THE STABILITY INDEX OF A CACTUS

DOUGLAS D. GRANT and D. A. HOLTON

(Received 14 May 1976; revised 13 September 1976) Communicated by W. D. Wallis

Abstract

We show that if G is a connected graph of order n such that no line lies in more than one cycle (in other words, G is a cactus of order n), then the stability index of G is one of the integers 0, 1, n-7, n-6, n-5, n-4 or n. By finding an index-0 graph to which a given cactus optimally reduces, we provide a structural characterization of cacti with given stability index.

1. Introduction

A cactus is a connected finite graph in which no line lies in more than one cycle. The index-0 and stable cacti were characterized in McAvaney (1975). In this paper we augment McAvaney's work by proving that the stability index of a cactus of order n is 0, 1, n-7, n-6, n-5, n-4 or n, and by giving a characterization of cacti with given stability index.

Throughout this paper, the word graph will mean finite undirected graph with no loops or multiple lines. We shall adopt the basic graph-theoretical terminology of Harary (1969). Notions relating to the stability index of a graph are described in Grant (1974). Since this paper is a sequel to McAvaney (1975), we shall use several ideas introduced in that paper. In particular, we note that \underline{P}_n denotes a path P_n rooted at an endpoint. For the purposes of the present paper we require also the following definitions, in which G denotes an arbitrary graph.

The graph H is a semi-stable extension of G, if H has a partial stabilizing sequence S such that $H_S = G$. (Note that this differs slightly from the definition of "semi-stable extension" given in Grant, 1974.) We say that H is reducible to G, or that H reduces to G if H is a semi-stable extension of G, and that H is optimally reducible to G, or H optimally reduces to G, if H is reducible to G and s.i. (H) = |V(H)| - |V(G)|. If H is a semi-stable extension of G such that |V(H)| - |V(G)| = k, we say that H is a rank-k extension of G. If the points $u_1, u_2, ..., u_m$ form, in order, a partial stabilizing sequence for G, we shall denote this sequence by $:u_1, u_2, ..., u_m$:.

We shall adopt the convention that whenever we need to label specifically the points of the path P_n , we shall use the labels $v_1, v_2, ..., v_n$, where v_i is adjacent to v_{i+1} for i = 1, 2, ..., n-1.

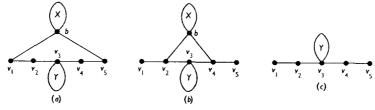
170

171

A cactus C is said to contain an essential copy of P_n (n > 1) if it can be formed from P_n by one or both of the following constructions:

- (i) for some integer i, 1≤i≤¹/₂n, join a new point b to points v_i and v_{n-i+1} of P_n, and root an arbitrary (possibly trivial) cactus at b;
- (ii) if n is odd, root an arbitrary cactus at $v_{\frac{1}{2}(n+1)}$.

For example, the cacti which contain an essential coppy of P_5 are of the forms shown in Fig. 1.



Cacti with an essential copy of P_5 . X denotes a cactus rooted at b; Y denotes a cactus rooted at v_3 . Fig. 1.

The copy of P_n from which C is formed by the above construction is said to be an *essential copy of* P_n . (Note that in the terminology of McAvaney (1975) a transfig in a cactus corresponds to an essential copy of either P_2 or P_3 .)

An essential copy of P_n in a rooted cactus C is an essential copy of P_n in the underlying unrooted cactus, which does not contain the root of C.

For n = 2, 3, 4, 5 and 6, let $d_n(C)$ denote the maximum number of (point-) disjoint essential copies of P_n in the cactus C.

The following results will be of use to us in subsequent sections. Here and henceforth the symbol # will be used to denote the end of, or absence of, a proof.

LEMMA 1 (Holton and Grant, 1975). The graph G is semi-stable at point v if and only if the set of points of G adjacent to v is fixed by the automorphism group of G_{η} . #

LEMMA 2 (McAvaney, 1975). A rooted cactus C is semi-stable at a point which is neither a cutpoint nor the root. #

In proving Lemma 2, McAvaney essentially provided the following algorithm to find a point at which a rooted cactus C is semi-stable. The terminology we use in our description of the algorithm is that introduced in McAvaney (1975).

MCAVANEY'S ALGORITHM

Step 1. Let b_1 denote the root of C, and set i = 1.

Step 2. Let B_i be a smallest branch at b_i which, if i > 1, does not contain b_{i-1} , and let D_i denote the block in B_i that contains b_i . If either i = 1 and D_i has no cutpoints, or i > 1 and b_i is the only cutpoint in D_i , let w be any point in B_i adjacent to b_i , and go to Step 7.

[2]

Step 3. Let b_{i+1}^* be a cutpoint in D_i closest to b_i such that the branch B_{i+1}^* at D_i containing b_{i+1}^* is as small as possible. If B_{i+1}^* is not \underline{P}_2 , relabel b_{i+1}^* as b_{i+1} , and go to Step 6.

Step 4. Let a be the endpoint in B_{i+1}^* . If C is semi-stable at a, set w = a and go to Step 7.

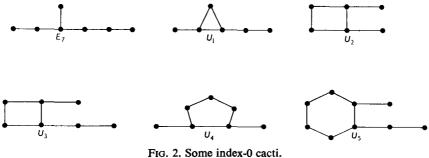
Step 5. If b_i and b_{i+1}^* are the only cutpoints in D_i , then D_i is a cycle; in this case, C is semi-stable at some point w in D_i adjacent to b_i or b_{i+1}^* . Go to Step 7. Otherwise, let b_{i+1} be a cutpoint in D_i , next closest after b_{i+1}^* to b_i such that the branch at D_i containing b_{i+1} is as small as possible.

Step 6. Increase *i* by 1, and then go to Step 2.

Step 7. C is a semi-stable at w. Terminate algorithm. #

The following theorem is an amalgamation of results of Robertson and Zimmer (1972), Heffernan (1972), McAvaney, Grant and Holton (1974) and McAvaney (1975).

THEOREM 1. The index-0 cacti are P_n for all $n \ge 4$ and the graphs E_7 , U_1 , U_2 , U_3 , U_4 and U_5 shown in Fig. 2. A semi-stable cactus is semi-stable at a point which is either a penultimate point or a non-cutpoint. #



1 10: 2: Some mack o cach.

LEMMA 3 (Grant, 1974). Let T be a tree of order n. Then s.i. (T) = 0, 1, n-7, n-5 or n, and

(i) s.i. (T) = n if and only if either $T \cong K_1$ or $d_2(T) + d_3(T) > 0$,

- (ii) s.i. (T) = n 5 if and only if $d_2(T) + d_3(T) = 0$ and $d_5(T) > 0$,
- (iii) s.i. (T) = n-7 if and only if $d_2(T) + d_3(T) + d_5(T) = 0$ and $T \not\cong P_n$ for any n > 3 other than n = 7.

If s.i. (T) = n-5, then T is optimally reducible to P_5 , and if s.i. (T) = n-7, then T is optimally reducible to E_7 unless $T \cong P_7$. #

As mentioned previously, it is our chief goal in this paper to extend the result of Lemma 3 to cover all cacti. In McAvaney (1975), the first step was completed when the following result was proved. THEOREM 2 (McAvaney, 1975). Let C be a cactus of order n. Then s.i. (C) = nif and only if either $C \cong K_1$ or $d_2(C) + d_3(C) > 0$. (Equivalently, C is stable if and only if either $C \cong K_1$ or the automorphism group of C contains a transposition.) #

2. The stability index of cacti

In this section we prove

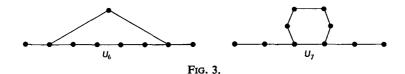
THEOREM 3. If C is a cactus of order n, then s.i. (C) = 0, 1, n-7, n-6, n-5, n-4, or n.

It is convenient to break the proof of Theorem 3 into a number of steps which we describe in the lemmas to follow. Of these lemmas, we detail the proof of only one. The others can be proved by using similar techniques.

First of all, Theorem 1 implies

LEMMA 4. If C is an unstable cactus, then C is reducible to an index-0 cactus. #

LEMMA 5. If $n \ge 9$, the only cacti which are optimally reducible to P_n are P_n and C_{n+1} . The only cacti which are optimally reducible to P_8 are P_8 , C_9 and the graph U_6 shown in Fig. 3. All other unstable cacti which are reducible to P_n , for $n \ge 8$, are reducible to either E_7 or U_1 .



PROOF. Suppose that $n \ge 8$ and that C is a cactus which is reducible to P_n . If $C \cong P_n$ or $C \cong C_{n+1}$, then there is nothing to prove. Let us therefore suppose that $C \not\cong P_n$, $C \not\cong C_{n+1}$. Let $S = :u_1, u_2, ..., u_m$: be a partial stabilizing sequence for C such that $C_S \cong P_n$, and let $K = C_{u_1, u_2, ..., u_{m-1}}$. Since K is a rank-1 extension of P_n , it follows from Lemma 1 that either (i) there is *i* with $1 \le i \le \{\frac{1}{2}n\}$ such that $N_K[u_m] = \{v_i, v_{n-i+1}\}$ or (ii) $N_K[u_m] = \emptyset$.

Case (i). $N_K[u_m] = \{v_i, v_{n-i+1}\}$. If i = 1, then $K \cong C_{n+1}$. By Lemma 1, since C_{n+1} is point-transitive it follows that in any connected semi-stable extension of K there is a point which is adjacent to all the points of K. We deduce that the only cactus which is a semi-stable extension of K is K itself, so that $C = K \cong C_{n+1}$, in contradiction to our hypothesis.

If *n* is odd and $i = \lfloor \frac{1}{2}n \rfloor$, then *K* contains an essential copy of P_3 , and so is stable by Theorem 2. In this case *C*, being a semi-stable extension of *K*, is stable.

If *n* is odd and $i = \{\frac{1}{2}n\}$, then *K* is a tree, which by Lemma 3 is optimally reducible to E_7 . It follows that *C* is reducible to E_7 .

If n = 8 and i = 2, then $K \cong U_6$. By inspection, U_6 is optimally reducible to P_8 . It follows that if m = 1, then $C \cong U_6$ and is optimally reducible to P_8 . Now suppose that m > 1. Let $L = G_{u_1, u_2, \dots, u_{m-2}}$. Since L is a rank-1 extension of U_6 , it follows from Lemma 1 that either $N_L[u_{m-1}] = \{u_m\}$ or $N_L[u_{m-1}] = \emptyset$. In the former case L is reducible to E_7 , so that C is reducible to E_7 . If $N_L[u_{m-1}] = \emptyset$, then m > 2. Let $M = C_{u_1, u_2, \dots, u_{m-3}}$. Since M is a rank-1 extension of L, it follows from Lemma 1 that either $N_M[u_{m-2}] = \emptyset$ or $N_M[u_{m-2}] = \{u_{m-1}\}$ or $N_M[u_{m-2}] = \{u_{m-1}, u_m\}$ or $N_M[u_{m-2}] = \{u_m\}$. In the first two cases M has a transposition automorphism, and so C, being a semi-stable extension of M, also has a transposition automorphism. By Theorem 2, C is stable. In the remaining two cases M is, by inspection, reducible to E_7 , and so C is reducible to E_7 .

Finally, if i > 1, $n \ge 8$, and $i \ne 2$ if n = 8, $i \ne \lfloor \frac{1}{2}n \rfloor$ or $\{\frac{1}{2}n\}$ if n is odd, then K is a unicyclic graph which can readily be shown to reduce to either U_1 or E_7 . In such cases, C is therefore reducible to either U_1 or E_7 .

Case (ii). $N_K[u_m] = \emptyset$. In this case $m \ge 2$. Let $L = C_{u_L,u_2,\dots,u_{m-2}}$. Since L is a rank-1 extension of K, it follows by Lemma 1 that either there is *i* with $1 \le i \le \{\frac{1}{2}n\}$ such that $N_L[u_{m-1}] = \emptyset$ or $N_L[u_{m-1}] = \{u_m\}$ or $N_L[u_{m-1}] = \{v_i, v_{n-i+1}, u_m\}$ or $N_L[u_{m-1}] = \{v_i, v_{n-i+1}\}$. In the first two cases L has a transposition automorphism, so that C has a transposition automorphism. By Theorem 2, C is stable in such cases. If $N_L[u_{m-1}] = \{v_i, v_{n-i+1}, u_m\}$, L can readily be shown to reduce to either U_1 or E_7 . If $N_L[u_{m-1}] = \{v_i, v_{n-i+1}\}$, let $M = C_{u_1,u_2,\dots,u_{m-2}}$. Since M is a rank-1 extension of L, it follows from Lemma 1 that $N_M[u_{m-2}] = \emptyset$, $\{u_m\}$, $\{u_{m-1}\}$, or $\{u_{m-1}, u_m\}$. In the first two cases M, and hence C, has a transposition automorphism and therefore C is stable. In the remaining two cases M is readily shown to be reducible to U_1 or E_7 .

LEMMA 6. The only cacti which are optimally reducible to U_5 are U_5 and the graph U_7 shown in Fig. 3. All other unstable cacti which are reducible to U_5 are also reducible to E_7 . #

The next result, of a similar nature to the preceding two, will be used in the following section.

LEMMA 7. All cacti other than P_7 and C_8 which are optimally reducible to P_7 are also optimally reducible to E_7 . All cacti other than U_4 which are optimally reducible to U_4 are also optimally reducible to E_7 . #

We now return to Theorem 3.

PROOF OF THEOREM 3. That there are cacti of order *n* with stability index equal to 0, 1 and *n* is clear from Theorems 1 and 2 and Lemma 5. Suppose that *C* is a cactus of order *n* such that s.i. $(C) \notin \{0, 1, n\}$. It follows that $C \not\cong C_n$, $C \not\cong U_6$, $C \not\cong U_7$.

Stability index of a cactus

By Lemma 4, C is reducible to an index-0 cactus C^* . By Theorem 1, C^* is P_k for some $k \ge 4$, E_7 , U_1 , U_2 , U_3 , U_4 or U_5 . By Lemmas 5 and 6 and the fact that s.i. $(C) \notin \{1, n\}$, it follows that if C^* is P_k for some $k \ge 8$, or U_5 , then C is reducible to E_7 or to U_1 . We deduce that C is reducible to P_4 , P_5 , P_6 , P_7 , E_7 , U_1 , U_2 , U_3 or U_4 , so that s.i. $(C) \ge n-7$. Since C is not stable, and because all graphs of order less than 4 are stable, it follows that s.i. $(C) \le n-4$. We deduce that s.i.(C) = n-7, n-6, n-5 or n-4. #

REMARK. The results of the next section show that none of the possibilities 0, 1, n-7, n-6, n-5, n-4 or n can be disposed of in the statement of Theorem 3.

3. Characterization of cacti with given stability index

For the purpose of this section it is convenient to introduce some new terminology and notation. For k = 4, 5, 6, or 7 let A_k denote the set of all cacti optimally reducible to an index-0 graph on k points. Let A_0 denote the set of all stable cacti, A the set of all index-0 cacti, and $U = \{C_n : n \ge 9\} \cup \{U_n, U_n\}$.

It follows from Lemmas 4, 5 and 6 that U is the set of all index-1 cacti on more than 8 points. Hence Theorem 3 implies that $A_0 \cup A_4 \cup A_5 \cup A_6 \cup A_7 \cup A \cup U$ contains all cacti. In this section it is our goal to describe how the structure of a particular cactus determines to which of the sets A_0 , A_4 , A_5 , A_6 , A_7 , A, U the cactus belongs. By doing so, we will characterize cacti with a given stability index. We have already characterized the elements of A (Theorem 1) and A_0 (Theorem 2). Since the elements of U have been explicitly listed, our task is to characterize the elements of A_4 , A_5 , A_6 and A_7 . We note that $A \cap A_4 = \{P_4\}$, $A \cap A_5 = \{P_5\}$, $A \cap A_6 = \{U_1, U_2, P_6\}$, $A \cap A_7 = \{U_3, U_4, P_7, E_7\}$, $A_i \cap U = \emptyset$, for i = 4, 5, 6 and 7, $A \cap U = \emptyset$ and that $A_4 \cap A_4 = \emptyset$ for $4 \le i < j \le 7$.

First of all we shall characterize the elements of A_4 .

LEMMA 8. If $C \in A_4$, then $d_4(C) > 0$.

PROOF. If $C \in A_4$, then C optimally reduces to an index-0 graph of order 4. Since the only index-0 graph of order 4 is P_4 , C reduces to P_4 , and so C is a semi-stable extension of P_4 . This implies that C contains an essential copy of P_4 , that is, $d_4(C) > 0$. #

LEMMA 9. If C is a cactus such that $d_4(C) = 1$, then C is reducible to P_4 .

PROOF. If $C \cong P_4$ there is nothing to prove. Let us suppose that $C \not\cong P_4$. It follows that C is one of the forms (a), (b) shown in Fig. 4. The two cases must be dealt with separately. As similar techniques are used in the different cases, we shall only prove here that a cactus of form (a) is reducible to P_4 , this being the more involved of the two cases.

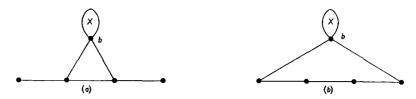
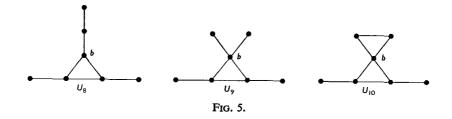


FIG. 4. Cacti with an essential copy of P_4 . X denotes a cactus rooted at b.

Thus suppose that C is of form (a) and let |V(C)| = n. We shall prove that C is reducible to P_4 by induction on n. Note that $n \ge 5$. If n = 5, then X_b is null and C is semi-stable at b. Since in this case $C_b \cong P_4$, it follows that C is reducible to P_4 . If n = 6, then C is semi-stable at the unique point u of X_b and C_u is semi-stable at b. Since $C_{u,b} \cong P_4$, again C is reducible to P_4 . If n = 7, then C is one of the cacti U_8, U_9, U_{10} shown in Fig. 5. It is a trivial exercise to show that each of U_8, U_9, U_{10} is reducible to P_4 , so that if n = 7, C is reducible to P_4 .



Now suppose that n > 7, and that the result holds for all cacti under consideration which have order < n. Let us consider X to be a rooted cactus with root b. By Lemma 2, X is semi-stable at a point $w \neq b$ which is not a cutpoint. Since $d_4(C) = 1$, it follows that $d_4(X) = 0$, and so $d_4(X_w) = 0$. We deduce that $d_4(C_w) = 1$, the essential copy of P_4 in C_w having the same points as the essential copy of P_4 in C. Since n > 7, $X_w \notin P_2$, and so C is semi-stable at w. Now C_w is a cactus of order n-1 with $d_4(C_w) = 1$. By the inductive hypothesis, C_w is reducible to P_4 . It follows that C is reducible to P_4 .

The lemma now follows by induction. #

LEMMA 10. If C is a cactus such that $d_4(C) > 0$, then C is reducible to P_4 .

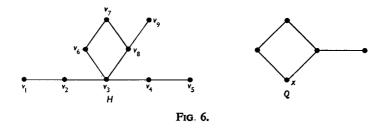
PROOF. We shall prove the lemma by induction on |V(C)|. The lemma is true if |V(C)| = 4. (Here $C \cong P_4$, and is the smallest cactus which has an essential copy of P_4 .) Suppose, then, that |V(C)| = n > 4 and that the lemma holds for all cacti under consideration which have order < n. If $d_4(C) = 1$, then C is reducible to P_4 by Lemma 9. We shall therefore suppose that $d_4(C) > 1$. By Theorem 1, C is semi-stable at some point w which is either a non-cutpoint or a penultimate point.

In the former case, C_w is a cactus of order n-1, with $d_4(C_w) \ge 1$. By the inductive hypothesis, C_w is reducible to P_4 , and so C is reducible to P_4 . In the latter case, C_w is semi-stable at the endpoint x of C which is adjacent to w, and C_{wx} is a cactus of order n-2 with $d_4(C_{w,x}) \ge 1$. By the inductive hypothesis, $C_{w,x}$ is reducible to P_4 , and so C is reducible to P_4 . The lemma therefore holds by induction. #

From Theorem 2, Lemma 8 and Lemma 10, we deduce

THEOREM 4. The cacti in A_4 are precisely those cacti C such that $\sum_{i=2}^{3} d_i(C) = 0$ and $d_4(C) > 0$. #

We now consider the cacti in A_5 . Basically we follow the same steps as those traced out above in characterizing the cacti in A_4 . Thus our first step is to prove a result corresponding to Lemma 8. It is indeed straightforward to show that if $C \in A_5$, then C contains an essential copy of P_5 . However, consider the cactus H shown in Fig. 6. This cactus contains an essential copy of P_5 , but is only semi-stable at points v_1 , v_2 , v_4 and v_5 , and consequently is not reducible to P_5 . To take into account graphs like H which resist a straightforward paralleling of the steps used to prove Theorem 4, we proceed as follows.



Let us say that an essential copy of P_5 of the form of Fig. 1(c) in a (rooted or unrooted) cactus is *strict* if no branch of Y at v_3 is isomorphic to the rooted cactus Q, with root x, shown in Fig. 6. Let $d_5(C)$ denote the maximum number of point disjoint strict essential copies of P_5 in the cactus C.

LEMMA 11. If C is a (rooted or unrooted) cactus such that $d_5(C) = 0$, and C is reducible to the cactus C^* , then $d_5(C^*) = 0$.

PROOF. If C has no essential copies of P_5 , it is clear that C^* has no essential copies of P_5 . In this case the lemma holds. Let us suppose, then, that C has essential copies of P_5 (which are not strict), and that C^* has the strict essential copy of P_5 whose successively adjacent points are v_1, v_2, v_3, v_4, v_5 . Then $\langle \{v_1, v_2, v_3, v_4, v_5\} \rangle$ is an essential copy of P_5 in C which, by hypothesis, is not strict. It follows that C has a branch at v_3 isomorphic to Q. Suppose that the points of this branch are v_3, v_6 , v_7, v_8 and v_9 , as shown on H in Fig. 6. Let S be a partial stabilizing sequence for

C such that $C_S = C^*$. In reducing C to C^* via S, at least one of the points v_6 , v_7 , v_8 and v_9 is removed. However, removing any one of v_6 , v_7 , v_8 , v_9 creates new automorphisms, contrary to the fact that S is a partial stabilizing sequence. This contradiction invalidates the hypothesis that $d_5(C^*) > 0$. #

REMARK. Lemma 11 formalizes and generalizes the reason why the graph H of Fig. 6 fails to reduce to P_5 .

LEMMA 12. If $C \in A_5$, then $d_5(C) > 0$.

PROOF. Since $C \in A_5$, C reduces to an index-0 graph of order 5, which must be P_5 . Since $d_5(P_5) > 0$, Lemma 11 shows that $d_5(C) > 0$. #

LEMMA 13. If C is a cactus such that $d_{5}(C) = 1$, then C is reducible to P_{5} .

PROOF. C is of one of the forms of Fig. 1, where, if C is of form (c), no branch at v_3 is isomorphic to Q. The three cases must be dealt with separately. However, we include here only the details for C of the forms (a) or (c), the proof for (b) being similar to that of (a).

I. First of all, suppose that C is of form (a). We may suppose without loss of generality that $|V(X)| \leq |V(Y)|$. We shall prove that C is reducible to P_5 by induction on n = |V(C)|. Note that $n \ge 6$. If n = 6, then $C \cong C_6$, and C is reducible to P_5 . Suppose that n > 6, and that all cacti under consideration of order < n are reducible to P_5 . If X_b is non-null, then by Lemma 2, X is semi-stable at a non-cutpoint $w \ne b$. Since $|V(X)| \le |V(Y)|$, $X_w \ne Y$, and it follows that C is semi-stable at w. By the inductive hypothesis, C_w is reducible to P_5 , and so C is reducible to P_5 . Now suppose that X_b is null. Since n > 6, Y_{v_3} is non-null. By Lemma 2, Y is semi-stable at a non-cutpoint $x \ne v_3$. Since $d_5(C) = 1$, we have $d_5(Y_{v_3}) = 0$, and C is semi-stable at x unless either

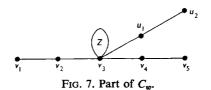
(i)
$$V(Y) = \{v_3, x\}$$
 or (ii) $Y_x^* \cong C_{6x}$

where Y^* is the smallest branch of Y at v_3 , considered here as an unrooted graph. If C is semi-stable at x, then by the inductive hypothesis C_x is reducible to P_5 , and so C is reducible to P_5 . If C is not semi-stable at x, and (i) is the case, then $:v_3, x$: is a partial stabilizing sequence for C, and $C_{v_3,x} \cong P_5$. If C is not semi-stable at x and (ii) is the case, then the subgraph of C induced by $\{v_1, v_2, v_3, v_4, v_5\} \cup V(Y^*)$ has two disjoint strict essential copies of P_5 , and so $d_5(C) > 1$, which is a contradiction. We see that in all cases C is reducible to P_5 , and so the lemma holds for cacti of form (a) by induction.

II. Now suppose that C is of form (c). Once more we shall prove that C is reducible to P_5 by employing induction on n = |V(C)|. Note that $n \ge 5$. If n = 5, then $C \cong P_5$, and there is nothing to prove. Suppose, then, that n > 5, and that all

cacti under consideration of order $\langle n$ are reducible to P_5 . Since n > 5, Y_{v_3} is non-null. By Lemma 2, Y is semi-stable at a non-cutpoint $w \neq v_3$. Let us suppose w to be the vertex of semi-stability selected by McAvaney's algorithm.

Since $d_5(C) = 1$, we deduce that $d_5(Y) = 0$ and so $d_5(Y_w) = 0$. It follows that if C is not semi-stable at w, then the only automorphisms of C_w which do not extend to automorphisms of C must map a branch of Y_w at v_3 which is isomorphic to \underline{P}_3 onto either $\langle \{v_1, v_2, v_3\} \rangle$ or $\langle \{v_3, v_4, v_5\} \rangle$. We deduce that Y_w has a branch at v_3 isomorphic to \underline{P}_3 . Let us suppose that the successively adjacent points of this branch are v_3, u_1, u_2 (see Fig. 7), and that $\langle V(Y) \setminus \{u_1, u_2, w\} \rangle$ is denoted by Z.



In C, w is adjacent to either or both of u_1, u_2 , and so there is a path P in C joining v_3 and w which includes at least one of u_1, u_2 . We shall now consider three cases which exhaustively cover all possibilities. In each, let B denote the branch of C at v_3 which contains w, and D the block of B which contains w.

(a) There is no path in C joining v_3 and w which is internally disjoint from P.

In this case $w \sim v_3$. Since w is not a cutpoint of C, it follows that $N_C[w] \subseteq \{u_1, u_2\}$. If $u_1 \in N_C[w]$, then $:u_1, u_2, w$: is a partial stabilizing sequence for C, and $C_{u_1, u_2, w}$ is reducible to P_5 by the inductive hypothesis. If $N_C[w] = \{u_2\}$, then $:u_2, w$: is a partial stabilizing sequence for C, and $C_{u_2, w}$ is reducible to P_5 by the inductive hypothesis. In either case, C is reducible to P_5 .

(β) $w \sim v_3$.

Since C is a cactus, there is no path in C joining v_3 and w which is internally disjoint from both P and the path consisting of the line joining w and v_3 . Since w is not a cutpoint, it follows that $N_C[w] \subseteq \{v_3, u_1, u_2\}$. Arguing as in case (α) we find that we can always reduce C to P_5 .

(γ) $w \neq v_3$, and there is a path R in C joining v_3 and w which is internally disjoint from P.

Note that in this case we cannot have both $w \sim u_1$, $w \sim u_2$. Suppose first of all that $w \sim u_2$. Inspection of McAvaney's algorithm shows that w could not have been selected at Step 2 or Step 4. It follows that w was selected at Step 5, so that D is a cycle, the only cutpoints of C which lie in D being v_3 and the point x, say, of D other than u_2 which is adjacent to w. Further, the branch on D at x is isomorphic to \underline{P}_2 . Now C is semi-stable at u_1 (see Fig. 8(a)), and C_{u_1} is reducible to P_5 by the inductive hypothesis. It follows that C is reducible to P_5 .

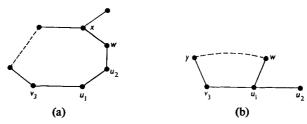


FIG. 8. (a) Part of Y in case (γ), with $w \sim u_2$. (b) Part of Y in case (γ), with $w \sim u_1$.

Now suppose that $w \sim u_1$. Here u_1 is a closest cutpoint in *B* to v_3 , and the branch at u_1 which does not contain v_3 is isomorphic to \underline{P}_2 . Since McAvaney's algorithm selected *w* rather than u_2 as the point of semi-stability of *Y*, it follows that Step 5 of the algorithm was executed. Further, *w* could only be selected at Step 5 if u_1 was the only cutpoint of *B* in *D*. We deduce that *D* is a cycle, and, since no branch of *C* at v_3 is isomorphic to Q, $|V(D)| \ge 5$. Let *y* denote the point of *D* other than u_1 which is adjacent to v_3 . Then *C* is semi-stable at *y* (see Fig. 8(b)), and C_y is reducible to P_5 by the inductive hypothesis. It follows that *C* is reducible to P_5 .

All cases having been covered, the lemma holds for cacti of form (c) by induction. #

The proof of the following lemma is similar to that of Lemma 10.

LEMMA 14. If C is a cactus such that $d_5(C) > 0$, then C is reducible to P_5 . #

From Lemmas 12 and 14 and Theorems 2, 3 and 4 we deduce

THEOREM 5. The cacti in A_5 are precisely those cacti C such that $\sum_{i=2}^{\infty} d_i(C) = 0$ and $d_5(C) > 0$. #

We now characterize the cacti in A_6 .

LEMMA 15. If $C \in A_6$, then either $C \cong U_2$, or $U_1 \subseteq C$ or $d_6(C) > 0$.

PROOF. If $C \in A_6$, then C reduces to an index-0 graph of order 6. All such graphs are connected, and so C reduces to an index-0 cactus of order 6. Thus C reduces to U_2 , U_1 or P_6 . Since U_2 is the only cactus which is a semi-stable extension of U_2 , it follows that if $C \not\cong U_2$, then C reduces to U_1 or P_6 . In the former case, $U_1 \subseteq C$ and in the latter $d_6(C) > 0$. #

By following the steps of Lemmas 9 and 10, and using similar techniques, we can prove

LEMMA 16. If $d_6(C) > 0$, then C is reducible to P_6 . #

We now deal with the case where $U_1 \subseteq C$. Note that if $\sum_{i=2}^{4} d_i(C) = 0$ and $H \subseteq C$ is isomorphic to C_3 , then there is $H^* \cong U_1$ such that $H \subseteq H^* \subseteq C$. This prompts

LEMMA 17. If $\sum_{i=2}^{4} d_i(C) = 0$ and C has just one subgraph isomorphic to C_3 , then C is reducible to U_1 .

PROOF. Let H, with points w_1, w_2, w_3 , be the subgraph of C isomorphic to C_3 and let the cacti Y_1, Y_2, Y_3 be rooted at w_1, w_2, w_3 respectively (see Fig. 9). Suppose without loss of generality, that $|V(Y_1)| \leq |V(Y_2)| \leq |V(Y_3)|$. Since $\sum_{i=2}^4 d_i(C) = 0$, we have $|V(Y_2)| \ge 2$ and $|V(Y_3)| \ge 3$. We shall prove that C is reducible to U_1 by induction on n = |V(C)|. Note that $n \ge 6$. If n = 6, then $C \cong U_1$ and there is nothing to prove. Suppose, then, that n > 6 and that the lemma holds for all cacti under consideration of order $\langle n$. Let k be the least i such that $|V(Y_i)| > i$, such an i existing since n > 6. By Lemma 2, Y_k is semi-stable at a non-cutpoint $w \neq w_k$. By the choice of k, it follows that C is also semi-stable at w. Now C_w is reducible to U_1 by the inductive hypothesis, and so C is reducible to U_1 . The lemma follows by induction. #

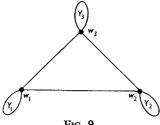


FIG. 9.

The proof of the following lemma is similar to that of Lemma 10.

LEMMA 18. If
$$\sum_{i=2}^{4} d_i(C) = 0$$
 and $C_3 \subseteq C$, then C is reducible to U_1 . $\#$

From Lemmas 15, 16 and 18, and Theorems 2, 3, 4 and 5 we deduce

THEOREM 6. The cacti in A_6 are precisely U_2 and those cacti C such that $\sum_{i=2}^{4} d_i(C) = 0, \ d_5(C) = 0, \ and \ either \ C_3 \subseteq C \ or \ d_6(C) > 0. \quad \#$

Finally we characterize the cacti in A_7 . In fact, we have already done so, since $C \in A_7$ if and only if $C \notin (A_0 \cup A_4 \cup A_5 \cup A_6 \cup A \cup U) \setminus \{U_3, E_7, U_4, P_7\}$. Theorems 1, 2, 4, 5 and 6 therefore imply

THEOREM 7. The cacti in A_7 are precisely those cacti C such that

$$\sum_{i=2}^{4} d_i(C) + \bar{d}_5(C) + d_6(C) = 0$$

and $C_3 \not\subseteq C$ and $C \notin U$ and $C \not\cong U_2$ and $C \not\cong U_5$. #

[13]

Since we have determined index-0 graphs to which given cacti in A_4 , A_5 and A_6 optimally reduce, we similarly determine the index-0 graph to which a given cactus in A_7 optimally reduces.

First of all, we have

LEMMA 19. If $C \in A_7$, then either $C \cong P_7$, C_8 or U_4 , or $U_3 \subseteq C$ or $E_7 \subseteq C$.

PROOF. If $C \in A_7$, then C is reducible to an index-0 graph of order 7. It follows that C is reducible to P_7 , U_3 , U_4 or E_7 . If $C \not\cong P_7$, C_8 or U_4 , then by Lemma 7, C is reducible to U_3 or to E_7 , so that either $U_3 \subseteq C$ or $E_7 \subseteq C$. #

Finally, by using the techniques of the proof of Lemma 17, we can prove

LEMMA 20. If $C \in A_7$ and $C_4 \subseteq C$, then C is reducible to U_3 . #

The results of the paper can now be summarized in the theorem below which enables us to see the stability index of any given cactus, and a graph to which it may be optimally reduced, by consideration of simple structual properties of the cactus.

THEOREM 8. Let C be a cactus.

(i) $C \in A$ if and only if $C \cong P_n$, $n \ge 4$, or $C \cong E_7$, U_1 , U_2 , U_3 , U_4 , U_5 . These cactionary not be reduced at all.

(ii) $C \in U$ if and only if $C \cong C_n$, $n \ge 9$, or $C \cong U_6$, U_7 . These cacti all have stability index 1 and if $C \cong C_n$, it is optimally reducible to P_n , if $C \cong U_6$ it is optimally reducible to P_8 , and if $C \cong U_7$ it is optimally reducible to U_5 .

(iii) $C \in A_0$ if and only if either $C \cong K_1$ or C has an essential copy of P_2 or P_3 . These cacti may be completely reduced.

(iv) $C \in A_4$ if and only if C contains an essential copy of P_4 but no essential copy of P_2 or P_3 . These cacti are all optimally reducible to P_4 .

(v) $C \in A_5$ if and only if C contains a strict essential copy of P_5 but no essential copy of P_2 , P_3 or P_4 . These cacti are all optimally reducible to P_5 .

(vi) $C \in A_6$ if and only if $C \cong U_2$ or C contains an essential copy of P_6 or a copy of C_3 , but no essential copy of P_2 , P_3 or P_4 , nor a strict essential copy of P_5 . If $C \cong U_2$ it is not reducible, if C contains an essential copy of P_6 it is optimally reducible to P_6 , and if C contains a copy of C_3 it is optimally reducible to U_1 .

(vii) $C \in A_7$ if and only if C is not one of the graphs in

$$U \cup A_0 \cup A_4 \cup A_5 \cup A_6 \cup [A \setminus \{P_7, E_7, U_3, U_4\}].$$

If $C \cong P_7$, C_8 , it is optimally reducible to P_7 , if $C \cong U_4$ it is not reducible, if $C \not\cong P_7$, C_8 , U_4 and does not contain a copy of C_4 it is optimally reducible to E_7 , otherwise C is optimally reducible to U_3 . #

References

- D. D. Grant (1974), "The stability index of graphs", Proc. Second Australian Conference on Combinatorial Mathematics, Lecture Notes in Mathematics No. 403 (Springer-Verlag, Berlin), pp. 29-52.
- F. Harary (1969), Graph Theory (Addison-Wesley, Reading, Mass.).
- P. Heffernan (1972), Trees (M.Sc. Thesis, University of Canterbury, New Zealand).
- D. A. Holton and D. D. Grant (1975), "Regular graphs and stability", J. Austral. Math. Soc. 20, (Ser. A), 377-384.
- K. L. McAvaney (1975), "Semi-stable and stable cacti", J. Austral. Math. Soc. 20 (Ser. A), 419-430.
- K. L. McAvaney, D. D. Grant and D. A. Holton (1974), "Stable and semi-stable unicyclic graphs", Discrete Math. 9, 277-288.
- N. Robertson and J. A. Zimmer (1972), "Automorphisms of subgroups obtained by deleting a pendant vertex", J. Combinatorial Theory, Ser. B. 12, 169-173.

Department of Mathematics University of Reading England

Department of Mathematics University of Melbourne Parkville 3052 Australia