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Abstract

A method for computing the number of contours for a twistor diagram, using Grothendieck's
algebraic de Rham theorem, is described and some examples are given.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 32 L 25, 32 L 10; secondary
55 N 30.

1. Introduction

The formalism of twistor diagrams ([11, 12], and the review article [6]) em-
bodies the twistor description of scattering amplitudes. A twistor diagram D
describes (in diagramatic notation) a rational function

of n twistors Z( e C4 and m dual twistors Wj e C4* which is homogeneous

of degree - 4 in each of these variables. If M = (CP3)" x (CP3*)m then the
rational differential form

W = <t>d*Zx A • • • A d*Zn A rfV, A • • • A dAWm

determines a meromorphic differential form on M of degree k = d imM,
as described in Section 3. We let D also denote the polar set of <j>, that
is, the zero set of its denominator, so that w is holomorphic in M - D.
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222 Richard Jozsa and John Rice [2]

A scattering amplitude is then obtained by integrating w over a closed k-
dimensional contour in M - D. Clearly one basic property of a twistor
diagram is the number of independent contours in M - D over which w
may be integrated, that is, knowledge of the homology space Hk(M - D, C).
In some cases (for example, massless Moller scattering [6, 7]) the existence
of more than one contour is desirable to provide a unified description of the
various "channels" of the given process.

Throughout the development of twistor diagram theory, the problem of
computing the homology Hk{M - D, C) for a given diagram has proved to
be a difficult one, and all existing methods have been applied successfully only
to relatively small diagrams. These methods, developed originally by Sparling
[12], use topological constructions (the relative homology exact sequence, the
Mayer-Vietoris exact sequence and the Leray exact sequence) to break down
the space M - D. Eastwood [1] has also described how the Leray spectral
sequence can be used in this problem.

In this paper we introduce a further technique based on Grothendieck's
algebraic de Rham theorem [5] which provides a purely algebraic approach,
in contrast to the above topological methods. To determine the homology
H. (M — D,C) we may, by Poincare duality, determine instead the cohomol-
ogy H'(M-D, C). Let Ap denote the space of smooth p-formson M-D.
By de Rham's theorem H(M — D, C) is isomorphic to the cohomology of
the complex A'. Let W% denote the space of meromorphic p-forms on M
which are holomorphic on M — D. Grothendieck's algebraic de Rham theo-
rem states that H'(M - D, C) is also isomorphic to the cohomology of the
complex W'D . In Section 2 we shall sketch the main lines of the proof of this
theorem. In Section 3 we set up a representation of meromorphic forms on
projective space in terms of homogeneous polynomials, which gives a simple
discretely parameterised countable basis for the spaces W^ . This is used in
Sections 4 and 5 to compute explicitly the quotient of closed meromorphic
/c-forms by exact ones, in the top dimension k, for various twistor diagrams,
illustrating the new approach advocated here. By contrast, the spaces Ap,
having uncountable dimension, cannot be handled in this simple algebraic
way.

A more sophisticated approach to the interpretation of twistor diagrams
incorporates the fact that, in twistor theory, massless fields are described by
analytic sheaf cohomology classes on twistor space [2, 10], so that the scat-
tering amplitudes ought to be described by functionals on products of the
cohomology groups representing the fields. In our discussion above, we have
represented the fields instead by meromorphic functions, which are repre-
sentative cocycles for these cohomology classes, and we have not taken into
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[3] Twistor diagrams and the algebraic de Rham theorem 223

consideration the associated coboundary freedom involved in the choice of
representative. This freedom will in general reduce the number of acceptable
contours. Some developments towards a cohomological theory of twistor
diagrams have been made by Ginsberg [3, 4] and more recently by Huggett
and Singer [8]. In particular, Huggett and Singer have shown that if mass-
less fields are treated as cohomology classes, then the problem of the number
of contours for a diagram can be reduced to computing the homology of a
space of the form A - D where A is the product of complex projective lines
(rather than the full CP3 twistor spaces in M - D) and it is expected that
the method described in this paper will have even more effective applicability
in this simplified case.

2. The algebraic de Rham theorem

Let M be a projective (or, more generally, compact Kahler) manifold
and D c M a positive divisor. Let Q\ be the complex of sheaves of
meromorphic differential forms on M which are defined on M — D, that
is, whose poles lie in D. Over M - D, it is a subcomplex of the de Rham
complex A' of M-D, which consists of the sheaves of all smooth differential
forms on M—D. We may regard &'. as the "algebraic part" of the de Rham
complex of M - D. Let T be the global sections functor.

The Algebraic de Rham Theorem states the the inclusion of complexes
T£l'.(M) —* FA'(M—D) incudes an isomorphism between their cohomology
groups. Otherwise said, the de Rham cohomology of M - D is isomorphic
to the cohomology of its algebraic part, so by de Rham's Theorem,

HP(M - D, C) = H'im'^M - D)).

The Algebraic de Rham Theorem is proved from a standard "local to global"
argument of cohomology theory. First one shows that for any suitably small
open set U c M the theorem is true, that is, the inclusion

induces an isomorphism in the cohomology. Then one has to show that
this local result globalises to the case U = M. Let us deal with the local
result first. Any point x e M - D has a polydisc neighborhood U. By the
Poincare Lemma, the de Rham cohomology of U is zero in every degree,
and there is a holomorphic Poincare Lemma to show the same for ^.{U).
Hence the local result holds true for such open sets. Next we consider the
case where D is a normal crossing divisor. By definition, each x £ D has a
neighborhood U such that U-D = (C-Oy'xC""-7' where n is the dimension
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of M. The forms dza/za for a — I,... , j generate the cohomology of
both Q.'.(U) and of A'(U - D) in this case, and by direct computation
([5, p. 451]) one shows that meromorphic forms which are smoothly exact
must be meromorphically exact. Hence the local result holds in this case
also. The general case is reduced to the normal crossing casej>y Hironaka's
Theorem, which asserts that there is a projective manifold M with normal
crossing divisor D and a holomorphic map M & M such that n(D) = D
and M - D & M — D is biholomorphic. In this case, one also has that
Q ^ M ) and Q^g(M) have the same cohomology, as do A'(M - D) and

A'(M - D). Thus the result for general divisors is proved by the normal
crossing case.

The global result is derived from the local result as an application of
the Acyclicity Theorem. The morphisms Cl^iU) ^ A'(U - D) for each
sufficiently small open set U constitute a homomorphism of complexes of
sheaves i: il'^ •-» jtA', where j : M - D t-> M is the inclusion and

The local result says that this morphism incudes an isomorphism between the
cohomology sheaves of these complexes, that is, i is a quasi-isomorphism in
the category of sheaves on M. Taking global sections we get

According to the Acyclicity Theorem, T{i) will be a quasi-isomorphism (so
that FQ\ and TA' will have the same cohomology) if each of the sheaves
in Q\ and j\A' is F-acyclic, that is, have zero sheaf cohomology in each
degree except degree zero. The sheaves j\Ap admit partitions of unity which
implies that they are F-acyclic. The sheaves £2^g can be understood as

where [D] is the line bundle associated with the divisor D. Cohomology
commutes with direct limits, so we need to show that for large enough k the
sheaf Qf(k[D]) is F-acyclic. This is the content of the Kodaira Theorem
in the case that M is compact Kahler and D is a positive divisor, thus
completing the proof of the Algebraic de Rham Theorem.

3. Meromorphic forms on CP"

The de Rham complex of meromorphic forms on CP" can be identi-
fied with a sub-complex of the de Rham complex of meromorphic forms
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[5] Twistor diagrams and the algebraic de Rham theorem 225

on Cn+ — 0, namely its image under pull back by the natural projection
Cn+1 - 0 A CP" . This identification will be useful for calculating explicitly
with these forms. Because n is a submersion n* is injective. If co is mero-
morphic form on CP" then n*(co) is one on C " + l - 0 which annihilates the
tangent space to the fibres of n and is invariant under dilation, the action
of C*. It is easy to show that these two conditions characterise forms of the
type n*co; this is a well known argument which, for any principal bundle
P A M, characterises the image of the de Rham complex Q,'(M) under n*
as the subcomplex in £V (P) of the so-called basic forms.

For dilation invariance, we observe that if A denotes the map of multipli-
cation by A € C* then its derivative map At is also multiplication by A in
each tangent space. It follows that

\
= y ^ A f(Xz) dZj A • • • A dz; ,

*—' ' i '*

so that such a differential /c-form is invariant if and only if each coefficient
function rt...,. is homogeneous of degree —k.

The tangent space to the fibres of Cn+1 - 0 A Cp" is spanned by the Euler
vector field T = £?=ozij/r • F° r a n v form rj on C"+1 - 0, its contraction
with T , denoted T-i»/, must annihilate T and hence the tangent space to
the fibres of n. By expressing forms as the wedge products of 1-forms dual
to a basis containing T it is easy to see that the converse is also true, that is,

T->(y = 0 if and only if co = T-itj for some r\.

In fact, what we have argued here is the exactness of the Koszul complex
for the regular sequence { z 0 , . . . , zn} , since it corresponds to the de Rham
complex but with differential T-i instead of d. Furthermore, the argument
shows that if co is dilation invariant then r\ may be chosen to be dilation
invariant.

We conclude that, under n*, there is a bijection between meromorphic
fc-forms on CP" and fc-forms on Cn+1 - 0 of the type

A--- Adz- )

where each / is homogeneous of degree — (k + 1). In particular this makes
explicit the well known correspondence between functions on C"+ — 0 ho-
mogeneous of degree - (« +1) , and meromorphic n-forms on CP" , namely,
to such a function / corresponds the push forward under n of
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Observe that for a dilation invariant form co, we have Lrco = 0 where
Lr denotes Lie derivative along T . By Cartan's relation

we have

In particular

so that a meromorphic n-form /T-i </z0 A • • • A rfzw is exact if and only if
/ is a divergence, that is, there exist functions g0, ... , gn homogeneous of
degree —n such that

4. Application to twistor diagrams

Let M be a product of projective spaces CP"1 x •• • x CP"r. A function
/ on (C"1 + 1 - 0) x • • • x (C"r + 1 - 0 ) is called homogeneous of degree
( i j , i2,..., ir) if it is homogeneous of degree ij as a function on C"J+1 -
0 when all the other variables are fixed. The discussion of meromorphic
forms given above generalises to the product of projective spaces by treating
the factors separately. In particular, with k = dimAf — w, + ••• + nr, a
meromorphic fc-form corresponds to a meromorphic function homogeneous
of 'top' degree ( -n , , - 1 , —n2 -I,... , —nr - 1). All such forms are closed
of course. They are exact if and only if they are divergences.

Let D c M be given by the zero set of some homogeneous polynomial / .
We appeal to the Algebraic de Rham Theorem to compute H (M - D, C)
as the space of closed meromorphic fc-forms whose poles are in D, modulo
the exact ones. From our discussion above this is the same as the quotient of
the space VD of all meromorphic functions on (C"l+1 - 0) x • • • x (C"'+1 - 0)
homogeneous of top degree whose poles lie in D, by the space BD of such
functions which are divergences. From Chow's theorem [5] a homogeneous
function meromorphic on M with poles in D must have the form h/f™
where h is also a homogeneous polynomial. We therefore conclude

(4.1) THEOREM. Let M = CP"1 x ••• x CPn' and X = (C"1+1 - 0) x
• • • x (C"r+1 - 0). Let f be a homogeneous polynomial on X whose zero set
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determines the variety D c M. Then

Hk(M-D,C) = VD/BD

where k = nx x ••• x nr and
VD = homogeneous functions on X of top degree and of the form h/f"1,

where m>0 and h is a homogeneous polynomial,
BD = functions in Vd which are divergences Y%=i §f̂  > where gt, of degree

(-n{ - I, ... , -ni, ... , —nr - 1), is of the form hj fm' for homogeneous
polynomials ht.

As an explicit example consider the scalar product diagram

which is the diagrammatic notation for the meromorphic form corresponding
to

6(Z I D - d*ZAd*W
(Z.A){Z.B){Z.W)2{W.C){W.D)

on CP3 x CP3*. In this case f(Z, W) = (A.Z)(B.Z)(Z.W)2(C.W){D.W)
on (C4 - 0) x (C4* - 0) and by cancellation against factors in fm , VD is
spanned by the functions

m(Z, W)

(A.Z)a(B.Z)b(Z.W)e{C.W)c(D.W)d

where m(Z, W) ranges over all monomials of degree (a + b + e-4, c + d +
e - 4). We need to reduce these functions modulo divergences to determine
a basis for H*{M-D,C).

Before treating the scalar product in detail, we give a simpler example,
which follows readily from the useful result

(4.2) PROPOSITION. Consider a rational function of the form f(xa).(d/dx)I

g(xa) where f, g are rational and I = a, • • • ak is a multi-index denoting
a kth order derivative. Then f(d/dx)jg and (-l)kg(d/dx)jf differ by a
rational divergence.

PROOF. We use the product rule successively to change dai on g into
(-daj) on / , the correction term, each time, being a rational divergence.

(4.3) EXAMPLE. Consider the twistor diagram

z w
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corresponding to

' (W.Z)4 '
which is well known to have only one contour. To see this using the above
approach, we look at rational functions on CP3 x CP^ - {Z.W = 0} . A basis
for these is given by

ZJWr
bJK(Z, W)= \ , \J\ = \K\ = n - 4

(here J = ax--an_4, ZJ = Za"-* etcetera). Hence

bJV = const Wr \ 7T7J7 J I 1 I ,
\9W J j \(W.Z) I

so up to a rational divergence (using Proposition 4.2),

bjK — , ^ ,4 ' 1 ~alx7 ) (^ic)

= const x • 8r, (since I/I = \K\),
(W.Z)4 K

that is, any rational function in VD is in the span of 1 /(W.Z)4 modulo a
rational divergence. Thus the quotient space is one dimensional, giving the
existence of only one contour.

5. The scalar product diagram and related examples

Consider the twistor diagram

where Aa, Ba, Ca, Da are assumed to be in general position.
We have already observed that VD in this case is spanned by functions

ZJW

(A.Z)a(B.Z)b(Z.W)e(C.W)c(D.W)d ' a' 'C' ' 6 ~

where / and K are multi-indices of length

\J\ = a + b + e-4, \K\ = c + d + e - 4,

to ensure an overall homogeneity degree of ( -4 , -4) in (W, Z). We denote
this function by [a, b, e, c, d, J, K]. For fixed a, b, c, d, e we consider

https://doi.org/10.1017/S1446788700037137 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037137


[9] Twistor diagrams and the algebraic de Rham theorem 229

the subspace S(a, b, c, d, e) C VD spanned by all functions satisfying these
conditions on J and K. We use the diagram

to denote this subspace modulo BD, that is, the image of S(a, b, c, d, e)
under the projection VD -» VD/BD . Letting M = C.P3* x CP3 and D c M
be the variety defined by the scalar product diagram, we have

H\M-D,C) = VD/BD= £ « W c

a,b,e,c,d>0

We can show that many of the subspaces described by these diagrams are
contained in the span of the others. For example

(5.1) PROPOSITION. Let a>2.

(a)Ifc,d?o then

bj \d~ b I \d^ b j \ d W b I \d-\
(b) ifc = 0,d?0, then

a\ e / 0 ^ a - 1 \ e / 0 f^a-lXe+i /0 ^a- lXe+i / 0
bj \d~ b / \d*& b I \e*& b / \ a* - 1

In both cases, ifa + b + e = 4 then omit the first space in the sum of the right.

Note that in all subspaces on the right

(1) a is reduced by 1,
(2) b is unchanged,
(3) the total sum of indices a + b + e + c + d is reduced by 1 in (a).

PROOF. Construct M" e span(CQ, Da) such that M.A / 0, M.B = 0,
that is, take M° = (B.D)Ca - (B.C)Da. Now (writing / = g if / and g
differ by a divergence) we have

•^s{Ma[a-l,b,e,c,d,J,K]} = 0.

The divergence produces four terms (from derivatives of AJ , Z.A, Z.B ,
Z.W respectively)

tx = [a-\,b,e, c, d, 0, J

t2 = ( - a + \){M.A)[a, b, e, d, c, J, K],

r4 = (-e)(B.D)[a - l ,

- (-e)(B.C)[a -
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Since M.A / O w e get t2 = -(tl + t3 + f4). For varying / and K, t2

ranges over a basis of S(a, b, c, d, e), so we have proved (a). Note that if
a + b + e = 4, then | / | = 0 so tl - 0 .

The result (b) follows from the same calculation, producing a slightly dif-
ferent t4.

(5.2) PROPOSITION (moving indices from internal to external lines without
decreasing total sum).

c,d

where on the RHS c>c, d>D and c + d + 2 = c + d + e. If c-0 on the
LHS then c = 0 on the RHS.

a\e_J C c / T N a \ 3 It

0 / W g y ? o / \d>
c,d

with the same conditions on c, d as in (a),
(c)

c,d

with same conditions on c, d as in (a).

PROOF. A general basis function of S(a, b, c, d, e) is [a,b,e,c,d,J,
K], with \J| = a + b + e -4. Let L be a sub-index of / with \L\=e-2,
which always exists since a, b > 1. Write J — LM. Now, setting u =
\/{W.zf so {d/dW)ru = const -ZL/(W.Z)e we get [a, b, e, c, d, J, K]
= [a,b,0,c,d,M, K](d/dW)Lu. By Proposition 4.2 this differs by a di-
vergence from

Each differentiated term has c, d increased to c, d, but all have the same
FF-homogeneity c + d = c + d + \L\ = c + d + e -2. Thus we get

c,d

The proof of (b) and (c) are similar using w = 1/(W.Z)3, u = l/(W.Z)4

respectively.
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(5.3) PROPOSITION.

(a) o

PROOF.

(a) For any k

[0, 0 , 4,c,d,0,K] = - ^ ( ( T 3 ) [ ° . 0 , 3 , c + 1, d , 0 ,

(b) Taking d/dWa{Ba[0, l , 3 , c - l , 0 , 0 , AT]) and using (a) gives

(c) To prove
1 \ _ 1 _ / 1 _ 0 \ 3 / I
0 / \ 0 1 / \ 0 '

use the divergence

9 / (C.B)Aa-(C.A)Ba \

dWa \(Z.A)(Z.B)(Z > W)2{W > C)J '

Others are similar.
We now use the previous propositions to reduce the general basis function

[a, b, e, c, d, J, K], modulo divergences to two special cases. Note that
Propositions 5.1 (a), 5.3(b) enable the reduction of the total sum a + b +
c + d + e while the other redistribute the values of these parameters. All
propositions above have exact analogues with the roles of a, b, and c, d,
etcetera, interchanged.

The reduction process. If a, b > 1, use Proposition 5.1 repeatedly to re-
duce both to 1:

c,d,e,

Proposition 5.2(a) now gives

c,d
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Then using Proposition 5.1, on the c, d side, if one of c, d, say c, is > 1

Iterating this on the first term of the RHS, we can reduce c to 1, and then
d to 1, modulo spaces with a or b zero.

Hence we have achieved

, )—-—( , C \ ( ffi {spaces with at least one of a, b, c, d zero}.
bI \a \I \ 1 ^s

To do the remaining spaces, suppose, say, d — 0, a, b, c > 1. Then

n C ^ \—-—I (Proposition 5.1, iterated),
c,e ' *

1 \ € I C —. 1 \ 2 / C

)—-—( n S © )—-—( n (Proposition 5.2(a)).

Now Proposition 5.1 (a), on the c, d side, gives
1 \ 2 / C c 1 \ 2 / C - 1 XTV 0 \ 3 / C - 1 /TS 0 \ 3 / C - 1

Iterating this on the first term of RHS and using Proposition 5.3(b), (c) to
reduce the other RHS terms, gives,

Putting all this together gives

a\ e Ic _ 0 \ 3 / I

bl \ 0 M / \<T
Similarly, if a or 6 or c was zero, with rf / 0, we get the same reduction
(using also Proposition 5.3(c)) and likewise for two of a, b, c, d not on the
same vertex, being zero. Also Propositions 5.2(c), 5.3(a) give

0 \ e I c

Thus for any a, b, c, d, e,

Both RHS spaces are one dimensional, since the sum of indices at each vertex
is 4 (so the numerator of any function in S( 1, 1, 1, 1, 2) or 5 ( 0 , 1 , 0 , 1 , 3 )
is constant). This gives
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providing two contours for the scalar product diagram.
This example, written out in detail, illustrates how this algebraic technique

can be used to investigate any twistor diagram: we look for procedures which
reduce the total sum of indices on all lines, and others which redistribute
the values. Used together these enable reduction of the infinite dimensional
space of the rational homogeneous functions to a finite dimensional space
modulo divergences.

An easy exercise along these lines shows that

has only one contour.
As a further example, consider the diagram

with A, B, C, D, E, F in general position.
We can invent a reducing procedure, exactly analogous to Proposition 5.1,

by setting (compare with the proof of Proposition 5.1)

and

so M G span(Z), E, F) with M.A ± 0, M.B = M.C = 0. Proposition 5.2
also has a direct analogue for the present case. If one of a, b, c and one of
d, e, f have been reduced to zero, we can continue the reduction using the
scalar product results. This readily enables reduction of a general space

to the following 19 cases

1 \ /I
(a) 1 ) ' ( 1 (lease),

1\ / I
1 -\——(- 0 , and all permutations of 0, 1,

(b) 0/ \l

1 on each end (9 cases),
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0 —} £- 1 , and all permutations of 0, 1,
(c) 1 / \0

1 on each end (9 cases)
Now, all 9 cases in (c) are equivalent. For example, the divergence

d ( (F.C)Ba-(F.B)Ca \

dWa \{Z.B){Z.C){Z.Wf{W.F))

shows that

The others are similar. Also (b) can be reduced to 4 cases: the divergence

d I Ka"rAfiBy

dZa \ {Z.A){Z.B)(Z.W){W.D){W.E){W.F)

shows that

that is, for the three spaces obtained by fixing one end and permuting the
other end, any one is in the span of the other two. Thus without loss of
generality, we can impose d = 1, and similarly a — 1.

Hence everything has been reduced to the 6 cases

\7
and we have shown that the number of contours is not larger than six.

It is not clear how to prove that no further reduction is possible, which
at present, provides a limitation to the usefulness of this method, especially
for diagrams with many external lines. However the methods of algebraic
topology, referred to in the introduction, also tend to become intractable for
these larger diagrams. We may conjecture the following interpretation of the
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final six diagrams. 'Ones' on the two external lines (A, B say) indicate that
the contour separates the poles at Z.A = 0 and Z.B = 0 (that is, 'pinches'
if A and B are moved into coincidence). 'Zero' on A and 'one' on B
indicates that A can be moved into coincidence with B, in the confines of
the contour.
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