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A HILBERT ALGEBRA OF
HILBERT-SCHMIDT QUADRATIC OPERATORS

J.C. AMSON AND N. GOPAL REDDY

A quadratic operator Q of Hilbert-Schmidt class on a real separable Hilbert space
H is shown to be uniquely representable as a sequence \L ) of self-adjoint
linear operators of Hilbert-Schmidt class on H, such that Q(x) — £)fc (L

kx, x)ui
with respect to a Hilbert basis (wk)t6j, {I Q N). It is shown that with the
norm | \\Q\\ | = (£> \\Lh\\2)ll/1) and inner-product {((Q , P))) = £ t {{Lk , M l » ,
together with a multiplication denned componentwise through the composition of
the linear components, the vector space of all Hilbert-Schmidt quadratic operators
Q on H becomes a linear H*-algebra containing an ideal of nuclear (trace class)
quadratic operators. In the finite dimensional case, each Q is also shown to have
another representation as a block-diagonal matrix of Hilbert-Schmidt class which
simplifies the practical computation and manipulation of quadratic operators.

0. INTRODUCTION

The purpose of this paper is to show how a space of quadratic operators (that
is homogeneous polynomial operators of degree 2, (see for example [3, 4, 7, 8]) can
be given a multiplication under which it becomes a linear algebra. The construction
is new in that it does not make use of the composition of quadratic operators, nor of
the composition of the linear maps associated with the tensor product of the quadratic
operator's domain. The former attempt fails because the composition of two quadratic
operators is generally of degree 4. The latter fails because even though a quadratic
operator from one vector space E to another F is associated with a unique symmetric
bilinear operator on the cartesian product E x E^*F and hence with a unique linear
operator on the tensor product E®E—*F, those linear operators may only be composed
in the extremely unusual case where F = E® E. More elaborate nonlinear algebras of
homogeneous polynomial operators do exist of course [2], but these form a very different
topic from the one studied here.
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124 J.C. Amson and N. Gopal Reddy [2]

To be able to include bounded (continuous) quadratic operators we first develop
our ideas in the context of Hilbert space theory, and further specialise our treatment to
the case where the quadratic operators are the 2nd degree analogues of linear Hilbert-
Schmidt operators [5, 6, 9, 10].

We represent a Hilbert-Schmidt quadratic operator as a square-summable sequence
(ifc) of Hilbert-Schmidt linear operators on H. The linear components act as co-
ordinate quadratic forms through the (real) bilinear inner-product. We form a Hilbert
space of all such operators on H in a natural way as a generalised sequence space
12(I,HSL(H)). We then construct from this an (H*) Hilbert algebra [1, 5] by intro-
ducing a componentwise multiplication which makes it a function algebra. The product
of two Hilbert-Schmidt quadratic operators is then a nuclear (trace class) quadratic
operator [6, 8], since each of its components is automatically a nuclear linear operator.
Finally, we show how the members of this algebra may also be represented in the finite
dimensional case by Hilbert-Schmidt real matrices of a special 'block diagonal' type.

The applications of these general ideas to cases involving real Hilbert spaces of
low dimension will obviously have many connections with, for example, extensions of
the known theory of the geometry of bilinear and quadratic forms. There will also be
applications in the field of numerical and symbolic computations involving convenient
representations of the finite rank quadratic operators arising in 2nd-degree integral and
algebraic equations.

1. NOTATION AND PRELIMINARIES

Let H be a real, separable Hilbert space with Hilbert basis {«»}»€/> where 7 C N.
|/ | is the cardinality of I. We work in a real space because we require a bilinear inner-
product; the case of a complex space with sesquilinear inner-product needs additional
study. The separability of H is only for convenience; our results hold for an arbitrary
real Hilbert space. Let L(H) be the space of all bounded linear operators on H. We
denote by HSL(H) the Banach space of all Hilbert-Schmidt linear operators on H; the
uniform norm and Hilbert-Schmidt norm will be denoted by ||.|| and |||.|||, respectively.

We recall that a triply-indexed real array a = [a*.-]. ._. is called a 2-matrix of size
\I\ x |/ | x | / | . For each k £ I, the sub-array [o^-]. . f is an ordinary matrix (1-matrix).
We introduce the notation:

By analogy with the ordinary Hilbert-Schmidt matrix, we make the following definition:

DEFINITION 1: A 2-matrix a is said to be a Hilbert-Schmidt 2-matrixii |||a|||2 <
+oo. The set of all Hilbert-Schmidt 2-matrices of size |7| x \I\ x |/ | is denoted by
HS2M(I) or HS2M\i I is understood.
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[3] Hilbert-Schmidt Quadratic Operators 125

HS2Mis evidently a Banach space under the norm || |a| | | , and a Hilbert space under
the inner-product

For each a £ HS2M, and for each k £ / , the sub-matrix a* is plainly an ordinary
Hilbert-Schmidt matrix, with

nielli2 = E E K-i2'
i j

and we can denote each a G HS2M as a sequence a = (a*)
We recall too that the space of all real Hilbert-Schmidt matrices HS1M, |||-|||, is

isometric-isomorphic to the Hilbert space HSL(H) of Hilbert-Schmidt linear operators
on H under the identification [atJ] <->.A given by:

Vi,je/ , a.ij = (Aui, Uj).

Hence

» i •

where each Ak is the linear Hilbert-Schmidt operator corresponding to the Hilbert-
Schmidt matrix a .
This identification clearly extends to an isometric-isomorphism between the space HS2M

of Hilbert-Schmidt 2-matrices a = (a*)*6/ and the Hilbert sum ®keIHSL(H) of all

sequences A = (-4*) given the norm |||J4||| via:

(the order of summations being interchangeable because all the series are real and
positive and hence absolutely convergent), and inner-product:

(((A, B))) = E ((Ak , B")) = E E E <A*«<' B"^)'
k k i j

(using an obvious notation). We shall show below that each such square-summable
sequence A of linear Hilbert-Schmidt operators Ak determines a bounded quadratic
operator — indeed a Hilbert-Schmidt quadratic operator— on if. We shall also prefer to
replace the Hilbert sum @k£jHSL(H) by its equivalent generalised sequence space
12(I,HSL(H)) of square-norm-summable sequences of operators Ak 6 HSL(H).
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2. DEFINITION AND REPRESENTATION OF A

HLLBERT-SCHMIDT QUADRATIC OPERATOR

Let / C N; let {U,-},-GJ be a Hilbert basis for if. Let Q : H—*H be a bounded
(and hence continuous) quadratic operator on if with its associated (unique) continuous
symmetric bilinear operator Q : H X H—*H such that Q(x) — Q(x,x) identically, and
\\Q\\ — IIQH . Let x = £ \ x{u{, and z = J2k 2*u* b e vectors in H, such that Q(x) - z
where the coordinates zk of z are uniquely determined by Q. We note of course that
this 'uniqueness' is only with respect to the Hilbert basis chosen for if, or equivalently
'to within a unitary transformation' of If. Now

* % = z = Q(x) = Q(x,x) =

Since coordinates are unique, and, for each k 6 I, the scalars q^j form a matrix q*

uniquely determined by Q, it follows that each zk = Yli^2j9ijx'x^ an<^ ' s therefore

the value of a unique bounded quadratic functional or form Qk . Using familiar matrix-

vector notation we have:

zk =

From the uniqueness of the Fourier representation

k k

we also have the alternative representation (in virtue of the Riesz Theorem):

zk = (Lkx , x)

where Lk is the bounded linear operator corresponding to the bounded quadratic func-
tional Qk given by Qk = (Q(x) , Uk) • Of course, Lk can be assumed to be self-adjoint,
in which case it is unique. We also note that these results hold precisely because the
inner-product in our real Hilbert space if is bilinear and not sesquilinear.
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[5] Hilbert-Schmidt Quadratic Operators 127

PROPOSITION 1 . For each k e I, with Lk and Qk as defined above, we have

\\Qk\\ = \\Lk\\ < iiiifciii

PROOF: |Q*(X)| = \(Lkx,x)\ < ||£*||,(V||z|| = 1), hence ||Q*|| < ||L*||; let Qk

be the unique symmetric bilinear functional associated with Q; then

\\Qk\\ = \\Qk\\ > l§*(

in particular for y = Lk{x) ^ 0 we have

taking sup over all x ^ 0 gives ||<3*|| ^ ||^*||i whence equality. The second equality
follows from the fact that both Qk and Lk are represented by the same Hilbert-Schmidt
1-matrix q* = [qkj\ • The majorising of the uniform norm by the Hilbert-Schmidt norm
is a standard result. U

We observe that the bounded quadratic operator Q : H^>H has two unique (re-

lated) representations, one as a sequence L = (-£*) of bounded self-adjoint linear

operators, the other as a sequence q = (q*) of symmetric matrices q* = [qkj]; -gJ

which itself forms a 2-matrix [g*^ -6J- Using Parseval's equality we have:

\zk\2fe|2 _ "ST\(rkr V|2 .

k k k

from which we get ||Q||2 ^ £ t ||£*||2 ^ £ * |||£*|||2 • B u t t h e r e i s n o reason why,
in general, either sum on the right should be finite. The class of all those quadratic
operators for which at least one sum were finite would plainly be an interesting one.
In particular, for the remainder of this study, we shall insist on both sums being finite,
and for reasons which will be immediately obvious we make this definition:

DEFINITION 2: A bounded quadratic operator Q : H-yH will be said to be a
Hilbert-Schmidt quadratic operator if the series E i 111-̂ * III2 is convergent; in which case
its sum is denoted by |||Q|||2. The set of all such Hilbert-Schmidt quadratic operators
on H will be denoted by HSQ(H).

We note that each Hilbert-Schmidt quadratic operator Q £ HSQ(H) has represen-
tations (i) (•£*) as a unique square-norm-summable sequence of self-adjoint Hilbert-
Schmidt linear operators on H, and (ii) (q*) as a unique square-norm-summable se-
quence of symmetric Hilbert-Schmidt matrices. We shall refer to these as the sequence
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representations of Q, and write Q ~ (Lk) ~ (q*) • Thus, the adjoint of Q,

Q* 4Sf (X**)*€/ = (Lk)k€I ~ Q. Hence every Q G HSQ{H) is self-adjoint.

The proofs of the results in the next Theorem are then readily obtained from the
above, the discussion of Hilbert-Schmidt 2-matrices in Section 1, and the standard
properties of linear Hilbert-Schmidt operators.

THEOREM 1 . Let H be a real Hilbert space, with Hilbert basis {u,},ej. If Q ~

(i*) ~ (q*) is a Hilbert-Schmidt quadratic operator in HSQ(H), then

( i ) IIQII2 < £ ll£*ll2 ^ £ Ill^lll2 = HIGH!2 = IIIQ1I2-

(3) IIIQIH2 = £ \\Lkukf =
Jt * i j

If P ~ (Mfc)*€/ ~ (pfc)fceJ and ii ~ (iV*)*e/ ~ (r*)*6/ are also Hilbert-Schmidt

quadratic operators in HSQ(H), then

(4) <«Q , p))> - f E ( (^ , p")) = E E <£'"«- - M*u-)-

(5)

(6) (((QP,R))) = («P, «*«)» = (((Q,RP*)))-

THEOREM 2 . Tie set HSQ(H) of all Hilbert-Schmidt quadratic operators on a

Hilbert space H with a Hilbert basis {«i}tg/ is a vector space under componentwise

operations, on which Q >-> |||Q||| is a norm; furthermore, HSQ(H), |||.[|| is a Banach

space. It is also a reai Hilbert space under the inner-product (Q,P) >-> ({(Q, -P))),

isometric-isomorphic to the space of real Hilbert-Schmidt 2-matrices [9^]^ e / where

tAe cardinality of the index set I and the dimension of H are the same.

PROOF: That HSQ(H) is a vector space, and |||.||| is a norm, follows at once by the
usual computations using Minkowski's inequality. That ((( , ))) is an inner-product
also follows by the usual computations using Holder's inequality. The completeness
of the norm follows at once by appealing to the identification of HSQ(H) with HS2M
the space of all Hilbert-Schmidt 2-matrices which itseK is isometric-isomorphic to the
real sequence space 12(I, R) . Alternatively, the standard strategy for proving that the
classical Hilbert space 12(I, R) is complete can be directly applied, detail for detail, to
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[7] Hilbert-Schmidt Quadratic Operators 129

HSQ(H) the only changes needed being that the modulus |.| and the vector norm ||.||
axe everywhere replaced by the uniform norm ||.|| and the Hilbert-Schmidt norm |||.|||,
respectively. U

REMARK. The analogy between the space BSQ(H) regarded as a space of sequences
(X*) and the classical sequence space 12(/, R) referred to in the previous proof will
now be exploited further in the next section when we come to impose an additional
operation of 'componentwise multiplication' on HSQ(H) which gives it the structure of
a normed algebra, a linear H*-algebra, in fact.

3. A N H * - A L G E B R A OF HILBERT-SCHMIDT QUADRATIC OPERATORS

Let HSQ(H) be the Hilbert space of Hilbert-Schmidt quadratic operators on a
real Hilbert space H as constructed in the previous section. It is now clear that one
representation of HSQ(H) is as a generalised sequence space I2(I, HSL(H)) of square-
norm-summable sequences Q~ (£*) of self-adjoint linear Hilbert-Schmidt operators
on if, the vector space operations being defined componentwise as usual. We now
introduce another internal law of composition on this space by defining the product of
two Hilbert-Schmidt quadratic operators componentwise.

DEFINITION 3: By multiplication in HSQ(H) we mean the operation, denoted by
• and defined as follows:

VQ ~ (Lk)k€I, VP ~ (M*)*€/, Q . P 4lf (Lk o M*)*€/.

Thus the product of two Hilbert-Schmidt quadratic operators is constructed compo-
nentwise from the composition of their self-adjoint linear Hilbert-Schmidt components.
Of course the composition of two self-adjoint linear operators need not be self-adjoint,
since, for example the product of two 2x2 real symmetric matrices need not be symmet-
ric. If we insisted on self-adjoint components for a Hilbert-Schmidt quadratic operator
then we would have to symmetrise each composed component by taking half the sum of
itself and its Hilbert-adjoint. But it is not hard to verify that this symmetrisation will
destroy the H*-algebra conditions (the so-called 'Ambrose' conditions) listed as point
(6) in Theorem 1.

However, the self-adjointness of the components is not an essential condition, any-
more than the condition that a bilinear functional must be symmetric in order to pro-
duce a quadratic functional by restricting it 'to the diagonal': q(x) — b(x, x). In that
situation it is only the symmetric-part 6, of the bilinear 6 that is involved in producing
the quadratic, the anti-symmetric part 6O being identically zero on the diagonal. In the
same way, it is only the self-adjoint part L, of a linear component L that is effective in
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being identified with the quadratic operator, the anti-self-adjoint part La contributing
nothing to the quadratic operator's functional properties. In that sense, our represen-
tations of Hilbert-Schmidt quadratic operators as sequences of linear Hilbert-Schmidt
operators are strictly speaking unique 'only to within self-adjointness'.

PROPOSITION 2 . The norm |||.||| in tie space HSQ(H) of Hilbert-Schmidt

quadratic operators on H is sub-multiplicative:

\\\Q»P\\\ < IIWIP1I;

hence HSQ(H) is closed under the multiplication (*), and multiplication is continuous

on HSQ(H).

PROOF: Let Q ~ (Lk)k€l,P ~ (Mk)k€I e HSQ(H). Assume / = N, then for
each N G N,

(since Lk, Mk € the same HSL(H), an i?*-algebra). Hence the partial sums on the left-

h a n d - s i d e a r e b o u n d e d a b o v e b y t h e p r o d u c t E * l l l £ * l l l 2 - E f c l l l M k l l l 2 = l!!<9IIUII-P|ll;it
follows that the series E * ||-£*°M*||2 is convergent, with sum < |||Q|||.|||P|||, so that we

have |||<2»P||| < |||<3|||.|||P|||, as asserted. The other conclusions follow immediately. D

THEOREM 3 . The Hilbert space HSQ(H), equipped with the multiplication (•)
is an H*-afgebra.

PROOF: All that remains to be verified is (i) that the multiplication • distributes
componentwise over addition + and commutes with multiplication by scalars, so that
(HSQ(H), •) becomes an algebra, and (ii) that the 'Ambrose' conditions (Theorem
1(6)) are satisfied. Both of these verifications are simply routine calculations since all
the required properties are inherited componentwise from the analogous properties in
each component algebra HSL(H) of Hilbert-Schmidt linear operators on if. D

REMARK. The algebra HSQ(H) constructed above is, of course, a particular example of
a Function Algebra. It can have a multiplicative unit if and only if the dimension of the
space H is finite (that is if the index set I of the sequence space HSQ(H) is finite). If
there is a unit Hilbert-Schmidt quadratic operator I say, each of its component linear
operators Ik would necessarily be a unit in the algebra HSL(H) of Hilbert-Schmidt
linear operators; but that can happen if and only if the space if is finite dimensional. In
this case each component algebra HSL(H) coincides with the entire algebra of bounded
linear operators on if, and the H*-algebra HSQ(H) coincides with the entire space of
bounded quadratic operators on if.
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We now introduce the idea of a nuclear (or trace class) quadratic operator. We
begin with the fact [6, 9] that a bounded linear operator N on H is a nuclear if and
only if it is the product L o M of two Hilbert-Schmidt linear operators L, M.

PROPOSITION 3 . Each product R = Q • P of two Hilbert-Schmidt quadratic

operators Q, P 6 HSQ(H) has nuclear components.

PROOF: Let Q ~ (£*)*e/, P ~ (Mk)keI, R ~ (Nk)k€l. Then each Nk =
Lk oMk is the composition of two Hilbert-Schmidt linear operators and hence a nuclear
linear operator on H. D

Since the algebra HSQ(H) is closed under multiplication (•), the next definition is
meaningful:

DEFINITION 4: A Hilbert-Schmidt quadratic operator N ~ (AT*)*61 £ HSQ(H)
is said to be a nuclear quadratic operator if and only if each of its linear components
Nk is nuclear. We denote by NQ(H) the subset of HSQ(H) consisting of all nuclear
quadratic operators on H.

The next theorem follows directly from the componentwise structure of the function
algebra HSQ(H) and the fact that the nuclear linear operators on H form an ideal in
the algebra HSL(H) of Hilbert-Schmidt linear operators on H.

THEOREM 4 . The set NQ(H) of nuclear quadratic operators on H is an ideal in
the Hilbert algebra HSQ(H) of Hilbert-Schmidt quadratic operators on H. The ideal is
proper if and only if H has infinite dimension.

It is also possible to extend the notion of multiplication ( •) in HSQ(H) to include

a situation denoted by A*Q»B where A,B denote constant sequences (Ak) , Ak =

A, (-B*) , Bk — B where A, B £ L{H) are arbitrary bounded linear operators on

H. If Q ~ (Lk)k€I, we simply set

Since \\A oLko B\\ < ||^||.||i*||.||J5|| < ||i4||.|||£*|||.||J?||, we readily compute that

\\\AmQ*B\\\£\\A\\.\\\Q\\\.\\B\\,

from which it follows that
1»Q»B~ e HSQ(H).

In particular, these results hold when A = U~1, B = U and U is any unitary (change-
of-basis) operator on H.

The obvious implications of this extended multiplication together with the concept
of quadratic operator ideals — exploiting componentwise the properties of norm ideals of
von Neumann-Schatten classes [9] — will be studied in a subsequent paper on function
algebras of compact quadratic operators.
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4. BLOCK DIAGONAL MATRIX REPRESENTATION

In virtue of Ambrose's theorem ([1]; [5, p.1013]), our H*-algebra (HSQ(H), • ) is
topologically and algebraically isomorphic to an algebra of Hilbert-Schmidt operators
on some Hilbert space. We now show that for (HSQ(H), • ) in the special case where
H has finite dimension, one such algebra is a linear matrix algebra on the Hilbert sum
HSL(@k€lH) of | / | copies of the Hilbert space if. The matrices in question are
Hilbert-Schmidt matrices of a special 'block-diagonal' kind. The construction can be
extended (in principle rather than in practice) to the general case where H has infinite
dimension.

Let H have finite dimension N and, without loss of generality, assume that / =
{1 ,2 , . . . ,N}. Let Q £ HSQ(H) have its representation (q1, q2, . . . , q N ) as a finite
sequence of Hilbert-Schmidt matrices q* with respect to a Hilbert basis {ui}ie/ for H.
The block-diagonal representation of Q is easiest to visualise when N is small: suppose
H = R 2 , with a Hilbert basis {ui = (1,0), u2 - (0,1)} so that Q = ( q S q 2 ) , with
2-matrix representation

1 J V a 21 a22 a\

We re-write these two component matrices q ^ q 2 as block-diagonal entries in a
4 x 4 ordinary matrix, and fill the remaining off-diagonal blocks with 0's :

all «ia 0 0

<4l °22 0 0
0 0 a2! a2

2

0 0 a2! a\2,

In general the block-diagonal representation of Q, denoted by BD[Q], will be

/[q1] [o] . . . [o] \

: :- '•• [0]
\ [ 0 ] [0] . . . [qN]

Such a block-diagonal matrix (in which, in general, the Hilbert-Schmidt diagonal blocks
[q*] need not be symmetric) will be called an HS block-diagonal matrix or HSBD
matrix for short; its size is | / | 2 x | / | 2 = N2 x N2. That the matrix-product of two
equally sized HSBD matrices is another HSBD of same size follows from the facts
that the block-diagonal structure is preserved by matrix multiplication and the product
of two Hilbert-Schmidt matrices is another Hilbert-Schmidt matrix. Of course the
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subspace of those HSBD matrices with all their diagonal blocks q* symmetric is not
closed under matrix multiplication, since as noted earlier the product of two symmetric
matrices need not be symmetric.

PROPOSITION 4 . Let \\\BD[Q]\\\ be the Hilbert-Schmidt norm of an HSBD

matrix BD[Q] representing a quadratic operator Q € HSQ(H). Then

PROOF: Weknowthat |||Q|||2 = £ f c ||q*||2 ; by inspection we see that |||£I>[<3]|||2 =

E * E i E * \9ii\2 = E * l|q*l|2; hence the result. •

THEOREM 5 . If H has finite dimension N, then the space of all HSBD matrices

of size N2 X N2 is a normed matrix algebra (with a unit element), isometric-isomorphic

to the E*-algebra (HSQ(H), •).

PROOF: The result is trivial if JV = 1, so assume N > 1. The result will
then follow once we have set up an identification between the elements q*j of the
2-matrix representation of Q and the elements 6* in the diagonal blocks of the
block diagonal matrix BD[Q). Thus, corresponding to qfj we have b' where r =
k(N-l) + i, s = k(N-l)+j, uniquely. Conversely, given any b'T £ BD[Q], if
Int(r/(N - 1)) = Int(a/(N - 1)) (where Int(x) is the greatest integer < the real num-
ber x) then their common value will be k and hence i = r—k(N — 1), j — s — k(N — 1),
which determines qfj; otherwise 6* is outside every diagonal block, has value 0, and
corresponds to no element q^j , in either case the identification is unique. U

REMARK. It is the impracticality of determining the bijective relationship between the
r, s and i,j, k indices when N — oo which prevents the result in Theorem 4 from being
extended to an infinite dimensional Hilbert space H. This is similar to the impracticality
which arises when attempting to enumerate a countably infinite matrix as a sequence:
it cannot be done 'row-by-row' even though we know it can via 'finite diagonals'.

COROLLARY. If H has finite dimension N, then the E*-algebra (HSQ(H), •)
of quadratic Hilbert-Schmidt operators is isometric-isomorphic to a sub-algebra (of
dimension N2 x N) of the H*-algebra £ ( 0 i 6 / H) (of dimension N2 x N2 ) of linear
operators on the Hilbert sum (of dimension N2 ) of N copies of the Hilbert space H.
The sub-algebra is proper if N > 1.

PROOF: The HSBD matrix representation of Q shows at once that each Q can
be identified with a linear operator on the finite-dimensional Hilbert sum ©jtg/-ff>
and hence HSBD can be identified with a (closed) sub-algebra of the H*-algebra of
all linear operators on © t e j H. A matrix algebra has a basis consisting of all matrices
each with precisely one non-zero component; counting these for the algebra and its
sub-algebra of block-diagonal matrices gives their stated dimensions. D
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