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ON DECOUPLING OF LINEAR RECURSIONS

R.M.M. MATTHEIJ

We show how a well known algorithm to compute solutions of a

second order recursion which are unstable both in forward and in

backward direction, can be related to a number of other methods.

They are: order reduction, invariant imbedding and decoupling

based on triangularization. It is shown that these methods in

this order form an increasingly general approach to solve the

problem. In particular this means that the stability of the

first three algorithms can be understood from the theory that has

been established for the decoupling algorithm. In this way one

does not need to investigate the stability of the large sparse

system which is often related to the first method.

1. Introduction

In 1967 Olver [70] published a method for computing a subdominant

solution to a second order scalar recursion. Since then many

modifications, adaptations and generalizations have been discussed in the

literature; see, for example, Cash [7, 2], Lozier [3], Olver [9], Olver

and Sookne [7 7]. The basic idea of the method, as it was described in

Olver [70] was inspired by the fact that the recurrence relations, the

initial condition and the dominance requirement together give rise to an

infinite dimensional system of linear equations. By replacing the

condition at infinity by one at say N , one obtains a finite linear system

which, in principle, can be solved by ££/-decomposition. Since then a
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number of variants have appeared which were based on similar considerations

for solving this large sparse system. Although the approach of Olver [70]

virtually eliminates the problem of providing a terminal condition for the

solution, there still remains the problem that the large linear system does

not lend itself to a simple stability analysis. Indeed, a standard way to

do this is to consider the effect of small perturbations of the matrix

coefficients on the solution vector, see Wilkinson [72]. This gives, at

its best, norm estimates for the global perturbation vector, but does not

say anything about relative errors in the components (which form the

desired solution of the recursion): nevertheless, the often exponential

character of the solution necessitates the latter type of analysis. Also,

it is not clear from scratch why such a matrix should be well-conditioned

and in particular no estimates of its inverse are available. In this note

we show that one does not need the large linear system approach. Indeed,

it will turn out in the sequel that the algorithm described in Olver [70]

may as well be interpreted as a special case of order reduction (Section

3), the Riccati method or invariant imbedding (Section h) and finally

decoupling based on triangularization (Section 5). In this order those

algorithms turn out to form an increasingly general approach to compute

subdominant solutions of linear recursions.

In particular, by interpreting these algorithms as a decoupling method

one can apply the fairly general stability analysis of Mattheij [4, 5, 6],

As an example this is carried out for the Riccati method.

2. Olver's algorithm

We briefly describe Olver's algorithm in this section. Assume we have

the recurrence relation for the solution (i.l... :

where the initial value of this solution is given by

(2.2) xQ = c .

The algorithm then first computes a solution \y •}-_n (the value of N is

not discussed here) of the homogeneous recursion
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which satisfies the initial values

(2.U) yQ = 0 , yx = 1 .

Then a solution { s . } . _ - of the recursion fwhich uses known y. values)

(2.5) zi = " V i - l - ^ i ' * = 1. 2 , . . . , » ,

is computed, using the initial value

(2.6) zQ = e .

It then follows that the desired solution {x.}._n of (2.1) must satisfy

the relation

Since {x.}->1 is unknown, one may now compute an approximate sequence

say •ja;J"/[ > by defining

and (ef. (2.7))

(2.9) .

(where we assume, for all i , y-• t 0 ).
U1

In Olver [?0] it has been shown that under fairly general conditions

(N)
x. •* x. for i fixed and N •* °° , and that the recursions (2.3), (2.5)

and (2.9) are apparently stable in the indicated direction.

3. Order reduction

The second method we are going to discuss is perhaps the most obsolete

one. If a certain solution to a linear scalar nth order homogeneous

recursion is known, one can find an (n-l)th order recursion that is
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satisfied by suitably transformed solutions of the original recursion; in

particular, the reducing solution is a t r ivial solution of the lat ter

recursion. This general so called order reduction technique can be found

in standard textbooks, for example, [S]. Below we describe a generalized

version for the inhomogeneous recursion (2.1).

Let a solution {j/-}-_n to the homogeneous recursion (2.3) satisfy

the in i t i a l conditions

(3.1) y Q = A , y ± = B ; A , B € IR .

Let {s .}-_. be such that
T- 1—U

( 3 . 2 ) Xi = B{yi , i = 0 , 1 , . . . , N .

Then we o b t a i n , f rom ( 2 . 1 ) a n d ( 3 - 2 ) ,

Defining the weighted differences

(3.»0 tt := {e^-eJPi , i = 0, 1, ..., N ,

~ i N+X
where the p. are some nonzero real numbers, and noting that {j/-}-_n

satisfies (2.3) we can reduce (3.3) to a first order recursion for

3-5 )

Obviously, we must presuppose the y. to be nonzero.

REMARK 3.6. In Norlund [S, p. 289] order reduction is described with

the weights p. all equal to one, thus making the t. the first
If "V

differences of the s. . Note that the actual choice of the p. does not

influence the relative stability of the computation of {*.}.__ (that is

with respect to the homogeneous solution of (3-5))•
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Assume f o r t h e moment t h a t t i s known; t h e n { * • } • _ , f o l l o w s from
U "V t-—1

}(3-5)- Apparently the desired solution {x.}._ satisfies the relation

[of. (3.2) and (3.U)):

An approximating sequence, say -jxy')- , can now be found by defining

(3.8) « W = 0

and

We still are free to choose A9 B and { p - } - ^ • If we choose 4 = 0 ,

B = 1 and

(3.10) P i = -g

then we can verify that for al l i , y. = y. and, at least for i > 1 ,

and for all i , t. = z. . Moreover we may also identify t and z ,

since we may consistently define

(3-11) tQ = yxx0 •

As a consequence the solution by Olver's algorithm, namely \x. \ ,

may be identified with the approximate solution <x. Y by the order

reduction method in this case.

REMARK 3.12. A generalization of Olver's method for higher order

recursions using the reduction method is nov obvious. I t may however be a

hazardous undertaking since in general i t is even less clear than i t is for

the second order case why certain solutions should not have zero's {of. the

https://doi.org/10.1017/S0004972700025867 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025867


352 R.M.M. M a t t h e i j

requirement that, for all i , y. t 0 ) . On the other hand i t has been
Is '

shown in Mattheij [4] that it may lead to a satisfactory algorithm under

suitable dominance assumptions.

4. The Riccati method

The third method to be used is a discrete analogue of what is often

termed invariant imbedding. It is based on using Riccati recursions (as an

analogue of Riccati differential equations). We use notation adapted from

Meyer [7, p. 99] in order to show the similarity to Section 2.

The first step consists of the computation of a solution {9.}._n to

the Ricoati recursion

(U.I) Q = a.+b\. ' * = 0. 1. .... ff ,

where 9 is equal to some (given) ini t ia l value. These values of the 9.
u t*

are then used to compute the solut ion { T . } . _ to the recursion

( U - 2 > \ = ~ b i 6 i x i - l ' %idi , i = 0 , 1 , . . . , » ,

where T satisfies

(U.3) T 0 = C - V l

(here we must assume that x. has been given unless Q = 0 ). The final

step is the "recovery" recursion

By choosing x\ ' = 0 , we can find a solution \x. \ of (h.k). The
" + 1 *• ̂  >i=0

similarity to the previous method is most striking. Indeed, just take

if . t M .

Again we see that we then may identify <x. \ with <x. > showing

Olver's method to be a special case in this instance as well.

https://doi.org/10.1017/S0004972700025867 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025867


Decoupling of linear recursions 353

REMARK 4.6. It should be noted that the Riccati method works

similarly for higher order recursions (of. Section 5). In this sense it

certainly is a generalization (at least mathematically) of the order

reduction method, which may require several successive steps for higher

order problems.

5. Decoupling based on triangularization

The methods previously described may seem rather ad hoc in the sense

that they require the use of substitutions and (scalar) transformations,

and so on, in order to obtain some recursions where known initial values

and (approximate) terminal values could easily be used. From a numerical

point of view, however, the stability is not at all a straightforward and

easily deducible matter (in our second order case we know from the

similarity as shown in Sections 3 and U that there must be stability).

Therefore we believe that all these methods become more transparent by

considering them as a decoupling algorithm, which separates (relatively)

increasing and decreasing modes. To do this consider, more generally, the

recursion

(5.1) *i+1 = AJ. + R. , i > 0 ,

where the A. are n x n matrices and the X. are M-dimensional
^ i.

solution iterates. Assume we have an initial condition for \X.) given by

(5-2) MX = b , M an n x n matrix.

As was shown in Mattheij [5, 6] we may transform the A. onto (block)

upper triangular form by a sequence of nonsingular {21-}- , of which T
1s 1r—,{j 0

is given and

(5-3) A.T. = T U. , U. (block) upper triangular.

Assume we know the dimension of the dominant solution space, say k . Now

write

[B. C.
V V B. a k x k matrix,

E.
1
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( 5 - 5 ) Z. := T~}x. , S. = Tl1 R. ,

( 5 - 6 ) Z . : =

From ( 5 - 1 ) , ( 5 - 3 ) t o (5 -6) we then o b t a i n t h e decoupled r e c u r s i o n s

( 5 - 7 a ) Z ^ + 1 = E\z2 + S2
t , i = 0 , 1 , . . . , f f ,

(5-7b) z] = B'" - ^ ^ ] , i = N, N-l, ..., 0

(assuming B. is nonsingular).

Now if either M [of. (5-2)) is nonsingular, so we can compute z

2

e x p l i c i t l y , or 7 i s chosen in a specia l way, so tha t we can find Z

e x p l i c i t l y , we can use (5-7a) . Moreover, by choosing an approximant for

Z , say Z (tf) = 0 , we can compute an approximating sequence

f 1 \°\Z.(N)>

then use

using (5-7b)- As an approximant for X. (0 5 i < N+l) we

[5-8) X.{N) := T.

A
For these general recursions (5-1) it has been shown in Mattheij [4, 6]

that orthogonal matrices are preferable on account of their numerical

stability. The analyses in Mattheij [4, 5, 6] moreover show that the

recursions (5-7) in the indicated directions are indeed stable (under very

weak conditions, mainly dealing with a proper choice of 2* J. In

particular this stability is ensured if M has k zero rows, M has rank

(n-k) and T is chosen such that

( 5 - 9 )
0 0

0 H
, H an ( n - k ) t h o r d e r n o n s i n g u l a r m a t r i x .
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The Riccati method uses special lower triangular matrices T. instead of

orthogonal matrices. We describe this first: let A. be partitioned as
Is

(5-10)

and use as matrices T. ,

(5.11)

A. : =^

A12}tk

Is

T. : =

A2} A22

J"

P. I

In order to let U. (see (5-3)) have the block upper triangular form as

indicated in (5.h), we apparently must require that

* = o. i . . . . . ir-i .

The decoupled recursion (5-7) then takes the form

(5.13a) Z2.+1 = [-P.+ 142
+42]Zf - P.+1*J + £ , i = 0, l

A?pi + Af =

. , N - l ,

(5.13b) Z1 = \Afp +Af\ Z ^ - ^ 2 Z 2 _ i ^ , i = N-l, N-2, ..., 0 ,

and t h e back t r a n s f o r m a t i o n (5 -8) g ives

(5-iU)

Now assume the ini t ia l condition matrix to be of the form

0 0
(5-15) M =

Then we see that the choice

(5-16)

A * 2 1

Jn-J

-„ - -
gives the required form as in (5-9), that i s , we can compute Z

explicitly and use (5-13a) and so on. On account of the similarity to the
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algorithm as described in Mattheij [6 , Section 5 -2] , we conclude tha t the

inva r i an t imbedding approach i s s tab le , as long as we can assure that the

P. remain bounded, t h a t i s , | |2\ | | , P7"1 i s bounded.

REMARK 5.17. I f the Riccati method (or any re la ted method) fa i l s

because the P. become unbounded, the decoupling method u t i l i z i n g

orthogonal t ransformat ions , may s t i l l work quite well . For an example of

t h i s , s ee , for example, Mattheij [6 , Example 7-1] •

We would now l i ke to show that the Riccati method for second order

matrix vector recurs ions , where the A. are companion matrices (that i s in

fact recursions l i k e ( 2 . 1 ) ) , boils down to what we described in Section k.

So l e t us consider

\xi+2(5.18)

with initial condition

(5-19)

b..

i
i = 0, 1, . . . ,

[0 0

0 1

If we apply the preceding method we should choose P = 0 [of. (5.l6)J and

compute {P-} from the relation

(5-20) = o ,

After choosing ZT = a , we compute from the relation [cf.

(5.13a))

(5-21)

For the backward recursion we then find [cf. (5-12b))

Z^ = -P.b.2?. n - P.d. , i = 1, 2 , . . . . N .v v v ^ - l v i

(5-22) x-(ff) := 4 AN)

= {b.P. .+a7\~1\x. AN)-b.£ -dA , i = N, N-l, ..., 0 .

From (5.20) and (5.21) we see that (5-22) in fact reads
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(5.23) x^N) = PJC^N) + zj? , i = N, N-l, ..., 0 .

An interesting aspect of this is that the backward recursion step coincides

with the back transformation in a way: the first coordinate transformation

is trivial and the second coordinate part of (5-1*0 is exactly (5.23). Of

course, we may identify P. and Z. with 6. and T. respectively (see
tr %• Is t>

Section k).

REMARK 5.24. Since we have chosen P in a special way, we do not

need the value of x in the second order case. However, this choice is

not obvious from a stability point of view (it corresponds to a homogeneous

solution with initial value 0 ; this solution should dominate {x.} in

order to have stability). Therefore it makes sinse to consider a more

general Riccati method (that is, with P t 0 ) or even another

triangularizing sequence \T.} (<?/. (5-3)1 in order to avoid the

transformations becoming unbounded. Of course this requires the

(approximate) value of x .

Finally, we would like to show how the stability of the preceding

algorithms may be investigated using the algebraic decoupling formulation

of this section. We assume that \x.}- [of. (2.l)l is dominated by some

homogeneous solution {<7•}•>,-. and not dominated by some homogeneous

solution {/•}•>,, » that is, lim |x.|/|^.| = 0 , there exists a for all

i , \f.\/\x.\ 5 e . Moreover we assume that the solution \x-}->r,

uniquely exists. For demonstrative reasons we place our derivation in the

framework of Mattheij [5, 6] . Now let {̂ /K-s-n *"e a fundamental solution

of (5-10) with

(5'25) •» - r" [ [ ^
Write
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( 5 . 2 6 )
V1 1 A 1 2

h h
t>21 *22

It is shown in Mattheij [6, Proposition 5.6] that {$•}•>„ then is a

consistent fundamental solution, that isis, \§-\
1 1Jt>0

is not a dominated

solution, and therefore has to be dominant. It is not restrictive

therefore to identify g. and
1

2 1
<j> for all ^ . Obviously there exist

constants K and K such that

( 5 . 2 7 ) »f
= gi+1 and 0>f = ^gNOTE.

From ( 5 - 3 ) , ( 5 . 1 1 ) and (5-25) we now f ind

i i - 1 • " 0 0 i i i i-1 '" 0

The lower blocks in the relation T. $. = W. (note that W. is block

upper triangular) give

(5.29a)

(5.29b) -Vi^i + ̂ 2 = ̂ f •

Hence from (5-27), (5.29a) and (5.29b) we obtain

(5-30) J/T2 = KJP,

By construction we see that W. - \ \ E. \pf* (5.*0) , where E. is short
1* r\ 3 ' 3

fOr P i + l V

Since fo r t h e d e s i r e d s o l u t i o n of ( 5 - 2 1 ) , namely {%•} > there holds

(5-31) ^ . = P.x. + x . ,
t - 1 v -Z.+1 t
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i t follows from the dominance assumption that Z. = Of/7 = 0{f.) , that

i s , (5.21) is stable in forward direction, if only |p . | is not large for
tf

all i .

On the other hand, backward recursion via (5-23) is stable since

(5.32) P ; =

so the homogeneous solutions of (3.23) are dominated by {x.} in backward

direction on account of the assumption above.

REMARK 5.33. The main purpose of the above analysis was to indicate

how the decoupling actually takes place. As was also shown in Mattheij [5]

the crucial point is the factorization $. = T.W. • here T. must be a
v % ̂  ^

reasonably well conditioned matrix and W. an upper triangular matrix.
If

Note that neither $. nor W. is actually computed (the computation of
if %•

$. would "be unstable of course} . However, W. is available, in
i> ' if

p r i n c i p l e , i n f a c t o r e d form a s U. . . . U . The B., C. and E. b l o c k s
I'—A. 0 0 3 0

in the U. are known rather accurately and this justifies the arguments we
0

used to show the stability of the forward recursion [of. (5.29)-(5.31)1.
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