A ' Cubical” Universe
By W. H. MeCrEa, Edinburgh University.
(Received 20th September 1930. Read Tth November 1930.)

§1. Einstein® has studied a universe in which the time coordinate
¢t is uncurved and the spatial section is the surface of a sphere

P+t wi—a’=0 (1)

in four dimensions. Some interest attaches to the case where this
surface is replaced by

fla,y, 2, wy=a" + y" + 2" f-w" —a™ =0 (2)

where n is a positive integer.

We can examine the distribution of matter necessary, on
Einstein’s law of gravitation, to produce such a closed space. As
n increases®, (2) approximates more and more closely to the
four-dimensional cube whose sixteen vertices are the points
(+a, +a, +a, +a). Thus the Gaussian curvature is small except
in the neighbourhood of these corners, so that the matter necessary to
give rise to this curvature is also largely concentrated at the corners.
Hence the interest of this particular model is that it reproduces to
some extent an essential feature of actual space in which the matter
is more or less symmetrically concentrated into isolated nebulae or
galaxies. It is possible to estimate the total mass, so that we can
see the effect of varying the degree of concentration of matter in
universes of the same general shape and can compare these with the
uniform distribution of matter corresponding to (1).

§2. We have to study the cylindrical surface f= 0 in the five
euclidean dimensions z, y, 2z, w, {. The spatial section (2) is every-
where convex, lies entirely inside the cube whose vertices are

1 Eddington, Mathematical Theory of Relativity (1924), § 67,

2 Such approximations have been discussed in a recent communication to the
Society by Professor J. E. A. Steggall.
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(4a, +a, +a, +-a) and touches it at its intersections with the coordinate
axes, and passes through the points (L= 2-Vq, 4 2-Vrq, -L 2-lnq,
+ 2-U»q), These we may call the ¢ corners’” of the surface since, as
n increases, they approach the corners of the cube.

The principal radii of curvature at the point (z, y, 2z, w,t) are
1/k; (¢ =1, 2, 3, 4) given by

_kz(ff‘i‘ f‘f‘ff—i-ﬁ,—l—ff)%:/\i, (3)
where J; is a root of the quartic equation
fr'): —A f;;,i/ fx: j/w fv't fr = 0. (4)
f)/r f]/y - A fz/: fl/w f,l/t fg/
f:J: f:w f:z'_ >\ fzw f:t fz
fw.L‘ fwy/ fu’z le;w - )‘ fu't fu'
ft./; ft// ft: ftw ftt - A ft
v /. . 0
This reduces to
;LE’ x4n—2(y2n—2 _#) (Z2n—2—[L) (an—2_M)= O, (5)
writing
A=2n(2n—1)p, (6)

where the summation ¥’ is over the coordinates x, y, 2, w alone.

Now we require the Gaussian curvature G' given by?!
G=2kks+kiks+ kiks+koks+ ko ky + ks ky). (7)

From the ratio of the coefficients of p?and u* in (5) we have therefore
G: 2 (27?/— 1)2 Z/ x4n—2 (y2n-—2 z?n—2+y‘.’n-2 w?n—2+z2n—2 w?n—?)/(z’ x4n—2)2 (8)
using (3) and (6) and substituting for ¥’ f2. Also, since by (5) k, =0,

we have G, = 0.
Einstein’s law of gravitation, neglecting? his cosmical constant A,
gives a density of matter (or energy) p where, since G, is zero,

8mp = 87 T =3G. (9)

1 Eddington, op. cif., §65.
2 When n is large our space is almost ¢‘ flat” except at the corners, so that it cannot
take account of A which would require a non-zero curvature everywhere. See §5 below.
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We see then from the form of (8) that given 8, it is possible by
choosing n sufficiently large to make p as small as we please at
distances greater than 3§ from a “corner.” Thus the matter is
-concentrated at the corners and the concentration increases with n.

§3. To find the total (relative) mass we have to integrate p
through the three-dimensional volume given by the surface of the
four-dimensional figure (2). We employ the substitution

2" =a"cosf=a"c, y*=a"sinf cosd =a"s, c,

#"=a" sin 0sin ¢ cos i =a"s,s; ¢;, w*=a" sin Hsin ¢ sin Y=a" 58,55, (10)
for positive x, y, z, w. We have 0 {0, ¢, 4 <=/2, and the whole
surface consists of sixteen such segments. The volume element
appropriate to p is given, for example, by
dv = (X' f2) dydzdw/ f,, (11)
i.e.
dv:(zlx4n-2)§ sl—l+3/n ¢~ 1+1/n 82-1+2/n 02-—1+1/n83—1+1/n Cg—l-}-l/ndgd(ﬁ dl/l/n3 (12)
on changing variables. We omit temporarily the factors in a.

We are going to work with large n, so we can write approxi-
mately!

Xt =c} 4 si[es + 83 (c; + s3]

=1—2stc] — 2sis5¢l —2stsisici=1— O (say), (13)
and we have 0 O 3/4

Hence the total (relative) mass M is
M= j pdv

taken over the whole space. From (8), (9) and (12) this gives

. 1)2 (~/2 = 2 T 2
M= _72; (2nn3 1) L 81—1+3/n cl-1+1/n dé JO 82—1+2/n 02—1+1/n dé jo sy 1+Un c;1Hn
El {x4n—2 (y2n—2 z2n—2 + an—L’ w2n~2 + z?n—2 w?n—?)}
(El x4n— 2)3/2 d‘ﬁ‘
By symmetry each of the four termsin %’ in the numerator will make
the same contribution; so we retain only the first and insert a factor 4.

(14)

1 Since, for example, the difference between c4 -2/ and ¢4 is appreciable only when
this term is small compared with s§ -2/ or s} and vice versa. The error is of order 1/n.
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Changing variables in this expression and using the approximation
(13) we have

— /2 w2 /2
M = 8 (2n : 1)2j gi-1in c?'I/"dGJ‘ s g1 d¢_[ §; LU o141
T on '
0 0 0

[sg‘f"/” cg—?/n (82‘2/” + 62’2/")4—8;“’/"83' 2/nc§—2/n]|: + _®+ ®2+ @3+ Jd‘l’ (15)

It is here legitimate to integrate term by term. The leading term in
the triple integral in (15) is then

1 T'(2—1/20) T (2—1/2n) [21“ I'(1—1/2n) T (1/20) T (1—1/2n)
8" (4 —1/n) 2—1v2n) T'(1)
F(2—1/n) r(/2n) 0(1—1/20)T(1 — 1/2n):| (16)
re2—1/2n) (2 — 1/n) '

Now by taking I'(2 — 1/2n) = T"(2), ete., and I'(1/2n) = 2n we shall
be neglecting oniy terms of order 1/ of those retained. We suppose
n large and make this approximation. The term (16) then gives n /8.
Performing similar calculations for the succeeding powers of 6 we
find for the triple integral in (15) the value

22l By B (17)

Extrapolating for the remaining part of the series we obtain an
approximation to the sum, which is an absolute constant inde-
pendent of =, giving for (17) the result

32 n/8. (18)

To this order we obtain for M from (15), after reintroducing the

factor a, the value
M =128a /. (19)

To this order the total volume of space V is just the surface of
the four-dimensional cube, s.e.

J = 644l (20)
The mean density 5 is then

5=106/ M2 , (21)
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The ¢ spherical” case (n=1) gives for the corresponding
-qualities the values!

M =3ma/4; V' =2s%a®; [ =066/M™ (22)

§4. We can now draw the following conclusions:

(i) When the concentration of matter has proceeded far enough
(n sufficiently large) further concentration of the same total (relative)
mass does not, to a first approximation, affect the shape and size of
the universe. This is shown by the fact that (19), (20), (21) do not
contain n, and it is a result that might have been expected.

(ii) From (21), (22) we haveif M = M’ then j=165". Thus for
given total (relative) mass the whole change from uniform distribu-
tion to infinite concentration at sixteen symmetrically placed points
alters the mean density by a factor less than 2.

We have derived these results only for special models of the
universe. But the physical nature of the case should allow a more
general application. If so the result (ii) is of interest as showing
that in estimating the size of the universe it will not affect the order
of magnitude to assume a uniform distribution of matter.

§5. The components Gy, G, Gy of the curvature tensor could,
if necessary, be derived from the roots of (5). They will give the
stress-system in the matter, but this will not be expected to approxi-
mate to any natural system of forces. Indeed it follows from the
fact that the relative density p is less than the proper density
po (= @/ 8m) that the stress must be a tension and not a pressure.

The two weaknesses of the model are this negative pressure and
the omission of the cosmical constant A. If we could include A we
should probably simultaneously remove the first defect. Actually it
is the existence of A that makes it particularly necessary to study
closed spaces.

The difficulties in studying non-homogeneous universes lie in
being able to discover a suitable metric and then in being able to
carry out the integration for the total mass. As far as I know,
no attempt has yet been published, so it seems that in spite of its
inadequacy the present model may perhaps serve to indicate how the
size of space depends on the distribution of matter in it. We have

1 These results are for a ‘“spherical ”’ space in which the curvature is due entirely to
the matter present, Einstein’s cosmical constant being neglected.
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compared homogeneous and non-homogeneous universes in which the
curvature depended wholly on the matter present. If we could
compare cases where it depends. partially on A we should expect
similar results still to hold.

As far as the model is successful, it represents space as closed
and containing sixteen nebulae. An observer on one of them
would see the six nearest in orthogonal directions and eight others
symmetrically placed. The remaining one, that diametrically
opposite in the four-dimensional representation, will be seen in all
directions, providing a continuous (though not uniform) background
in the sky.
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