - 945.12 2,175.85 4,986.32

Figure 15. Sms data (eight clusters): trend of the maximum likelihood estimates (MLEs) for the exponential decay over ψ
(logarithm of thememory parameter). The dashed black lines in each plot mark the estimate for the log-memory-parameter
ψ̂MLE (vertical lines) and the estimates of the effects β (horizontal lines) at the corresponding ψ̂MLE. The shaded regions are
the confidence intervals at 0.95 for the effectsβ estimated at any value ofψ . For the Transitivity Closure (TClosure) estimates
are plotted for an interval ofψ to make the trendmuchmore readable.

To get more insights about the predictive performance of the best fitting exponential decay
model in comparison to a model which ignores memory decay, we checked the ROC curves.
These are displayed in Figure 16. Again we see that there is an improvement in predictive perfor-
mance of the exponential decay model over the model without memory decay. The improvement
is relatively small for the data based on 8 clusters.
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Table 5. (Sms data) Maximum likelihood estimates for the exponential decay in each of the three sub-networks (1 cluster, 2
clusters, 8 clusters). The estimate of the logarithm of the memory parameter (exp(ψ̂)) ranges approximately between 84 and
92 h in the three networks. Estimates of effects β are overall significant.

Exponential decay

ψ̂ Intercept SameGender FBfriends Inertia Reciprocity ABAY

1 cluster β̂ 4.438 −8.706 −1.357 5.745 0.662 0.984 −0.665
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

se(β̂) - 0.214 0.056 0.215 0.175 0.175 0.139


2 clusters β̂ 4.491 −9.214 −1.392 5.691 1.228 0.852 −0.407


se(β̂) - 0.109 0.036 0.110 0.134 0.134 0.110
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 clusters β̂ 4.519 −11.015 −0.714 6.536 1.423 1.152 0.894


se(β̂) - 0.059 0.020 0.059 0.135 0.135 0.072

Figure 16. (Sms data): ROC curve of model with exponential memory decay and model without memory for the three sub-
networks (one cluster, two clusters, and eight clusters).

The final objective of this study was to provide insights about the computational time of the
methodology by considering the needed time for one iteration in the estimation stage. We ran
one iteration for the optimization of the parameter β by fixing the log-memory parameter ψ
to the maximum likelihood estimate from the sub-sequence with 8 clusters. We considered the
three sub-sequences and for each sub-sequence, we run the estimation of the effects β over an
increasing sequence length of 1,800, 3,600, 7,200 and, 13,000 events. Per each sequence length,
we run the estimation 100 times. In Figure 17 the median (over 100 repetitions) running time for
one iteration in the optimization stage is shown across both sub-networks (one, two, and eight
clusters) and sequence lengths. The model that is estimated in the optimization stage is the same
one introduced in the data example in Section 5.2. The time is reported in seconds on the y-axis.
The sequence length on the x-axis is the number of events for the specific sub-network. The first
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Figure 17. (Sms data): Median running time of one iteration in the optimization stage. The model that is estimated in the
optimization stage is the same one introduced in the data example in Section 5.2. The time is reported in seconds (on the
y-axis), the sequence length is the number of events considered (on the x-axis). The first and the second sub-sequence (net-
works with one and two clusters) do not show running times for larger lengths because they reach their maximum length
(see Table 3).

and the second sub-sequence (networks with one and two clusters) do not show running times for
lengths larger than their maximum length (see Table 3). We observe that the median running time
of one iteration follows a linear increasing trend with a slope that becomes larger for the networks
with a higher number of actors. This shows that the computation is feasible for small networks of
23 actors to fairly large networks of 199 actors.

6. Discussion
In the literature on relational event networks, weight decay functions have been used to capture
the decreasing importance of past events to compute endogenous network statistics as a function
of the transpired time. To achieve this, a parametric function can be chosen to model the decay of
the weight of past events together with a chosenmemory parameter that describes the speed of the
decay or memory length. In previous studies both the decay function and the memory parameter
governing have often been pre-specified in a fairly ad hoc manner. As an alternative, the method
presented in this paper allows one to find the best fitting decay function and memory parameter
using the observed sequence of relational events by inspecting several parametric decay functions.

The simulation studies and empirical applications in this paper showed that a misspecifica-
tion of the shape of the memory decay and/or a misspecification of the memory parameter lead
to biased estimates of the effects of (endogenous) statistics, and consequently this may result in
incorrect conclusions about the temporal interaction behavior in the network. This was shown
by visualizing the trends of the estimated effects as a function of the memory parameter. For this
reason, it is not recommended to use memory functions or memory parameters that are arbi-
trarily specified. Instead we recommend to optimize the decay using the observed data as our
studies revealed that such biases are generally avoided in that case. Hence, we recommend network
researchers who are interested to learn how the past affects the future in relational event networks
to estimate the memory decay in the endogenous statistics using the proposed methodology.
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Of course, this paper only considered three possible parametric functions to capture memory
decay, all using one memory parameter. Many more single-parameter functions could be con-
sidered. Moreover, the methodology could be extended to functions with two or more unknown
parameters (e.g., smoothed-one step decay, negative power decay, hyperbolic-like decay which
also allows for a long-term memory plateau). We leave this for future research. Decays depend-
ing on a multiple parameters of course add complexity both to the optimization stage and to the
interpretation of the parameters. For this reason, the use of univariate memory models may be
preferred as a first step to study memory decay in empirical relational event networks.

Another important direction for future research is to improve the estimation of the memory
parameter that allows a quantification of its uncertainty, and how this transcends to the network
parameters. Both classical likelihood methods as well as full Bayesian approaches could be consid-
ered for this purpose. Furthermore, even though our simulation revealed that the model is fairly
robust against violations of the piece-wise constant hazard assumption, the potential impact of
such misspecifications would be useful to explore in more depth in future research.

Finally we note that the code for the processing of the original data along with the application
of the methodology presented in this paper are available in the OSF repository with identifier
DOI: 10.17605/OSF.IO/FD9QX (also reachable at https://doi.org/10.17605/OSF.IO/FD9QX). The
software developed to run the method discussed in this work will be available in the R package
bremory which will become available in the coming months.
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A. Appendix

A.1. Weights following a step-wise function
In Perry &Wolfe (2013) endogenous statistics are calculated based on a set of intervals of the tran-
spired time of past events. Consider a vector of K + 1 increasing widths γ = (γ0, . . . , γK) width
γ0 < . . . < γK and a network dynamic like inertia. After we calculate inertia in the intervals at all
the time points, the estimated effects define a step-wise function for the effect of the specific net-
work dynamic at any time point in the event sequence. The step-wise effect function is described
by β inertia = (βinertia1 , . . . , βinertiaK )

βinertia1
∑

e′∈Etm−1 :
(tm−te′ )∈(γ0,γ 1]

I(s(e′)= i, r(e′)= j)+ . . .+ βinertiaK
∑

e′∈Etm−1 :
(tm−te′ )∈(γK−1,γK]

I(s(e′)= i, r(e′)= j) (A1)

where per each interval in k= 1, . . . ,K the effect βinertiak multiplies by the value of the inertia
computed in the kth interval at time tm. The (A1) can be rewritten in a way similar to (2) where
the weight decay this time follows a step-wise function defined on the vector of increasing widths
γ . Indeed, by considering the same vector of widths and associating a vector of K weights w=
(w1, . . . ,wK) to each interval the step-wise weight decay becomes

w(γ )=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1 if γ ∈ (γ0, γ1]
...

wK if γ ∈ (γK−1, γK]
0 otherwise

(A2)

Hence, the statistic can be written as a weighted sum as in (2) but in this case following a step-wise
decay for the weights,

βinertiainertia(i, j, tm)= βinertia
∑

e′∈Etm−1

I(s(e′)= i, r(e′)= j)w(tm − te′) (A3)

where w(tm − te′) follows the step-wise function in (A2). Considering that weights are the same
within each interval, the sum in (A3) can be re-arranged as follows
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βinertiainertia(i, j, tm)

= βinertia

⎡
⎢⎢⎢⎣

∑
e′∈Etm−1 :

(tm−te′ )∈(γ0,γ 1]

I(s(e′)=i,r(e′)=j)w1 + . . .+
∑

e′∈Etm−1 :
(tm−te′ )∈(γK−1,γK ]

I(s(e′)=i,r(e′)=j)wK

⎤
⎥⎥⎥⎦ =

= βinertiaw1
∑

e′∈Etm−1 :
(tm−te′ )∈(γ0,γ 1]

I(s(e′)= i, r(e′)= j)+ . . .+ βinertiawK
∑

e′∈Etm−1 :
(tm−te′ )∈(γK−1,γK]

I(s(e′)= i, r(e′)= j) (A4)

The (A4) is exactly the same formula in (A1) with the only difference that here the step-wise
function of weights is explicitly written. Therefore, the equivalence between the two vectors of
effects can be written as follows ⎡

⎢⎢⎢⎣
βinertia1
...

βinertiaK

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
βinertiaw1

...

βinertiawK

⎤
⎥⎥⎥⎦ (A5)

The same idea of a changing weight of events according to their time recency is also here but it is
proposed from a different perspective. In the specific case of a step-wise function, the number of
steps and their widths are the parameters describing the function.

A.2. Sms data (sub-networks with 1 cluster and 2 clusters): Trend of MLEs when the weight decay is
exponential

Figure A1. Sms data (1 cluster): trend of the maximum likelihood estimates (MLEs) for the exponential decay overψ (loga-
rithm of thememory parameter). The dashed black lines in each plotmark the estimate for the log-memory-parameter ψ̂MLE
(vertical lines) and the estimates of the effects β (horizontal lines) at the corresponding ψ̂MLE. The shaded regions are the
confidence intervals at 0.95 for the effects β estimated at any value ofψ.
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Figure A2. Sms data (2 clusters): trend of themaximum likelihood estimates (MLEs) for the exponential decay overψ (loga-
rithm of thememory parameter). The dashed black lines in each plotmark the estimate for the log-memory-parameter ψ̂MLE
(vertical lines) and the estimates of the effects β (horizontal lines) at the corresponding ψ̂MLE. The shaded regions are the
confidence intervals at 0.95 for the effects β estimated at any value ofψ.
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