On a class of power-associative periodic rings

J.A. Loustau

Abstract

A power-associative ring A is called a p-ring provided there exists a prime p so that for every x in $A, x^{p}=x$ and $p x=0$. It is shown that if A is such a ring with $p \neq 2$, then A is isomorphic to a subdirect sum of copies of $G F(p)$, the Galois field with p elements.

1. Introduction

A power-associative ring A is called a p-ring provided there exists a prime p so that for every x in $A, x^{p}=x$ and $p x=0$. It is well known that any associative p-ring is commutative and is isomorphic to a subdirect sum of copies of $G F(p)$ (see for example, [3, p. 144]). In this paper we will extend this result to power-associative p-rings with $p \neq 2$. Stated formally we have:

THEOREM. Let A be a power-associative p-ring with $p \neq 2$, then A is associative and commutative. Thus, A is a subdirect sum of copies of GF (p) .

Before proceeding we need the following terminology. Let A be an algebra over a field F not of characteristic 2 . Then A^{+}will denote the algebra which is the same set as A with addition and scalar multiplication defined as in A and multiplication defined by $x \cdot y=\frac{1}{2}(x y+y x)$, where juxtaposition denotes the product in A. Hence A^{+} is a commutative algebra which is power-associative if A is

Received 22 June 1971.
power-associative.
The proof of the theorem will proceed as follows. We begin by letting A be a power-associative p-ring of characteristic not 2 and show that A^{+}is a Jordan ring. The argument used here is similar to the one employed by Albert which showed that for any finite strictly power-associative division ring D, D^{+}is a Jordan algebra [5, p. 133]. Next we shall show that A^{+}is associative. For this purpose we first apply the Shirshov-Cohn Theorem and then the Vandermonde determinant argument employed by Forsythe and McCoy which showed that associative p-rings are commatative [3, p. 144]. The proof is completed by showing that if A is a power-associative algebra of characteristic not 2 such that for every a in A there exists an integer $n(a)>1$, depending on a, with $a^{n(a)}=a$, then A is commutative and associative provided A^{+} is associative.

2. Proof

In order to show that A^{+}is a Jordan algebra, it is necessary to show that $\left(x, y, x^{2}\right)$, the associator in x, y, and x^{2}, is zero for every x and y in A^{+}. For this purpose we look at the ring $\langle x\rangle$ generated by x. Clearly we may suppose that $x \neq 0$. Since A is power-associative, then $\langle x\rangle$ is associative. Also since* A is a p-ring, it follows that (x) is a finite, semi-simple algebra over $G F(p)$. Thus, (x) is equal to the direct sum of a finite number of copies of $G F(p)$. Hence if $(x)=\sum_{i=1}^{n} F_{i}$, with $F_{i}=G F(p)$ for every $i=1, \ldots, n$, then there are elements λ_{i} and $\mu_{j} \in G F(p), i, j=1, \ldots, n$, with $x=\sum_{i=1}^{n} \lambda_{i} e_{i}$ and $x^{2}=\sum_{j=1}^{n} \mu_{j} e_{j}$, where e_{i} is the identity of F_{i}. Also it is clear that $\left\{e_{i}\right\}_{i=1}^{n}$ is a set of orthogonal idempotents in A^{+}. Now with this representation for x and x^{2} it follows that

$$
\begin{aligned}
\left(x, y, x^{2}\right) & =\left(\sum_{i=1}^{n} \lambda_{i} e_{i}, y, \sum_{j=1}^{n} \mu_{j} e_{j}\right) \\
& =\sum_{i, j=1}^{n} \lambda_{i} \mu_{j}\left(e_{i}, y, e_{j}\right) \\
& =\sum_{i, j=1}^{n} \lambda_{i \neq j}^{n} \mu_{j}\left(e_{i}, y, e_{j}\right)
\end{aligned}
$$

since A^{+}is commutative and hence flexible. However, Albert has shown that in a commutative, power-associative algebra $R,\left(e, r, e^{\prime}\right)=0$ for every $r \in R$ and every pair of orthogonal idempotents e, e^{\prime} [5, Lemma 5.2, p. 133]. Thus, indeed $\left(x, y, x^{2}\right)=0$, and A^{+}is Jordan.

Next we claim that the Jordan algebra A^{+}is associative. First of all note that because A^{+}has no nonzero nilpotent elements, it suffices to show that A^{+}is alternative. This is the case due to the well-known fact that any commutative, alternative ring without nonzero nilpotent elements is associative [4, Lemma 3, p. 1175]. Hence, we only need show that if A^{+}is generated by two elements, then it is associative. Therefore, we can suppose by the Shirshov-Cohn Theorem that A^{+}is a special Jordan algebra.

Let $\left[S\left(A^{+}\right), \sigma_{u}\right)$ be the special universal envelope of A^{+}. Then we have that σ_{u} is an injection mapping and A^{+}can be assumed to be contained in $S\left(A^{+}\right)^{+}$. Now $S\left(A^{+}\right)$has the following properties. It is an associative algebra with identity generated by $\left\{x: x \in A^{+} \cup G F(p)\right\}$. Also if $x, y \in A^{+}$with $x . y$ their product in A^{+}and $x y$ their product in $S\left(A^{+}\right)$, then $x \cdot y=\frac{1}{2}(x y+y x)$. Therefore, to show that A^{+}is associative it suffices to show that $S\left(A^{+}\right)$is commutative, since in this case A^{+}is a subalgebra of $S\left(A^{+}\right)^{+}=S\left(A^{+}\right)$. Clearly $S\left(A^{+}\right)$is commutative if and only if $x y=y x$ for every $x, y \in A^{+}$.

Now with x and y in A^{+}, we have in $S\left(A^{+}\right)$

$$
\begin{equation*}
(x+y)^{p}=x^{p}+y^{p} . \tag{1}
\end{equation*}
$$

Therefore in $S\left(A^{+}\right)$,

$$
A_{1}+A_{2}+\ldots+A_{p-1}=0,
$$

where A_{i} is the sum of all words in the expansion of $(x+y)^{p}$ in which y appears i times and x appears ($p-i$) times. Then substituting λy for y in (1) for any $\lambda \in G F(p)$ we have

$$
\begin{equation*}
\lambda A_{1}+\lambda^{2} A_{2}+\ldots+\lambda^{p-1} A_{p-1}=0 . \tag{2}
\end{equation*}
$$

Thus, if m denotes the determinant of the matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
2 & 2^{2} & \ldots & 2^{p-1} \\
\vdots & \vdots & & \vdots \\
(p-1) & (p-1)^{2} & \ldots & (p-1)^{p-1}
\end{array}\right]
$$

and if m_{1}, \ldots, m_{p-1} denote the co-factors of the elements of the first column of the above matrix, then by multiplying the λ-th equation in (2) by m_{λ} and adding we have from an elementary property of determinants that $m A_{1}=0$. But since the above determinant is a Vandermonde determinant it follows that m and p are relatively prime. Hence $A_{1}=0$. Now by an easy calculation we have

$$
0=x A_{1}-A_{1} x=x^{p} y-y x^{p}=x y-y x .
$$

Therefore $S\left(A^{+}\right)$is commutative, and hence A^{+}is associative.
It remains to show that A is commutative, since then $A=A^{+}$and the result will follow. For this purpose we have the following lemma.

LEMMA. Let R be a power-associative algebra of characteristic not 2 such that for every a in R there exists a positive integer $n(a)>1$, depending on a, with $a^{n(a)}=a$. Then R is commutative and
associative if R^{+}is associative.
Proof. As above, it suffices to show that R is commutative. Let x and y be in R and look at the ring B generated by x and y. Since B^{+}is a finitely generated, associative, commutative ring, without nonzero nilpotent elements and satisfying the hypothesis of the lemma, then B^{+}is the direct sum of a finite number of Galois fields, that is,
$B^{+}=\sum_{i=1}^{n} F_{i}$ where each F_{i} is a finite field. Hence to show that A is commutative it suffices to show that $s t=t s$ for every $s \in F_{i}$ and $t \in F_{j}$ for some choice of i and j. Also, we can suppose that neither s nor t is zero. If $i=j$, then there is a $z \in B$ and positive integers α and β with $z^{\alpha}=s$ and $z^{\beta}=t$. So by the power-associativity of B, $s t=t s$. If $i \neq j$, then we look at the following identity which holds in any power-associative algebra not of characteristic 2

$$
\begin{equation*}
[a . b, c]+[a . c, b]+[b . c, a]=0 \tag{3}
\end{equation*}
$$

for every $a, b, c \in B[5, \mathrm{p} .129]$. (Here $a . b$ denotes the product in B^{+}and $[u, v]$ is the commutator in B of u and $\left.v.\right)$ since B^{+}is the direct sum of the fields $F_{i}, i=1, \ldots, n$, then $u . v=0$ for every $u \in F_{i}, v \in F_{j}, i \neq j$. Then by setting $a=s, b=s^{n(s)-1}, c=t$ in (3) it follows that the last two commutators in (3) are zero. Hence

$$
0=\left[s . s^{n(s)-1}, t\right]=[s, t] .
$$

Therefore, B is indeed commutative, and since x and y were chosen arbitrarily, R is also commutative. This completes the proof of the lemma and also the proof of the theorem.

References

[1] Jerry Goldman and Seymour Kass, "Linearization in rings and algebras", Amer. Math. Monthly 76 (1969), 348-355.
[2] Nathan Jacobson, Stmeture and representations of Jordan algebras (Colloquium Publ. 39. Amer. Math. Soc., Providence, Rhode Island, 1968).
[3] Neal H. McCoy, Rings and ideals (Carus Mathematical Monographs, No. 8. Mathematical Association of America; John Wiley \& Sons, New York, 1948).
[4] Kevin McCrimmon, "Finite power-associative division rings", Proc. Amer. Math. Soc. 17 (1966), 1173-1177.
[5] Richard D. Schafer, An introduction to nonassociative algebras (Academic Press, New York, London, 1966).

University of California at Santa Barbara,
Santa Barbara,
California, USA.

