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yield in both phases is strongly dependent on the temperature used, here
T = 145 MeV. In QGP, we took mc = 1.3 GeV. The phase space of a
HG includes all known charmed mesons and baryons, with abundances of
light quarks controlled by µb = 210 MeV and µs = 0.
Although, by choosing a slightly higher value of T , we can easily in-

crease the equilibrium yield of charm in a HG to the QGP level [133],
this does not eliminate the effect of canonical suppression of production
of charm if chemical equilibrium is assumed for charm in the elementary
interactions. We are simply so deep in the ‘quadratic’ domain of the yield,
see Eq. (11.60), that playing with parameters changes nothing, since we
are constrained in Pb–Pb interactions by experiment to have a yield of
charm of less than one pair.
It is natural to argue that the very heavy charm quarks are not in chem-

ical equilibrium, and that their production has to be studied in kinetic
theory of collision processes of partons. However, this means that there
is no twenty-first-century Maxwell’s demon with control of charm, and,
of course, also not of strangeness. The production and enhancement of
charm and strangeness in heavy-ion collisions is in our opinion a kinetic
phenomenon. To study it, we should explore a wide range of collision
volume and energy. The objective is to determine boundaries of the high,
possibly QGP-generated, yields.

12 Hagedorn gas

12.1 The experimental hadronic mass spectrum

One of the most striking features of hadronic interactions, which was
discovered by Hagedorn [140], is the growth of the hadronic mass spectrum
with the hadron mass. With the 4627 different hadronic states we have
used in the study of properties of HG in section 11.1 [136], it is reasonable
to evaluate the mass spectrum of hadronic states ρ(m), defined as the
number of states in the mass interval (m, m + dm). We represent each
particle by a Gaussian, and obtain ρ(m) by summing the contributions of
individual hadronic particles:

ρ(m) =
∑

m∗=mπ,mρ,...

gm∗√
2πσm∗

exp
(
−(m−m∗)2

2σ2m∗

)
. (12.1)

Here, gm∗ is the degeneracy of the hadron of mass m∗ including, in partic-
ular, spin and isospin degeneracy, and σ = Γ/2, Γ = O(200) MeV being
the width of the resonance. The pion, with mπ � σ is a special case, and
is set aside in such smoothing of the mass spectrum. Downward modifi-
cation of its mass has a great impact on properties of HG and is thus not
allowed.
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236 Hot hadronic matter

Fig. 12.1. Dashed lines are the smoothed hadronic mass spectrum. The solid
line represents the fit Eq. (12.2) with k = −3, m0 = 0.66 GeV, and T0 = 0.158
GeV. Long-dashed line: 1411 states of 1967. Short-dashed line: 4627 states of
1996.

We compare the logarithm of the resulting smoothed mass spectrum
for the hadronic particles known in 1967 (long-dashed line) with that for
those known in 1996 (short-dashed line) in Fig. 12.1. We see that, in the
20 years following Hagedorn’s last study of the phenomenon, the newly
classified hadron resonances have improved the exponential behavior. We
refer to a hadronic gas with an exponential mass spectrum as a Hagedorn
gas. The solid line in Fig. 12.1 represents a fit using the empirical shape

ρ(m) ≈ c(m2
0 +m2)k/2 exp(m/T0) (12.2)

with k = −3. This value is preferred in the statistical-bootstrap model,
section 12.2. However, many other values of k fit the mass spectrum well.
The inverse slope T0 and the preexponential power k are correlated in a
fit of the mass-spectrum data and we present, in table 12.1, the results
for several choices of k. We shall show that the value of k determines
the behavior of the thermodynamic quantities of a gas of hadrons when
T → T0 and its value is of some relevance.
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Table 12.1. Fitted parameters of Eq. (12.2) for given k

k c m0 T0

−2.5 0.83479 0.6346 0.16536
−3.0 0.69885 0.66068 0.15760
−3.5 0.58627 0.68006 0.15055
−4.0 0.49266 0.69512 0.14411
−5.0 0.34968 0.71738 0.13279
−6.0 0.24601 0.73668 0.12341
−7.0 0.17978 0.74585 0.11489

The mass spectra for fermions ρF(m) and bosons ρB(m) can differ, and,
using these two functions, the generalization of Eq. (10.62) reads

lnZHG =
β−3V
2π2

∞∑
n=1

ρn(m)
1
n4
(nβm)2K2(nβm) , (12.3)

where

ρn(m) ≡ ρB(m)− (−1)nρF(m) , (12.4)

The Boltzmann approximation amounts to keeping in Eq. (12.3) the term
with n = 1, in which case

ρ(m) ≡ ρ1(m) = ρB(m) + ρF(m). (12.5)

To understand how the parameter k influences the behavior of the Hage-
dorn gas, we now introduce the asymptotic form Eq. (10.45) with the first
term only, and consider the (classical, ‘cl’) Boltzmann limit,

lnZcl
HG = cV

(
T0
2π

)3/2∫ ∞

M0

mk+3/2e(m/T0−m/T ) dm+D(T,M0), (12.6)

where M0 > m0 is a mass above which the asymptotic form of K2 holds,
and where D(T,M0) is finite. Because of the exponential factor, the
integral is divergent for T > T0, and the partition function is singular at
T0 for a range of k.
The pressure and the energy density for T → T0 are

P (T )→



(
1
T

− 1
T0

)−(k+5/2)
, for k > −5

2 ,

ln
(
1
T

− 1
T0

)
, for k = −5

2 ,

constant, for k < −5
2 ;

(12.7)

https://doi.org/10.1017/9781009290753.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.017


238 Hot hadronic matter

and

ε →



(
1
T

− 1
T0

)−(k+7/2)
, for k > −7

2 ,

ln
(
1
T

− 1
T0

)
, for k = −7

2 ,

constant, for k < −7
2 .

(12.8)

The energy density goes to infinity for k ≥ −7
2 , when T → T0, and in

this range falls the result of the statistical-bootstrap model with point
hadrons, Eq. (12.35). Therefore T0 appears as a limiting temperature for
such a hadronic system [140].
Interestingly, the partition function and its derivatives may be singular

at T = T0 even when the volume of the system is finite, unlike the more
conventional situation, with a true singularity expected only if the volume
is infinite. However what is actually needed is an infinite number of
participating particles, which in the conventional situation can occur only
for V → ∞. In relativistic statistical physics, particles are produced, and,
for an exponential mass spectrum, an infinite number of particles arises
already in a finite volume, for a sufficiently singular value of k and point-
like hadrons, and T → T0. When hadrons of finite volume are considered,
we find in section 12.3 that the energy density remains finite at T = T0,
independently of the value of the mass power k in the hadronic mass
spectrum Eq. (12.2).
The reader will wonder whether the seemingly small difference between

the exponential mass spectrum, and the so-far-known hadron mass spec-
trum, seen in Fig. 12.1 for m > 1.5 GeV, matters. We now compare
the energy and pressure of HG evaluated using individual hadrons, thin
lines in Fig. 12.2 (see also Fig. 11.1), with the results obtained using the
analytical mass spectrum defined by Eq. (12.2), with parameters given in
table 12.1. The vertical dotted line shows the limiting temperature for
k = −3. Comparing the thick lines (exponential mass spectrum) with
the results including known hadrons only (thin lines), we see in Fig. 12.2
significant differences both for ε/T 4 (a factor of four for k = −3) and
P/T 4 (a factor of two for k = −3) in the physically relevant domain
T � 150 MeV. The various thick lines correspond to values of k listed in
table 12.1 and can be assigned by noting at which value of temperature
T0 the singular behavior arises.
One would be tempted to conclude that, without full knowledge of

the hadronic spectrum, we cannot use individual hadrons in the study of
the properties of the HG, and hence evaluation of the total multiplicity
of hadronic particles, as, e.g., is required in order to obtain Fig. 9.8 on
page 169. There is, however, another effect, which counterbalances the
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Fig. 12.2. The energy density ε/T 4 (solid lines) and pressure P/T 4 (dashed
lines) (on a logarithmic scale) for a hadronic gas with a smoothed exponential
mass spectrum, with values of k = −2.5 (the most divergent thick line) to k = −7
in steps of 0.5. The thin lines were obtained by using the currently known
experimental mass spectrum. All fugacities γ and λ = 1.

effect of missing hadron resonances. When the finite size of a hadron is in-
troduced, e.g., according to Eq. (11.1), significant decreases in magnitude
of energy density, pressure, and number of particles at a given tempera-
ture ensue. For the value B1/4 = 190MeV, corresponding to 4B = 0.68
GeV fm−3, a value we introduce to reproduce lattice QCD results in sec-
tion 16.2, we show in Fig. 12.3 that there is practical agreement between
the exponential mass-spectrum properties with finite-volume correction
(thick lines) and the point hadron gas evaluated using known hadrons
(long-dashed thin line for ε/T 4 and dotted thin line for P/T 4). Consid-
ering that the population of very massive resonances is not going to rise
to full chemical equilibrium in nuclear collisions, along with the uncer-
tainties in the finite-volume correction, (e.g., choice of B) the remaining
15%–20% difference between the resonance gas with finite-volume correc-
tion and the point gas of known hadrons is not physically relevant. On
the other hand, this clearly is the level of precision (theoretical system-
atic error) of the current computation of abundances of hadrons using
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Fig. 12.3. The same as Fig. 12.2 but thick lines now show the gas of hadrons
with an exponential mass spectrum including the finite-volume correction with
B = (190MeV)4.

the known hadron spectrum. Most of this remaining systematic error
disappears when hadron-abundance ratios are evaluated.
A cross check of the validity of the energy density and pressure obtained

either by summing the physically known spectrum of point hadrons, or by
employing the exponentially extrapolated spectrum of finitely sized had-
rons is obtained by comparing them with lattice-gauge results. Results
presented in section 15.5, in Fig. 15.3, show that, at the critical temper-
ature, ε/T 4c � 6.5. On comparing this with results shown in Fig. 12.3,
we see that this result is consistent with the exponentially extrapolated
results for −3.5 ≤ k ≤ −2.5 corrected for finite hadron volume, with
150 MeV � Tc � 165 MeV, the center of the range of lattice simulations.
Using only the known point hadrons, a slightly larger value of Tc � 171
MeV is found. Comparison of pressure, shown in Fig. 12.3, with the lat-
tice result in Fig. 16.2 is more difficult but clearly the results are also in
qualitative agreement.
We have learned that the use in the field of heavy-ion collisions of a gas

of point hadrons is justified because the contributions of probably still
unknown hadronic resonances and the excluded-volume effect approxi-
mately cancel out. These remarks apply to all values of k we considered,
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though clearly the values k = −3.5,−3, and −2.5 are privileged by the
comparison with lattice-gauge-theory results, and the value k = −3 is
also central to the statistical-bootstrap model. We will now address this
theoretical framework which leads to the exponential mass spectrum. We
stress that our measure of singularity k refers in this book always to the
point-particle theory; consideration of the finite hadronic volume removes
the singular behavior of the hadronic energy density.

12.2 The hadronic bootstrap

To study interacting hadrons in a volume V , we first consider the N -
particle level density σN (E, V ), a generalization of Eq. (4.37). σN gener-
ates the N -particle partition function,

ZN (β, V ) =
∫

σN (E, V )e−βEdE. (12.9)

For the non-interacting case, the number of states σN of N particles is
obtained by carrying out the momentum integration Eq. (4.36) for each
particle, keeping the total momentum /P = 0 and the energy E fixed. We
divide by N ! for indistinguishable particles of degeneracy g and obtain

σN (E, V ) =
gNV N

(2π)3NN !

N∏
i=1

∫
δ

( N∑
i=1

εi − E

)
δ3
( N∑
i=1

/pi

)
d3pi, (12.10)

where the single-particle energy Eq. (4.31) is εi =
√
p2i +m2.

If an interaction between these particles is such that they form a bound
state with mass m∗ and nothing else happens, then the level density of
this new system, including the effect of interaction, would be described
as a mixture of ideal gases, one of mass m and the other of mass m∗. The
logarithm of the partition function of such a system is additive, and the
interaction in the gas of the mass m is accounted for by allowing for the
presence of the second gas of mass m∗.
Beth and Uhlenbeck [64] formulated this argument more precisely for

the case in which the interaction leads to the formation of a resonance in
a scattering process, e.g.,

π+N→ ∆→ π+N.

In such a case, the Oth partial wave will be at large distances,

ψ<(r, p) ∼
1
pr
sin
(
pr − Oπ

2
+ η<(p)

)
, (12.11)

where η<(p) is the phase shift due to scattering.
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To simplify, we argue in a manner similar to the study of the level
density above Eq. (4.37). We consider a large sphere of radius R. The
wave function Eq. (12.11) should vanish at r = R:

pR− Oπ

2
+ η<(p) = n<π ; n< = 0, 1, 2, . . .. (12.12)

n< labels the allowed two-body spherical momentum states {p0, p1, . . .}.
The density of states of angular momentum O at p is ∆n</∆p and

dn<
dp

=
R

π
+
1
π

d

dp
η<(p). (12.13)

Without interaction, η<(p) ≡ 0, and we recognize that the interaction
changes the two-particle density of states by (1/π) dη</dp.
We recall that the presence of a resonance leads to a rapid phase shift

by π over the width of the resonance. In what follows, we shall assume
that hadronic resonances are narrow, thus

1
π

dη<(p′)
dp

≈
∑
∗
δ(p′ − p∗). (12.14)

Such a δ-function appearing in the density of states Eq. (12.13) is exactly
equivalent to the introduction of additional particles with masses m∗,
which can be obtained from the masses of scattered particles and the
relative momentum of the resonance p∗.
Consider now the probability for an N -body final state in a collision,

P (E,N)=
∫

|〈f |S|i〉|2δ
(
E −

N∑
i=1

Ei

)
δ3
( N∑
i=1

/pi

) n∏
i=1

d3pi

≡
∫

|S|2 dRN
(
E,m1,m2, . . . ,mN

)
, (12.15)

where the second expression introduces a short-hand notation for the N -
particle phase-space volume element dRN . Note that, in the Fermi model
[121], the S-matrix element |〈f |S|i〉|2 is taken to be constant. Now we use
Eq. (12.13) with Eq. (12.14) assuming that there is just one resonance.
Then

P (E,N)=
∫

|S′|2 dRN
(
E,m1,m2, . . . ,mN

)
+
∫

|S′|2 dRN−1
(
E,m∗,m3, . . . ,mN

)
. (12.16)

The first term comes from R/π in Eq. (12.13) and the second term from
(1/π) dη<(p′)/dp′ as given by Eq. (12.14) when there is a resonance in the
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Oth partial wave. We write S′ instead of S to indicate that the part of the
interaction responsible for the existence of a resonance between particles
1 and 2 is eliminated from S [63].
This manipulation was first done by Belenkij [63], but, until the work

of Hagedorn [140], it was not pushed to its full consequences, involv-
ing many resonances, and the observation that the hadronic interactions
are completely dominated by resonances. In that case, one can continue
the process that led from Eq. (12.15) to Eq. (12.16) and the final hadronic
state produced in any interaction is described by the sum over all possible
N -particle phase spaces involving all possible hadronic states character-
ized by the mass spectrum ρ(m), Eqs. (12.1) and (12.2).
Knowledge of all phase shifts in all channels, including, 2, 3, . . ., n-body

phase shifts, is equivalent to the definition of the full S-matrix. If hadronic
resonances characterize the phase shifts, then one can say that knowledge
of the resonance spectrum determines the physics considered, or in re-
verse, hadronic interactions manifest themselves solely by the formation
of resonances.
Can ρ(m) be estimated in some way from the hypothesis that reso-

nances dominate strong interactions? We follow the arguments of Hage-
dorn of 1965 [140], the statistical-bootstrap hypothesis. Consider the
partition function given by Eq. (12.3) in the classical Boltzmann limit:

ZclHG(V, T ) = exp
[
V T

2π2

∫ ∞

0
ρ(m)m2K2

(m
T

)
dm

]
. (12.17)

This equation expresses the partition function of the hadronic system
of volume V at temperature T in terms of the hadrons whose hadronic
mass spectrum is ρ(m). Since we are looking for the asymptotic form of
ρ(m), we can replace the Bessel function K2(m/T ) in Eq. (12.17) by its
asymptotic form, Eq. (10.45), to obtain

ZclHG(V, T ) � exp
[∫ ∞

0

(
mT

2π

)3/2
ρ(m)e−m/T dm

]
. (12.18)

The Boltzmann factor e−m/T in the partition function shows that, with
rising temperature, the contribution of resonance states of higher masses
becomes more and more important.
On the other hand, the partition function of the same hadronic system

can be written in terms of the density of all single-particle hadronic levels
σ1(E, V ):

ZclHG(V, T ) = exp

(∑
i

e−Ei/T

)
= exp

(∫ ∞

0
σ1(E, V )e−E/TdE

)
. (12.19)
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Macroscopic volume                                     V

COMPRESS

Natural cluster 

volume     (      )             V   m,b     c

Fig. 12.4. The statistical-bootstrap idea: a system compressed to the ‘natural
cluster volume’ becomes itself a cluster (consisting of clusters (consisting of . . . )).

The partition function ZclHG(V, T ) for the same hadronic system is ex-
pressed in two different ways, once in term of the mass spectrum of its
constituents and once in term of the density of states of the system as
a whole. The physical meanings of σ(E, V ) and of ρ(m) must be clearly
understood:

• σ1(E, V )dE is the number of states between E and E+dE of an inter-
acting system enclosed in an externally given volume V ; and

• ρ(m) dm is the number of different hadronic resonance states between
m and m+dm of an interacting system confined to its ‘natural volume’
Vc, i.e., to the volume resulting from the forces keeping interacting
hadrons together as resonances.

Now, if we could compress a macroscopic hadron system to that small
volume which would be the natural volume Vc(E) corresponding to the
energy E, it would itself become another hadron, just one among the
infinite number counted by the mass spectrum ρ(m). This bootstrap idea
is represented in Fig. 12.4. This hypothesis implies that Eq. (12.10) can
now be written as an equation for the hadronic mass spectrum, which
we cast into relativistically covariant form, akin to the form we discuss
below, Eq. (12.63), including finite volume and baryon number

Hρ(p2) = Hδ0(m2 −m2
in)

+
∞∑
N=2

1
N !

∫
δ4
(
p−

N∑
i=1

pi

) N∏
i=2

Hρ(p2i )d
4pi, (12.20)

whereH ∝ Vc, and we have separated out the first ‘input’ term. As before,
δ0(p2 − m2) = Θ(p0)δ(p2 − m2). Eq. (12.20) is the statistical-bootstrap
equation for the hadronic mass spectrum. There are two input constants
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entering, namely H and the mass min in the single-particle term. All
other hadrons are clusters in their respective volumes, generated by this
single particle of mass min.
Interestingly, a semi-analytical solution of Eq. (12.20) is available. We

consider the relativistic four-dimensional Laplace transform of Eq. (12.20),

∫
e−β·pHρ(p2) d4p = ϕ(β)+

∞∑
N=2

1
N !

×
N∏
i=1

∫
e−β·pi Hρ(p2i ) d

4pi, (12.21)

where there appears on the right-hand side, because of the δ-function in
Eq. (12.20), the product of N identical independent integrals. Defining ϕ
and G by

ϕ(β) =
∫

e−β·pHδ0(p2 −m2
in)d

4p = H2πm2
in

K1(βmin)
βmin

, (12.22)

and

G =
∫

e−β·pHρ(p2) d4p (12.23)

we see that Eq. (12.21) becomes,

G(ϕ) = ϕ+ eG(ϕ) −G(ϕ)− 1, (12.24)

or,

ϕ = 2G(ϕ)− eG(ϕ) + 1. (12.25)

Given the Laplace transform of the hadronic mass spectrum G(ϕ),
Eq. (12.23), one can use an inverse Laplace transform to obtain ρ(m)
or, at least, to determine its asymptotic behavior, in which we are inter-
ested. How one can proceed to solve Eq. (12.25) is shown in Fig. 12.5.
We draw on the left in Fig. 12.5(a) the curve G(ϕ) and then invert it,
here ‘graphically’ on the right in Fig. 12.5(b). We see that this solution
branch satisfies

G(ϕ) ≤ ln 2 = G0, (12.26)

and increases as a function of

ϕ ≤ ϕ0 = ln(4/e), (12.27)

up to the point where it has a root singularity. We have for ϕ → ϕ0:

G(ϕ) ≈ G0 ± constant×
√
ϕ0 − ϕ+ · · · . (12.28)
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Fig. 12.5. (a) G(ϕ) according to Eq. (12.25); (b) the graphical solution of Eq.
(12.24).

For ϕ ≥ ϕ0, G(ϕ) becomes complex and there are non-physical branches
of the solution.
It is the square-root singularity of G(ϕ) which determines that the mass

power k of the hadronic mass spectrum cmk exp(m/T0) is k = −3. We
recall that ϕ is actually itself defined in terms of β by Eq. (12.22), and
it is monotonically decreasing with β: there is a minimum value of β0
corresponding to a maximum value T0 = 1/β0 such that

ϕ0 = ln(4/e) = H2πm2
in

K1(β0min)
β0min

. (12.29)

This implies, because of Eq. (12.28), that the physical branch of G(ϕ)
behaves like

G(β � β0) = G0 − constant×
√
β − β0 (12.30)

near β0.
However, G(ϕ), Eq. (12.23), can have a singularity at β0 only if

ρ(m2)→ cmkeβ0m, m → ∞. (12.31)

The behavior of G(β) can be made more explicit by introducing 1 =∫
δ0(p2 −m2)dm2 in Eq. (12.23) followed by a change of the sequence of

integrals,

G = H
∫

ρ(m2)2πm2K1(βm)
βm

dm2. (12.32)

Combining Eq. (12.31) with Eq. (12.32) we find that, for β → β0,

G(β � β0) ≈ G0 + constant×
∫ ∞

min

e−m(β−β0)m3/2+k dm, (12.33)
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which yields

G(β → β0) ≈ G(β0) + constant

×
(

1
β − β0

)k+5/2
Γ(k + 5

2 , (β − β0)min) , (12.34)

where Γ is the incomplete gamma function. To obtain a square-root
singularity in Eq. (12.34), consistent with Eq. (12.30), one needs k = −3.
In summary, the statistical-bootstrap approach assumes that hadrons

are clusters consisting of hadrons and that, for large mass, the compound
hadrons have the same mass spectrum as that of the constituent hadrons,
which leads to a hadronic mass spectrum of the asymptotic form

ρ(m2) ∝ m−3em/T0 . (12.35)

This spectrum, as we have seen in Fig. 12.1, describes the known part of
the experimental hadronic mass spectrum. For point hadrons, this leads
to a singularity of the partition function at T0, which appears, in view of
Eq. (12.8), as a limiting temperature, at which infinite energy density is
reached, since k = −3 > −7

2 .

12.3 Hadrons of finite size

In the first presentation of the SBM results and methods, we have consid-
ered point-like hadrons in an arbitrary volume V . For a dilute gas, this
is a good approximation. However, when we formulated the bootstrap
hypothesis, we dealt with a system that has the density of the ‘inside’
of a hadron. We now generalize this approach and introduce the volume
of the constituent cluster in the spirit of the quark model of hadrons,
and confinement; see section 13.1. In the following we will also allow for
clusters of finite baryon number.
The natural volume V (m) of a hadron cluster is to be proportional to

the cluster mass,

V (m) =
m

4B , (12.36)

where B, which has the dimension of energy density, is the bag constant;
see Eq. (13.9). This equation is valid in the restframe of the cluster. For
a cluster with 4-momentum pµ, Eq. (12.36) takes the form

V µ(m) =
pµ

4B , (12.37)

which defines the proper 4-volume V µ of the particle. In the cluster
restframe, Eq. (12.37) reduces to Eq. (12.36) and therefore is its unique
generalization. Each object of 4-momentum pi can be given a volume

https://doi.org/10.1017/9781009290753.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.017


248 Hot hadronic matter

V µ
i . All clusters have the same proper energy density ε0 = 4B. In a
relativistically covariant formulation, we also consider the energy, and
the inverse temperature in terms of 4-vectors [261]:

E → pµ = (p0, /p) ; pµp
µ = p · p = m2, (12.38)

1
T

→ βµ = (β0, /β) ; βµβ
µ = β · β = β2 =

1
T 2

. (12.39)

Note that the four-dimensional vector product p · p = (p0)2 − (/p)2 is
recognized by the absence of the vector arrow. In this notation,

Z(V, T ) =
∫ ∞

0
σe−E/T dE →

∫ ∞

0
σe−β·pd4p. (12.40)

We now need to obtain the covariant form of the N -finite-sized-particle
level density σN (p, V, b) Eq. (12.10). These particles occupy ‘available 4-
volume’

∆µ = V µ −
N∑
i=1

V µ
i . (12.41)

∆ is the volume in which the particles move as if they were point-like,
while in reality they have finite proper volumes and move in V . The level
density of extended particles in the volume V must be identical to that of
the point-like particles in the available volume ∆. This means that, for a
system with baryon number b and 4-momentum p,

σN (p, V, b) ≡ σNpt(p,∆, b), (12.42)

where ‘pt’ refers to point-like particles. Equation (12.42) is, in spirit, a
Van der Waals correction, which introduces a new repulsive interaction
into the system of hadronic resonances.
The generalization to an invariant phase-space volume is

V d3p

(2π)3
⇒ 2Vµpµ

(2π)3
δ0(p2 −m2) d4p. (12.43)

To go back from the invariant form to the restframe we need

δ0(p2 −m2) d4p =
d3p

2p0
. (12.44)

Then, in the restframe of the volume V , Eq. (8.17),

2Vµpµ

(2π)3
δ0(p2 −m2) d4p = 2V p0

d3p

2p0
=

V

(2π)3
d3p. (12.45)
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Therefore, in the Boltzmann approximation, and assigning to each clus-
ter the degeneracy g → τ(m2

i , bi)dm
2
i with intrinsic baryon content bi,

Eq. (12.10) generalizes to [143]

σN (p, V, b)=
1
N !

∫
δ4

(
p−

N∑
i=1

pi

)
δK

(
b−

N∑
i=1

bi

)

×
N∏
i=1

2∆ · pi
(2π)3

τ(m2
i , bi)δ0(p

2
i −m2

i ) d
4pi dm

2
i . (12.46)

τ(m2
i , bi) is the mass spectrum of a cluster with baryon number bi in the

mass interval [m2
i , dm

2
i ]. It is the analog of ρ(m

2
i ) in Eq. (12.20). The

discreet conservation of baryon number is assured by the Kronecker-δK
function.
The micro-canonical Lorentz-invariant density of states of a system

made of any number of clusters, each cluster having any baryon number
bi, with −∞ < bi < ∞, reads

σ(p, V, b)=
∞∑
N=1

1
N !

∫
δ4

(
p−

N∑
i=1

pi

)∑
{bi}

δK

(
b−

N∑
i=1

bi

)

×
N∏
i=1

2∆ · pi
(2π)3

τ(m2
i , bi)δ0(p

2
i −m2

i ) d
4pi dm

2
i . (12.47)

In Eq. (12.47), the contributing states are subdivided into any number of
subsets corresponding to any partition of the total 4-momentum pµ and
the total baryon number b.
The canonical partition function, for a fixed baryon number b, is the

Laplace transform of the level density given by Eq. (12.47),

Z(T, V, b)=
∫
e−β·p d4p

∞∑
N=1

1
N !

∫
δ4

(
p−

N∑
i=1

pi

)∑
{bi}

δK

(
b−

N∑
i=1

bi

)

×
N∏
i=1

2∆ · pi
(2π)3

τ(m2
i , bi)δ0(p

2
i −m2

i ) d
4pi dm

2
i , (12.48)

from which we obtain the grand-canonical partition function, Eq. (4.20),
defined by

Z(T, V, λ) =
∞∑
b

λbZ(T, V, b) =
∞∑

b=−∞
λb
∫
e−β·pσ(p, V, b) d4p, (12.49)

where λ is the baryon-number fugacity corresponding to the baryonic
chemical potential µ: λ = expµ/T .
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To implement Eq. (12.42), we postulate

Z(T, V, λ)→ Z(T, 〈V 〉, λ) = Zpt(T,∆, λ). (12.50)

Equation (12.50) permits us to calculate everything for fictitious point
particles in ∆ and afterwards obtain the correct quantities by eliminating
∆ in favor of a computed, average value 〈V 〉. Use of 〈V 〉 instead of V
constitutes an approximation, and a lot of effort over the years, since this
approach was first proposed [143], has gone into remedying this step in
a consistent statistical-physics approach, and into generalizing the idea
contained in Eq. (12.42). A state-of-the-art calculation is given, e.g., in
[170]. However, the original and physically simple model presented here
offers all the required understanding without the ballast of mathematical
complexity, and yields sufficiently precise results.

Zpt(T,∆, λ) can be written in the form

Zpt(T,∆, λ)=
∞∑
N=1

1
N !

∫
δ4

(
p−

N∑
i=1

pi

)
e−β·p d4p (12.51)

×
∞∑

b=−∞
λb
∑
{bi}

δK

(
b−

N∑
i=1

bi

)
N∏
i=1

2∆ · pi
(2π)3

τ(p2i , bi) d
4pi.

The momentum δ4 function permits us to do the d4p integration and the
δK permits the summation over b. The integrand thereafter splits into N
independent identical integrals, and the sum over N yields an exponential
function. Taking its logarithm, we obtain

lnZpt(T,∆, λ) ≡ lnZ(T, 〈V 〉, λ) = Z1(T,∆, λ), (12.52)

where

Z1(T,∆, λ) ≡
∫
2∆ · p
(2π)3

τ(p2, λ)e−β·p d4p, (12.53)

with

τ(p2, λ) =
∞∑

b=−∞
λbτ(p2, b). (12.54)

All information about the interaction is contained in the ‘grand-canonical’
hadronic mass spectrum τ(m2, λ).
We obtain now the relation between 〈V 〉 and ∆ in the restframe. We

use Eq. (12.37) to find the expectation value of the volume:

〈V µ〉 = ∆µ + pµ

4B → ∆+
〈E〉
4B

∣∣∣∣
restframe

. (12.55)
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The energy density ε(β, λ) can be obtained from Eq. (12.52), for the en-
ergy:

〈E〉 = − ∂

∂β
lnZ(β, 〈V 〉, λ) = − ∂

∂β
lnZpt(β,∆, λ). (12.56)

Since lnZpt is linear in ∆, the last term is equal to ∆εpt(β, λ); hence,

ε(β, λ) =
∆εpt(β, λ)

〈V 〉 . (12.57)

Inserting Eq. (12.55) into Eq. (12.57) and solving for 〈E〉, we find

ε(β, λ) =
εpt(β, λ)

1 + εpt(β, λ)/(4B)
, (12.58)

which we have used in Eq. (11.1).
We can use Eq. (12.58) in Eq. (12.55) to obtain a more explicit relation-

ship between the volume V and the available volume ∆:

〈V 〉=∆
(
1 +

εpt(β, λ)
4B

)
, (12.59a)

∆= 〈V 〉
(
1− ε(β, λ)

4B

)
. (12.59b)

This procedure can be followed for the baryon density, pressure and, in
principle, other statistical quantities:

ν(β, λ) ≡ 〈b〉
〈V 〉 =

νpt(β, λ)
1 + εpt(β, λ)/(4B)

, (12.60)

P (β, λ) =
Ppt(β, λ)

1 + εpt(β, λ)/(4B)
. (12.61)

12.4 Bootstrap with hadrons of finite size and baryon number

As explained in section 12.2 a system of total mass m, when it is com-
pressed to its natural volume Vc(m), becomes one of the particles counted
in the hadronic mass spectrum (see Fig. 12.4). By the same token, a
nuclear cluster with baryon number b compressed to its natural volume
Vc(m, b) becomes a cluster appearing in the mass spectrum τ(m2, b). The
bootstrap hypothesis can now be expressed by writing

σ(p,∆, b)|〈v〉→vc(m,b) ⇐⇒ τ(p2, b), (12.62)
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where ⇐⇒ means ‘corresponds to’ in a way to be specified.
With the condition Eq. (12.62), the statistical-bootstrap-model equa-

tion for τ arises from Eq. (12.47):

Hτ(p2, b)=Hgbδ0(p2 −m2
b) +

∞∑
N=2

1
N !

∫
δ4

(
p−

N∑
i=1

pi

)

×
∑
{bi}

δK

(
b−

N∑
i=1

bi

)
N∏
i=1

Hτ(p2i , bi) d
4pi, (12.63)

where

H ≡ 2m2
0

(2π)34B . (12.64)

This equation is obtained, by first separating the ‘input particle’ (cor-
responding to N = 1) in Eq. (12.47), and then making the following re-
placement, where Eq. (12.37) is used:

σ(p, Vc, b)⇒
2Vc(m, b) · p
(2π)3

τ(p2, b)⇒ 2m2
0

(2π)34B τ(p
2, b), (12.65a)

2∆ · pi
(2π)3

τ(p2i , bi)⇒
2m2

0

(2π)34B τ(p
2
i , bi). (12.65b)

The factors m2 and m2
i have been absorbed into the definition of τ(p

2
i , bi).

Either H or m0 may be taken as the new free parameter of the model.
The first term in Eq. (12.63), the ‘input-particle’ term, comes from the

cluster structure: if clusters consist of clusters, which consist of clusters,
and so on, this should end at some ‘elementary’ particles, here a hadron
of baryon number b and of mass mb. Typically, the input consists of the
pion for the b = 0 term and the nucleon for b = ±1. The similarity of
Eq. (12.63) to Eq. (12.20) allows us to repeat all the steps we made in
solving Eq. (12.20), to obtain from Eq. (12.63) the asymptotic form of the
hadronic mass spectrum. We introduce two functions ϕ(β, λ) and Φ:

ϕ(β, λ)≡
∫

e−β·p
∞∑

b=−∞
λbHgbδ0(p2 −m2

b) d
4p,

=2πH
∞∑

b=−∞
λbgbm

2
b

K1(mbβ)
mbβ

, (12.66)

and

Φ(β, λ) ≡
∫

e−β·p
∞∑

b=−∞
λbHτ(p2, b) d4p. (12.67)
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Once the set of ‘input particles’ is introduced, ϕ(β, λ) is a known function,
while Φ(β, λ) is unknown. By applying the double Laplace transform
(integration over p and summation over b) used in the definition of ϕ(β, λ)
and Φ(β, λ) to the Eq. (12.63), we obtain

Φ(β, λ) = ϕ(β, λ) + eΦ(β,λ) − Φ(β, λ)− 1. (12.68)

This implicit equation for Φ can be solved again without regard to the
actual dependence on β and λ. Writing

G(ϕ) ≡ Φ(β, λ), (12.69)

we obtain

ϕ = 2G(ϕ)− exp[G(ϕ)] + 1, (12.70)

which is Eq. (12.25). The graphical solution found in section 12.2 shows
that G(ϕ, λ) has a square-root singularity at

ϕ(β, λ)→ ϕ0 = ln(4/e), (12.71)

which defines a critical curve βcr(λ) in the (β, λ) plane. In the vicinity of
this curve,

G(ϕ) ≈ G0 + constant×
√
ϕ0 − ϕ, (12.72)

and, therefore,

Φ(λ, β � βcr) = Φ0 − C(λ)
√
β − βcr. (12.73)

As we have shown in section 12.2, this square-root singularity fixes the
power k of m in the hadronic mass spectrum at k = −3 and we obtain

τ(m2, λ) ∝ m−3eβcr(λ)m. (12.74)

For λ = 1, βcr = β0 and we recover the usual form of the hadronic mass
spectrum. However, the generalization obtained gives a solution for any
value of λ.
Given the mass spectrum in Eq. (12.52), we can calculate all the usual

thermodynamic quantities. For this, we need to write down lnZpt. The
formal similarity of Eq. (12.53) and Eq. (12.67) yields a relation between
lnZpt and Φ that is best expressed in the restframe of ∆ and β:

lnZpt(T,∆, λ) = − 2∆
(2π)3H

∂

∂β
Φ(β, λ). (12.75)
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The point-like quantities are derived from lnZpt as given by Eq. (12.75):

εpt(β, λ) =
2

(2π)3H
∂2

∂β2
Φ(β, λ), (12.76)

νpt(β, λ) ≡
λ

∆
∂

∂λ
lnZpt(β,∆, λ) = − 2λ

(2π)3H
∂

∂λ

∂

∂β
Φ(β, λ), (12.77)

Ppt(β, λ) ≡
T

∆
lnZpt(β,∆, λ) = − 2T

(2π)3H
∂

∂β
Φ(β, λ). (12.78)

All the above point-particle quantities involve derivatives of Φ(β, λ);
they become singular at ϕ = ϕ0. Explicitly, using Eq. (12.72), which
contains a square-root singularity, we have:

∂

∂β
Φ(β, λ) =

dG

dϕ

∂ϕ

∂β
→ constant× ∂ϕ

∂β

1√
ϕ0 − ϕ

. (12.79)

Therefore, ϕ → ϕ0 implies point-particle infinities for all of the above
quantities, with the second derivative required in εpt being the most sin-
gular. On comparing the degrees of divergence of the numerator and
denominator in Eqs. (12.58), (12.60), and (12.61), we see that the energy
density and the baryon density are finite, while the pressure vanishes, on
the critical curve. The overcompensation of the pressure is seen already
in Fig. 12.3, which was evaluated with a model hadron mass spectrum.
This behavior of the pressure reflects the fact that we have counted

only the pressure generated by the clusters and, as we shall see in the
following subsection, all clusters coalesce on the critical curve, and hence
the pressure of a single large cluster vanishes. This of course is an artifact,
since at that point we should have included the internal cluster pressure,
since the single cluster we find is in the QGP-type state. We will not
introduce in this book the required generalization which can be found in
[213].

12.5 The phase boundary in the SBM model

We have seen that the singular point of the solution to the bootstrap
equation is located at the value ϕ0 = ln(4/e) and that the critical curve
in the (β, λ) plane is defined by

ϕ(β, λ) = ϕ0 = ln(4/e). (12.80)

Its position depends, of course, on the actual content of ϕ(β, λ), i.e., on the
fundamental set of ‘elementary particles’ {mb, gb} and the value of the
constant H, Eq. (12.64). In the case of three elementary pions (π+π0π−)
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Fig. 12.6. The SBM critical curve in the (µb, T ) plane. In the shaded region,
the theory is not valid because we have neglected Bose–Einstein and Fermi–Dirac
statistics.

and four elementary nucleons (spin ⊗ isospin) and four antinucleons, we
obtain, from Eq. (12.66), the relation

ϕ0(βcr, λcr) = 2πHTcr

[
3mπK1

(
mπ

Tcr

)
+ 4
(
λcr +

1
λcr

)
mNK1

(
mN

Tcr

)]
. (12.81)

The condition of Eq. (12.81), written in Tcr = 1/βcr and µcr = Tcr lnλcr,
yields the critical curve shown in Fig. 12.6, drawn for H = 0.724 GeV−2.
For µ = 0, the curve ends at T = T0, which becomes the maximum phase
transition temperature instead of a limiting temperature.
Our system consists, for small T and µ, of nucleons and nuclei. For

increasing T , creation of pions sets in and finally also creation of baryon–
antibaryon pairs, as well as (not included here) creation of strange had-
rons. If the latter is taken into account, the input set of ‘elementary par-
ticles’ has to be enlarged. This changes slightly the position of the critical
curve and the equations of state of hadron matter, since T0 is of the order
of the pion mass, while the other particles have larger masses and make lit-
tle contribution to ϕ(β, λ). More precisely, each new conserved quantum
number (strangeness, charm, . . . ) gives rise to another corresponding fu-
gacity λ; hence the singularity is defined by ϕ(β, λ1, λ2, λ3, . . ., λn) = ϕ0
as a hypersurface in an (n + 1)-dimensional space. Since, however, in
physical situations, generally only the baryon number is different from
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zero, we have to consider only the intersection of this hypersurface with
the (T , µb) plane. That procedure yields the curve which was said to be
little different from the one shown in Fig. 12.6.
What does the SBM hadron gas do when it approaches the critical

curve? As the point-particle quantities εpt, νpt, and ppt diverge, one sees
(by comparing degrees of divergence when ϕ → ϕ0) that

ε(βcr, λcr) → 4B, (12.82a)
ν(βcr, λcr) → νcr(βcr, λcr) = 0, (12.82b)
P (βcr, λcr) → 0, (12.82c)
∆(βcr, λcr) → 0, if 〈V 〉 = 0, (12.82d)

〈V (βcr, λcr)〉 → ∞, if ∆ = 0, (12.82e)

where βcr and λcr are the values along the critical curve.
As noted already, see Eq. (12.36), the energy density of our clusters was

constant and always equal to 4B. Equation (12.82a) suggests that, on the
critical curve, the whole hadron system has condensed into one giant clus-
ter, witnessed by the vanishing of the pressure; one can explicitly see that,
for any given external volume 〈V 〉, the number 〈N〉 of particles (clusters)
contained in it goes to zero on the critical curve: indeed, introducing the
fugacity ξ relative to the number of clusters, Eq. (12.52) can be written:

Zpt(β,∆, λ) = Z(ξ)
pt (β,∆, λ, ξ)|ξ=1 ≡

∞∑
N=0

1
N !
(ξ lnZpt)N . (12.83)

Hence, with Eq. (12.75),

〈N〉 = ξ
∂

∂ξ
lnZ(ξ)

pt

∣∣∣∣
ξ=1

= lnZpt = − 2∆
(2π)3H

∂

∂β
Φ(β, λ), (12.84)

and, with Eq. (12.59a),

〈N〉
〈V 〉 =

B
π3H

∂Φ(β, λ)/∂β
1 + εpt(β, λ)

=⇒
critical curve

0, (12.85)

because εpt contains a second derivative of Φ(β, λ). It follows that, from
Eqs. (12.61), (12.78), and (12.85),

P 〈V 〉 = 〈N〉T, (12.86)

that is, our hadron gas obeys, formally, the ideal-gas equation of state for
the average number of clusters 〈N〉; 〈N〉 is not a constant, but a function
of β and λ.
In the bootstrap model of hadronic gas, our finding is that the critical

curve limits the HG phase; approaching it, all hadrons dissolve into a giant
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Fig. 12.7. The physical interpretation of the different regions of the (T, µ) plane
according to the statistical-bootstrap model of hadronic matter.

cluster. The gradual change in the structure of hot hadronic matter is
illustrated in Fig. 12.7; at low T, µ we have a dilute pion gas of essentially
point-like pions. With an increase in T and/or µ, progressively denser
hadron matter is formed, and hadron proper volume becomes relevant.
Near the phase boundary hadrons coalesce into large clusters comprising
drops of QGP.
In SBM the singular curve is reached with finite energy density 4B. In

the hadron phase, ε(β, λ) < 4B and β ≤ βcr. For ε > 4B, we enter into
a region that cannot be described by the thermodynamics of the SBM.
Indeed in this region, β ≥ βcr and the partition function Zpt(β,∆, λ) and
all densities become complex. This region cannot be described without
making assumptions about the inner structure and dynamics of the ‘el-
ementary particles’ {mb, gb} – here pions and nucleons – entering into
the input function ϕ(β, λ). In other words, to continue, we need to con-
sider the hot hadron interior made of quarks and gluons. Assuming that
we have a phase transition between a HG and a QGP, the evolution of
the system in the P–V diagram is qualitatively illustrated in Fig. 3.2 on
page 49. In order to make this picture quantitative we need to explore,
within the realm of quantum chromodynamics, the hadron structure and
the behavior of a gas of quarks and gluons with color interactions.
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