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The Chowla–Selberg Formula and
The Colmez Conjecture

Tonghai Yang

Abstract. In this paper, we reinterpret the Colmez conjecture on the Faltings height of CM abelian

varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form in-

volving the Faltings height of a CM abelian surface and arithmetic intersection numbers, and prove

that the Colmez conjecture for CM abelian surfaces is equivalent to the cuspidality of this modular

form.

1 Introduction

The celebrated Chowla–Selberg formula [SC] asserts

(1.1)
∏

[a]∈CL(K)

|∆(τa)| Im(τa)6
=

( 1

2π
√

l

) 6h ∏
0<c<l

Γ

( c

l

) 6ǫ(c)

.

Here K = Q(
√
−l) is an imaginary field of prime discriminant −l, h is the ideal

class number of K, and ǫ(c) = (−l
c

). Moreover, ∆ is the well-known cusp form of

weight 12, and Γ(x) is the usual Gamma function. Gross re-interpreted this formula

(up to a constant multiple in Q) as a period relation for a CM elliptic curve in his

thesis [Gr2]. Later, he generalized this period relation to a CM abelian variety with

CM by a CM abelian extension of Q [Gr1]. Anderson reformulated the right-hand

side of Gross’s formula in terms of a log-derivative of Dirichlet L-series [An]. In

1993, Colmez [Co] defined p-adic periods of a CM abelian variety (using an integral

model) and conjectured that there should be a product formula for periods. Using

that, he derived a conjecture which gives a very precise identity between the Faltings

height of a CM abelian variety and the logarithmic derivative of certain virtual Artin

L-functions at s = 0. It can be roughly stated as follows. Let K be a CM number

field and let Φ be a CM type of K. Let A be a CM abelian variety of CM type (OK ,Φ)

defined over a number field L such that A has good reduction everywhere, and let

α ∈ Λ
g
ΩA be a Neron differential of A over OL, non-vanishing everywhere. Then the

Faltings height of A is defined as (our normalization is slightly different from that of

[Co])

hFal(A) = − 1

2[L : Q]

∑

σ:L→֒C

log
∣∣∣
( 1

2πi

) g
∫

σ(A)(C)

σ(α) ∧ σ(α)
∣∣∣ + log #Λ

g
ΩA/OLα.
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The Chowla–Selberg Formula and the Colmez Conjecture 457

Here g = dim A. It is independent of the choice of L. In fact, Colmez proved that

hFal(Φ) =
1

[K : Q]
hFal(A) depends only on the CM type Φ, not on A or K [Co, Theo-

rem 0.3]. On the other hand, Colmez constructed a class function A0
Φ

on Gal(Q/Q)

from the CM type Φ (see §3 for details), which can be viewed as a linear combination

of characters of Artin representations, say
∑

aχχ. The Colmez conjecture asserts

hFal(Φ) = −
∑

aχ
L ′(0, χ)

L(0, χ)
− 1

2

∑
aχ log fArt(χ) +

1

4
log 2π,

where fArt(χ) is the analytic Artin conductor of χ.

When the CM abelian variety is an elliptic curve, it is a reformulation of the

Chowla–Selberg formula. In the same paper, Colmez proved the conjecture for an

abelian CM number field, by combining Gross’s work with his computation of the

p-adic period of the Jacobian of the Fermat curves. Recently a less precise version of

the conjecture and the result have been generalized to CM motives by V. Maillot and

Roessler [MR] and Köhler and Roessler [KR] using the Lefschetz fixed point theorem

in Arakelov geometry. Yoshida independently developed conjectures about absolute

CM periods that are very close to the Colmez conjecture and provided some non-

trivial numerical evidence as well as partial results [Yo]. We should also mention

that van der Poorten and Williams [VW] gave another proof of the Chowla–Selberg

formula by computing the CM values of the η-function.

Nothing is known about the Colmez conjecture besides what he has proved. It re-

mains a mystery in the non-abelian case. The goal of this note is to try to understand

the conjecture in terms of modular forms and arithmetic intersection. In Section 2,

we interpret the Faltings height from the moduli point of view as in Faltings’ origi-

nal definition and relate it to Siegel modular forms and Hilbert modular forms, and

arithmetic intersections. For example, we have the following (Corollary 2.4).

Proposition Let F = Q(
√

D) be a real quadratic field with prime discriminant D ≡ 1

mod 4. Let K be a quartic CM number field with real quadratic subfield F, and Φ a CM

type of K. Let X be the moduli stack of abelian surfaces with real multiplication by

OF , and let M̂k be the line bundle on X of Hilbert modular forms of weight k with the

Petersson metric. Then

k# CM(K,Φ)

WK

hFal(A) = h
M̂k

(CM(K,Φ)).

Here WK is the number of roots of unity in K, CM(K,Φ) is the 0-cycle of CM abelian

surfaces of CM type (OK ,Φ) in X(Q̄), and CM(K,Φ) is the flat closure of CM(K,Φ)

in X. Let Ψ be a normalized meromorphic Hilbert modular form for SL2(OF) of weight

k such that div Ψ and CM(K,Φ) intersect properly. Then

k# CM(K,Φ)

WK

hFal(A) = div Ψ.CM(K,Φ) − 1

WK

∑

z∈CM(K,Φ)

‖Ψ(z)‖Pet

for an abelian surface of the CM type (K,Φ).
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458 T-H. Yang

In Section 3, we review the Colmez conjecture and unravel his definition of class

function A0
Φ

associated with a CM type Φ, and prove the following proposition.

Proposition 1.1 Let F = Q(
√

D) be a real quadratic field of prime discriminant

D ≡ 1 mod 4. Let K be a non-biquadratic CM quartic field with real quadratic field F

with a CM type Φ. Then the Colmez conjecture for the CM type Φ is the same as

hFal(A) =
1
2
β(K/F).

Here

β(K/F) = −Λ
′(0, χK/F)

Λ(0, χK/F)
+ Γ

′(1) − log 4π

and Λ(s, χK/F) is the complete L-function of the quadratic Hecke character χK/F asso-

ciated with K/F as defined in (3.4). In particular, the Faltings height is independent of

the choice of CM types of K.

Finally, let X be the moduli stack over Z of abelian varieties (A, ι, λ) with real mul-

tiplications (see Section 2 for a precise definition). Let CM(K) be the moduli stack

of (A, ι, λ) where ι : OK ⊂ End(A) is an OK -action on A such that (A, ι|OF
, λ) ∈ X,

and the Rosati involution associated with the polarizations λ gives the complex con-

jugation on K. The map (A, ι, λ) 7→ (A, ι|OF
, λ) is a finite proper map from CM(K)

into M, and we denote its direct image in M still by CM(K) by abuse of notation.

Finally, let Tm be the flat closure of the well-known Hirzebruch–Zagier divisors Tm

in X; see [BBK] for more information. Then Tm and CM(K) are arithmetic two- and

one-cycles in the arithmetic three-fold X and they intersect properly. In [BY, (1.10)]

(a minor mistake in the conjectured formula), it is conjectured that

Tm.CM(K) =
1
2
bm.

Here bm =
∑

p bm(p) log p is defined as follows. Let K̃ be the reflex field of (K,Φ)

with real quadratic field F̃ = Q(
√

D̃). Then

bm(p) log p =

∑

p|p

∑

t= n+m
√

D̃
2D

∈d−1

K̃/F̃

|n|<m
√

D̃

Bt (p),

where

Bt (p) =

{
0 if p is split in K̃,

(ordp t + 1)ρ(tdK̃/F̃p−1) log |p| if p is not split in K̃,

and

ρ(a) = #{A ⊂ OK̃ : NK̃/F̃A = a}.
The main result of this paper is the following.
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Theorem 1.2 Let the notation be as above, and assume that dK = D2D̃ with

D̃ ≡ 1 mod 4 being prime. Then

g(τ ) =
# CM(K)

2
(−hFal(A) +

1

2
β(K/F)) +

∑

m>0

(
Tm.CM(K) − 1

2
bm

)
qm

is a modular form of weight 2, level D, and character ǫD = ( ·
D

). Moreover, the Colmez

conjecture holds for K if and only if g(τ ) is a cusp form.

We will prove this theorem in Section 4, Here is the rough idea. Bruinier, Bur-

gos Gil, and Kühn defined an arithmetic of Hirzebruch–Zagier divisors T̂m in X and

proved that

φ̂(τ ) = φ̂(τ ) = M
∨
1
2

+
∑

M≥1

T̂me(mτ )

is a modular form of weight 2, level D, and Nybentypus character ( D· ) with values in

ĈH
1
(X). Doing height pairing with CM(K) gives rise to the following modular form

(see 4.1)

φ(τ ) = −# CM(K)

WK

hFal(A) +
∑

m>0

(
Tm.CM(K) +

2

WK

Gm(CM(K))
)

qm.

On the other hand, [BY, Theorems 5.1, 8.1] (see also Theorem 4.1) asserts that

f (τ ) = −# CM(K)

2WK

β(K/F) +
∑

m>0

( 1

2
bm +

2

WK

Gm(CM(K))
)

qm

is a modular form of weight 2, level D, Nybentypus character ( D· ). Since g(τ ) =

φ(τ ) − f (τ ), one obtains the theorem.

We proved that T1.CM(K) =
1
2
b1 if furthermore OK is a free OF-module [Ya1].

In particular, for D = 5, 13, 17, this, together with Theorem 1.2, implies that g(τ )

is cuspidal, and so the Colmez conjecture holds in these cases. We proved that

Tm.CM(K) =
1
2
bm for all m ≥ 1, assuming further that OK is a free OF-module

[Ya2]. It gives the first non-abelian Chowla–Selberg formula.

2 The Faltings Height

Let g ≥ 1 be an integer, and let Hg be the Siegel upper plane of genus g, i.e., the set

of symmetric matrices z = x + i y ∈ Symg(C) such that y > 0 is totally positive.

Let Ag = Spg(Z)\Hg be the open Siegel modular variety of genus g over C. Let

Ag be the moduli stack over Z of principally polarized abelian varieties (A, λ), then

Ag(C) = [Ag] as orbifolds. Let Ãg be a toroidal compactification, and let ω be the

Hodge bundle on Ãg . It has a natural metric defined as follows. Let α be a section of

ω and let z = (Az, λz) ∈ Ag(C), The value αz of α at z has metric

‖αz‖2
nat =

∣∣∣
( 1

2πi

) g
∫

Az(Z)

α ∧ ᾱ
∣∣∣ .
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460 T-H. Yang

We write ω̂ = (ω, ‖ · ‖nat) for this naturally metrized Hodge bundle. We remark

that different authors use different normalizing factors (we use ( 1
2πi

)g here). For a

primitive arithmetic one-cycle Z = (A, λ) ∈ Ag(OL) where L is a number field and

OL is the ring of integers of L, we define its Faltings height with respect to ω̂ as

(2.1) hω̂(Z) =
1

[L : Q]
div s.Z −

∑

σ : L→֒C

1

# Aut(σ(A), λ))
log ‖s(σ(A), λ)‖nat.

Here Aut(σ(A), λ) is the automorphism group of (σ(A), λ) over C. It does not change

when we replace L by its finite extensions. We define the Faltings height of an arith-

metic 1-cycle Z by linearity. Let ωA/L = ∧g
ΩA/OL

which is an invertible OL-module

(since A has good reduction everywhere). Let L ′ be the Hilbert class field of L. Then

ωA/L ′ = ωA/L ⊗ OL ′ is a principal OL ′-module. Without loss of generality, we may

thus assume that ωA/L = OLα is already principal. In this case (2.1) gives

hω̂((A, λ)) = − 1

2[L : Q]

∑

σ : L→֒C

1

Aut(σ(A), λ))
log

∣∣∣
( 1

2πi

) g
∫

σ(A)(C)

σ(α)∧σ(α)
∣∣∣ .

Let (A, ι, λ) be a CM abelian variety over C of CM type (OK ,Φ), i.e.,

ι : OK →֒ End(A)

such that the induced action of OK on ΩA is given by the CM type Φ. Then (A, ι, λ)

descends to an abelian variety (AL, ι, λ) where AL is an abelian variety over OL with

good reduction everywhere, and ι and λ are also defined over OL. In such a case,

Aut((σ(AL), λ)) = µK

is the group of unity in K, and is independent of the choice of L or σ : L →֒ C. So it

is natural to define

hFal(A) = WK hω̂((AL, λ)) = − 1

2[L : Q]

∑

σ : L→֒C

log
∣∣∣
( 1

2πi

) g
∫

σ(AL)(C)

σ(α) ∧ σ(α)
∣∣∣ .

Here WK = #µK . Notice that this normalization differs from Colmez’s normalization

by
g
2

log 2π [Co]. It is not independent of L. In fact, Colmez proved that it is only

dependent of (K,Φ) [Co, Theorem 0.3].

By [FC, p. 141], if f (τ ) is a Siegel modular form for Spg(Z) of weight k, then

α( f ) = f (τ )(2πidw1 ∧ 2πidw2 ∧ · · · ∧ 2πidwg)k

is a section of ωk
C, when pulling back to Hg , where dw1∧dw2∧· · ·∧dwg is a trivializa-

tion of ωC over Hg . Moreover, α( f ) gives a section of ωk over a subring R if and only

if the Fourier coefficients of f are defined over R. Conversely, every section of ωk can

be identified this way. Let M̂k = (Mk, ‖ · ‖Pet) be the line bundle of Siegel modular

forms of weight k with the following Petersson metric

‖ f (τ )‖Pet = | f (τ )|(4π)g det Im(τ ))
k
2 .
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Then it is easy to check that f 7→ α( f ) gives an isomorphism between M̂k and ω̂k
nat.

Indeed,

‖α( f )‖2
nat = | f (z)|2

∣∣∣ (2πi)g

∫

Az

dw1 ∧ dw̄1 ∧ dw2 ∧ dw̄2 ∧ · · · ∧ dwg ∧ dw̄g

∣∣∣
k

= | f (z)|2((4π)gIm(z))k.

Let K be a CM number field of degree 2g with a CM type Φ, let CM(K,Φ) be the

set of CM abelian varieties with CM type (OK ,Φ). We extend it to an arithmetic

1-cycle in Ag over OL for some number field L, and denote it by CM(K,Φ). Then the

following lemma is now obvious.

Lemma 2.1 Let f be a normalized meromorphic Siegel modular form defined over

OL, i.e., its Fourier coefficients are all defined over OL and generate OL. Assume that

div f and CM(K,Φ) intersect properly. Then

k# CM(K,Φ)

WK

hFal(A) = hcMk
(CM(K,Φ))

= div f .CM(K,Φ) − 1

WK

∑

Aτ∈CM(K,Φ)

log ‖ f (τ )‖Pet

for any CM abelian variety A ∈ CM(K,Φ). Here for τ ∈ Hg , Aτ = Cg/Lτ is its

associated principally polarized abelian variety where Lτ = τZg ⊕ Zg .

Next, let F be a totally real number field of degree g, and let ∂ be its different. Let

Γ(f) = SL(OF ⊕ f) =
{(

a b
c d

)
∈ SL2(F) : a, d ∈ OF, c ∈ f−1, b ∈ f

}
,

and let X(f) = Γ(f)\Hg be a Hilbert modular variety. Let X(f) be the moduli stack of

the triples (A, ι, λ) defined over some number field where A is an abelian variety of

dimension g with real multiplication

ι : OF ⊂ End(A) and λ : f−1∂−1 7→ HomOF
(A, A∨)Sym

is a polarization module map satisfying the Deligne–Pappa condition (see [Go]):

f−1∂−1 ⊗ A → A∨, (r, a) 7→ λ(r)a

is an isomorphism. Then X(f) is the coarse moduli scheme of XC and the map

(A, ι, λ) 7→ (A, λ(1)) gives a natural map from X(∂−1) to Ag which extends to a map

φ from a toroidal compactification X̃(∂−1) to some Ãg . Over X(∂−1
= Γ(∂−1)\Hg

the map is given as follows. Let e = {e1, . . . eg} be an ordered Z-basis of OF and let

f = { f1, . . . , fg} be a basis of ∂−1 such that

trF/Q ei f j = δi j =

{
1 if i = j,

0 if i 6= j.
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462 T-H. Yang

Let σ = {σ1, σ2, . . . , σg} be the (ordered) set of real embeddings of F, and set

R = σ(e) = (σi(e j)) ∈ Mg(R).

Then it is easy to check t R−1
= σ( f ) = (σi( f j)). Finally for a ∈ OF and z =

(z1, . . . zg) ∈ Cg , we set

a∗ = diag(σ1(a), . . . , σg(a)), z∗ = diag(z1, . . . , zg).

Lemma 2.2 Let the notation be as above, then the map

φ : Γ(∂−1)\H
g −→ Spg(Z)\Hg

is given by φ(z) =
t Rz∗R. The associated map Γ(∂−1) → Spg(Z) is given by

φ
(

a b
c d

)
= diag(R−1, t R)

(
a∗ b∗

c∗ d∗
)

diag(R, t R−1).

Proof Let Λ = OF ⊕ ∂−1 be with the symplectic form

〈t (x1, x2), t (y1, y2)〉 = trF/Q (x1 y2 − x2 y1).

We embed F into Rg via σ and then embed Λ into R2g
= Rg ⊕ Rg . Then Λ =

diag(R, t R−1)L, with L = Zg ⊕ Zg being the standard lattice of R2g with the standard

symplectic form. Since Γ(∂−1) acts on Λ linearly and preserves the symplectic form,

so it acts on L and preserves its symplectic form, this gives the map φ : Γ(∂−1) →
Spg(Z) in the lemma. Indeed, for γ =

(
a b
c d

)
∈ Γ(∂−1), one has

γL = diag(R−1, t R)γΛ = diag(R−1, R)
(

a∗ b∗

c∗ d∗
)
Λ

= diag(R−1, R)
(

a∗ b∗

c∗ d∗
)

diag(R, t R−1)L.

For z ∈ Hg , its associated abelian variety is Az = Cg/Λz, where

Λz =
{

t
(
σ1(a)z1 + σ1(b), . . . , σg(a)zg + σg(b)

)
: a ∈ OF, b ∈ ∂−1

}

= z∗RZ
g + t R−1

Z
g
=

t R−1Lτ .

Here τ =
t Rz∗R ∈ Hg , and Lτ = τZg + Zg

= {τa + b : a, b ∈ Zg}. So Az is

isomorphic to Aτ , where Aτ is the abelian variety associated with τ ∈ Hg .

Notice that | det R| =
√

dF where dF is the absolute discriminant of F. So for a

Siegel modular form f of weight k,

‖ f (φ(z))‖2
Pet = | f (φ(z))|2((4π)g Im(t Rz∗R))k

= | f (φ(z))|2((4π)gdF

∏
Im(zi))k.

Let Mk(∂−1) be the line bundle of Hilbert modular forms of weight k on X(∂−1),

and let M̂k(∂−1) = (Mk(∂−1), ‖ · ‖Pet) be the metrized line bundle of Hilbert mod-

ular forms of weight k with the following Petersson metric

‖Ψ(z)‖2
Pet = |Ψ(z)|2((4π)gdF

∏
Im(zi))k.

It can be extended to a metrized line bundle on X̃(∂−1), which we still denote by

M̂k(∂−1). Notice that for a CM number field K with maximal totally real subfield

F, CM(K,Φ) can be viewed as an arithmetic 1-cycle in X(∂−1). So we have the

following.
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Corollary 2.3 Let Ψ be a normalized meromorphic Hilbert modular form for Γ(∂−1)

of weight k such that div Ψ intersect with CM(K,Φ) properly. Then

k# CM(K,Φ)

WK

hFal(A) = hcMk(∂−1)
(CM(K,Φ))

= div Ψ.CM(K,Φ) − 1

WK

∑

z∈CM(K,Φ)

log ‖Ψ(z)‖Pet.

Now we consider a special case which is in the main interest of this paper. Let

F = Q(
√

D) be a real quadratic field with discriminant D ≡ 1 mod 4 being a prime

number. In this case,

Γ := Γ(OF) ∼= Γ(∂−1), γ 7→ γ̃ = diag
(

1,

√
D

ǫ

)
γ diag

(
1,

ǫ√
D

)
,

where ǫ > 1 is a fundamental unit of F so that ǫǫ′ = −1. This induces an isomor-

phism

Γ\H2 → Γ(∂−1)\H2, (z1, z2) 7→
( ǫ√

D
z1,

−ǫ ′√
D

z2

)
.

Let M̂k = (Mk, ‖ · ‖Pet) be the metrized line bundle on X̃ of Hilbert modular

forms for Γ = SL2(OF) with the following Petersson metric:

‖Ψ(z)‖Pet = |Ψ(z)|(16π2 y1 y2)k/2

Then the above remark and Corollary 2.3 give the following.

Corollary 2.4 Let Ψ be a normalized meromorphic Hilbert modular form for SL2(OF)

of weight k such that div Ψ and CM(K,Φ) intersect properly. Then

k# CM(K,Φ)

WK

hFal(A) = hcMk
(CM(K,Φ))

= div Ψ.CM(K,Φ) − 1

WK

∑

z∈CM(K,Φ)

‖Ψ(z)‖Pet

for an abelian surface of the CM type (K,Φ).

3 The Colmez Conjecture

In this section, we review the Colmez conjecture [Co] and pay special attention in

the end for the case K is a quartic CM number field.

We fix an embedding Q →֒ C, and view all number fields as subfields of Q . Let

QCM be the composite of all CM number fields in Q . It has a unique complex con-

jugation ρ. For a CM number field L, we denote GCM
L = Gal(QCM/L) and simply

GCM
= GCM

Q . We define the Haar measure on GCM with total volume 1, i.e.,

∫

GCM

dµ = Vol(GCM) = 1.
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So Vol(GCM
L ) = [L : Q]−1.

For a field R of characteristic 0, let H(GCM, R) be the Hecke algebra of GCM, i.e.,

the ring (without identity) of locally constant functions Φ on GCM with values in R

with the convolution as the multiplication:

Φ1 ∗ Φ2(g) =

∫

GCM

Φ1(h)Φ2(h−1g) dh.

When R = C (or a subfield invariant under the complex conjugation), we define the

reflex function Φ
∨ via Φ

∨(g) = Φ(g−1), and define a positive definite Hermitian

form

〈Φ1,Φ2〉 =

∫

GCM

Φ1(h)Φ2(h) dh = (Φ1 ∗ Φ
∨
2 )(1).

Let H0(GCM, R) be the subring of locally constant class functions on GCM with val-

ues in R, i.e., Φ ∈ H(GCM, R) such that Φ(hgh−1) = Φ(g) for all g, h ∈ GCM. By

Brauer’s theorem, H0(GCM, Q̄) has a basis given by all Artin characters χ = χπ of

GCM, where π runs over all irreducible representations of GCM. For an Artin char-

acter χ of GCM, we denote by fArt(χ) the analytic Artin conductor (i.e., the one used

for the functional equation) L(s, χ), the Artin L-function, and define

Z(s, χ) =
L ′(s, χ)

L(s, χ)
, µArt(χ) = log fArt(χ).

We extend the definition linearly to all functions Φ ∈ H0(GCM, Q̄).

Notice that there is a projection map Φ 7→ Φ
0 from H(GCM, Q̄) to H0(GCM, Q̄),

given by

Φ
0(g) =

∫

GCM

Φ(hgh−1) dh =

∑

χ

〈Φ, χ〉χ.

A CM type is a function Φ ∈ H(GCM, Z) such that Φ(g) ∈ {0, 1} and

Φ(g) + Φ(ρg) = 1 for every g ∈ GCM.

This is consistent with the usual definition of a CM type. Indeed, let K be a subfield

of finite degree over Q such that

(3.1) Φ(gh) = Φ(g) for all h ∈ GCM

K , g ∈ GCM.

Then Φ can be viewed as a formal sum

(3.2) Φ =

∑

σ:K→֒Q̄

aσ(Φ)σ,

where aσ(Φ) = Φ(g) for any g ∈ GCM with g|K = σ. The two conditions on a CM

type function Φ are exactly what is needed to make the formal sum Φ a CM type of
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K in the usual sense. Conversely, a formal sum as (3.2) gives rise to a function Φ on

GCM. We will use the same notation Φ for the two meanings of a CM type. If we take

K to be the smallest subfield of QCM such that (3.1) holds, then (K,Φ) is a primitive

CM type. When K is Galois over Q , the reflex type Φ̃ in the usual sense corresponds

to the reflex function Φ
∨.

For a CM type Φ, we define AΦ = Φ ∗ Φ
∨ and let A0

Φ
be the projection of AΦ

to H0(GCM, Q̄). Concretely, let (K,Φ) be a CM type of a CM number field K in

the usual sense, and let M be a CM Galois extension of Q containing K, and let

ΦM =
∑

σ|K∈Φ
σ be the extension of Φ. Then

AΦ =
1

[M : Q]
ΦMΦ̃M .

Here we recall that Φ̃M =
∑

aσσ−1 if ΦM =
∑

aσσ. Moreover, if

AΦ =

∑

σ∈Gal(M/Q)

c(σ)σ,

then

A0
Φ =

∑

σ

c0(σ)σ, with c0(σ) =
1

#[σ]

∑

τ∈[σ]

c(τ ).

Here [σ] is the conjugacy class of σ in Gal(M/Q).

Let (K,Φ) be a CM type, and let A be a CM abelian variety of CM type (OK ,Φ).

We may assume that A is defined over a number field L with good reduction every-

where. Let hFal(A) be the Faltings height of A. It can be proved that

hFal(Φ) =
1

[K : Q]
hFal(A)

is independent of the choices of A and is even independent of the choice of K if

we view Φ as a function of GCM. We call it the Faltings height of Φ. Colmez [Co,

Theorem 0.3] asserts that there is a unique Q-linear function ht from H0(GCM, R),

the height function, satisfying a specific condition and

hFal(Φ) = − ht(A0
Φ) − 1

2
µArt(A0

Φ) + 1
4

log 2π.

Here the extra term 1
4

log 2π is due to the different normalization of the Faltings

height between our definition and Colmez’s. Furthermore, he conjectured [Co, Con-

jecture 0.4] that for any Φ ∈ H0(GCM, Q̄), one has ht(Φ) = Z(0,Φ∨). In terms of

the Faltings height, it means the following.

Conjecture 3.1 (Colmez) hFal(Φ) = −Z(0, A0
Φ

) − 1
2
µArt(A0

Φ
) + 1

4
log 2π.
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Two CM types Φ1 and Φ2 are called equivalent if there is τ ∈ GCM such that

Φ1(σ) = Φ2(τσ) for every σ ∈ GCM. Clearly, two equivalent CM types have the

same Faltings height.

Now we consider some simple examples. First let K = Q(
√
−d) be an imaginary

quadratic field with the CM type Φ = σ0, where σ0 is the identity map. In this case,

Φ̃ = Φ and A0
Φ

= AΦ =
1
2
σ0 =

1
4
(χ0 +χ−d), where χ0 is the trivial character and χ−d

is the Dirichlet quadratic character associated with K/Q . So the Colmez conjecture

is simply

2hFal(E) = −ζ ′(0)

ζ(0)
− L ′(0, χ−d)

L(0, χ−d)
− 1

2
log d + log 2π

= −L ′(0, χ−d)

L(0, χ−d)
− 1

2
log d

(3.3)

for a CM elliptic curve with CM by O−d. This is a reformulation of the Chowla–

Selberg formula (1.1) [Co].

Next let K = Q(
√

D,
√
−d) be a bi-quadratic CM number field with real quadra-

tic subfield F = Q(
√

D) and two imaginary quadratic field F1 = Q(
√
−d) and

F2(
√
−Dd). Let Φ = 1 + σ be a CM type of K with 1 being the identity map and

σ(
√

D) = −
√

D, σ(
√
−d) =

√
−d, i.e., σ fixes F1. Then Φ̃ = Φ, and

A0
Φ = AΦ =

1
4
(1 + σ)4

=
1
2
(1 + σ) =

1
4
(χ0 + χ−d),

where χ0 is the trivial character of Gal(K/Q) and χ−d is the nontrivial character of

Gal(F1/Q) viewed as a character of Gal(K/Q). So the Colmez conjecture implies

hFal(A) = −ζ ′(0)

ζ(0)
− L ′(0, χ−d)

L(0, χ−d)
− 1

2
log d + log 2π = −L ′(0, χ−d)

L(0, χ−d)
− 1

2
log d

for a CM abelian surface of CM type (OK ,Φ). That is the same as hFal(A) = 2hFal(E)

for a CM elliptic curve with CM by O−d = Z[−d+
√
−d

2
], by the Chowla–Selberg

formula (3.3). Indeed, let E be a CM elliptic curve with CM by O−d. Then A =

E ⊗ OD
∼= E × E is of CM type (K,Φ) with CM by OK . So hFal(A) = 2hFal(E). We

summarize the two examples in the next proposition.

Proposition 3.2 Let K = Q(
√

D,
√
−d) be a bi-quadratic CM number field. Let E

be a CM elliptic curve with CM by O−d and let A be a CM abelian surface of CM type

(OK ,Φ), where Φ = Gal(K/Q(
√
−d)). Then

hFal(A) = 2hFal(E) =
1

2
Γ
′(1) − 1

2
log 4π +

Λ
′(0, χ−d)

Λ(0, χ−d)
.

Here

Λ(s, χ−d) =

( d

π

) (s+1)/2

Γ

( s + 1

2

)
L(s, χ−d).
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Now let K = F(
√

∆) be a non-biquadratic quartic CM number field with max-

imal totally real subfield F = Q(
√

D), the case of special interest in this paper. We

first assume that K is not Galois over Q , and let M be the smallest Galois extension

of Q containing K. Then Gal(M/Q) = 〈σ, τ〉 is a dihedral group D4 with

σ(
√

∆) =

√
∆ ′, σ(

√
∆ ′) = −

√
∆,

τ (
√

∆) =

√
∆ ′, τ (

√
∆ ′) =

√
∆.

Let Φ = 1 + σ be a CM type of K, and let K̃ be its reflex field with maximal real

quadratic field F̃. Then ΦM = 1 + σ + τσ + τ and Φ̃M = 1 + σ−1 + τσ + τ . So

AΦ =
1

8
ΦMΦ̃M =

1

4
(2 + 2τ + σ + σ−1 + τσ + στ ),

and

A0
Φ =

1

4

(
1 − ρ +

∑

α∈Gal(M/Q)

α
)

=
1

4

( 1

2
χπ + χ1

)
.

Here χ0 is the trivial character of GQ , and π is the unique two-dimensional repre-

sentation of Gal(M/Q), and can be realized as Ind
GQ

GF̃
χK̃/F̃ , where χK̃/F̃ is the non-

trivial quadratic character of GF̃ factoring through Gal(K̃/F̃). Notice that π is also

Ind
GQ

GF
χK/F .

When K is a cyclic quartic CM field with a CM type Φ, the same calculation

(slightly simpler) shows

A0
Φ =

1

4

( 1

2
χπ + χ0

)

as above, with π = Ind
GQ

GF
χK/F . Notice that π is not irreducible in this case.

Let χ = χK̃/F̃ be the quadratic Hecke character of F̃ associated with K̃/F̃, and let

(3.4) Λ(s, χ) = ( fχ)
s
2 π−s−1

Γ

( s + 1

2

) 2

L(s, χ)

be the complete L-function of χ as defined in [BY, §6], where fχ = NF̃/QdK̃/F̃dF̃ is

the Artin conductor of χ. Then we have the following.

Proposition 3.3 Let K be a non-biquadratic quartic CM number field with real quad-

ratic subfield F. Let Φ be a CM type of K and let K̃ be its reflex field with real quadratic

field F̃. Let χ = χK̃/F̃ be as above. Then the Colmez conjecture for Φ is the same as

8hFal(Φ) = −Λ
′(0, χ)

Λ(0, χ)
+ Γ

′(1) − log 4π.

That is, hFal(A) =
1
2
β(K̃/F̃) =

1
2
β(K/F) for any CM abelian surface with CM by OK .
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Proof The above calculation gives A0
Φ

=
1
8
χπ + 1

4
χ0, where χπ is the character of the

two-dimensional representation π = Ind
GQ

GF̃
χK̃/F̃ , and χ0 is the trivial character. So

Z(s, χπ) =
L ′(s, χK̃/F̃)

L(s, χK̃/F̃)
, µArt(χπ) = log fχK̃/F̃

.

(we trust the reader will distinguish the representation π from the number π). For

χ = χK̃/F̃ , one has

8
(

Z(0, A0
Φ) +

1

2
µArt(A0

Φ)
)

=
L ′(0, χ)

L(0, χ)
+ 2

ζ ′(0)

ζ(0)
+

1

2
log fχ

=
Λ

′(0, χ)

Λ(0, χ)
+ log π − Γ

′( 1
2
)

Γ( 1
2
)

+ 2
ζ ′(0)

ζ(0)
.

Now recall that

Γ
′( 1

2
)

Γ( 1
2
)

= −γ − 2 log 2,
ζ ′(0)

ζ(0)
= log 2π, Γ

′(1) = −γ,

where γ is the Euler constant. So

8
(

Z(0, A0
Φ) +

1

2
µArt(A0

Φ)
)

=
Λ

′(0, χ)

Λ(0, χ)
+ γ + log 4π + 2 log(2π).

Now the proposition is clear. Notice that β(K̃/F̃) = β(K/F), and L(s, χK̃/F̃) =

L(s, χK/F), since IndGQ

GF̃
χK̃/F̃ = IndGQ

GF
χK/F = π as explained above .

This proposition implies that hFal(A) for a CM abelian surface with CM by OK

is independent of choice of the CM abelian surface or the CM type when K is non-

biquadratic. This is different from the bi-quadratic case discussed above. It might be

interesting to note that

hFal(Ad) + hFal(ADd) = −Λ
′(0, χK/F)

Λ(0, χK/F)
+ Γ

′(1) − log 4π

for the bi-quadratic case K = Q(
√

D,
√
−d), which is very much like Proposition 3.3.

Here Ad (resp. ADd) is a CM abelian surface of the CM type Φd = Gal(K/Q(
√
−d))

(resp. ΦDd = Gal(K/Q(
√
−Dd)), and F = Q(

√
D).

4 Proof of the Main Theorem

The purpose of this section is to prove Theorem 1.2. First we recall a modularity

result of Bruinier, Burgos Gil and Kühn on arithmetic Hirzebruch–Zagier divisors.

Let X̃ be a toroidal compactification of the arithmetic Hilbert modular surface X

and let T̃m be the corresponding compactification of Tm in X̃. Bruinier, Burgos Gil
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and Kühn [BBK] defined an Arakelov divisor T̂m = (T̃m, 2Gm) ∈ ĈH
1
(X̃) (we prefer

a slightly different renormalization so that (Ψ,− log ‖ · ‖2) is a principal divisor for a

rational function on X̃). They proved in the same paper [BBK, Theorem A] that

φ̂(τ ) = M
∨
1
2

+
∑

M≥1

T̂me(mτ ) ∈ M+
2

(
D,

( D

·
))

⊗ ĈH
1
(X̃)

is a modular form valued in ĈH
1
(X̃) for Γ0(D) of weight 2 with Nebentypus charac-

ter ( D· ). Here M+
2 (D, ( D· )) is the subspace of modular forms of weight 2, level D, and

Nebentypus character ( D· ) such that its Fourier expansion f (τ ) =
∑

m≥0 ame(mτ )

satisfies am = 0 if ( D
m

) = −1.

Recall that there is a bilinear form, the Faltings height pairing

ĈH
1
(X̃) × Z

2(X̃) → C,

given by

h(T,G)(Z) = T.Z +
1

2

∑

z∈Z(C)

1

# Aut(z)
G(z),

when T and Z intersect properly.

Let CM(K) be the moduli stack over Z representing the moduli problem which

assigns a base scheme S to the set of the triples (A, ι, λ) where ι : OK →֒ EndS(A)

is a CM action of OK on A and (A, ι|OF
, λ) ∈ M(S) such that the Rosati involution

associated with λ reduces to the complex conjugation of OK . The map (A, ι, λ) 7→
(A, ι|OF

, λ) is a finite proper map from CM(K) into M, and we still denote its direct

image in M by CM(K) by abuse of notation. It was proved in [Ya1, Lemma 2.1] that

CM(K)(C) = 2 CM(K) := 2(CM(K,Φ) + CM(K,Φ′)),

where Φ = {1, σ} and Φ
′

= {1, σ−1} are CM types of K given in Section 3. As

mentioned in Section 2, hFal(A) depends only on its CM type. Since A 7→ σ−1(A) is

a bijection between CM(K,Φ) and CM(K,Φ′), and hFal(A) = hFal(σ
−1(A)), we have

hFal(CM(K)) = 2# CM(K)hFal(A)

for a CM abelian surface A with CM by OK . By Corollary 2.4, one sees that

hM∨
1/2

(CM(K)) = − 1

WK

# CM(K)hFal(A).

Now applying the height paring function to φ̂(τ ) and CM(K), one obtains the

following modular form in M2(D, ( D· )):

φ(τ ) = −# CM(K)

WK

hFal(A) +
∑

m>0

(
Tm.CM(K) +

2

WK

Gm(CM(K))
)

qm.(4.1)

Here Gm(CM(K)) =
∑

z∈CM(K) Gm(z). This is the first main step in proving Theo-

rem 1.2. To continue, we need a result of Bruinier and Yang [BY] on modularity of

CM values of automorphic Green functions Gm, which we state as the following.
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Theorem 4.1 (Bruinier and Yang) The function

f (τ ) = −# CM(K)

2WK

β(K/F) +
∑

m>0

( 1

2
bm +

2

WK

Gm(CM(K))
)

qm

is a modular form belonging to M+
2 (D, ( D· )). Here bm are the constants defined in the

introduction.

Sketch of Proof Let

E+
2 (τ , 0) = 1 +

∑

m>0

C(m, 0)qm ∈ M+
2

(
D,

( D

·
))

be the (unique) normalized Eisenstein series in M2(D, ( D· )) defined in [BY, Corol-

lary 2.3]. Using a derivative of the incoherent Hilbert Eisenstein series, diagonal re-

striction (to elliptic modular forms), and holomorphic projection, Bruinier and the

author proved [BY, Theorem 8.1] that

(4.2) F(τ ) =

∑

m>0

( 1

2
bm +

1

2
cm

)
qm +

1

4
Λ(0, χK̃/F̃)β(K̃/F̃)(E+

2 (τ , 0) − 1)

is a cusp form belonging to S+
2 (D, ( D· )), where

cm = lim
s→1

{
2

∑

t= n±m
√

D
2p

∈d
−1,+

K̃/F̃

ρ(tdK̃/F̃)Qs−1

( n

m
√

D

)
+ Λ(0, χK̃/F̃)

( C(m, 0)

2(s − 1)
−Lm

)}
.

Here dK̃/F̃ is the relative discriminant of K̃/F̃, the subscript + means totally positive,

ρ(a) = #{A ⊂ OK̃ : NK̃/F̃(A) = a} is the norm counting function, Lm is some nor-

malizing constant depending on m, and Qs−1(t) is the so-called Legendre function of

the second kind.

On the other hand, the CM value of Gm is given by [BY, Theorem 5.1] (together

with normalization in [BY, (2.24), (2.25)]) that

2

WK̃

Gm(CM(K,Φ)) = lim
s→1

[ ∑

µ=
n−m

√
q

2p
∈d

−1,+

K̃/F̃

Qs−1

( n

m
√

q

)
ρK̃/F̃(µdK̃/F̃)

+
( C(m, 0)

2(s − 1)
− Lm

) # CM(K,Φ)

WK̃

]
.

One has the same formula for Gm(CM(K,Φ ′)) with n−m
√

D̃
2D

replaced by n+m
√

D̃
2D

. So

4

WK̃

Gm(CM(K)) = cm + lim
s→1

( C(m, 0)

2(s − 1)
− Lm

)( 2# CM(K)

WK̃

− Λ(0, χK̃/F̃)
)

.

https://doi.org/10.4153/CJM-2010-028-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-028-x


The Chowla–Selberg Formula and the Colmez Conjecture 471

This implies

4

WK̃

Gm(CM(K)) = cm, Λ(0, χK̃/F̃) =
2# CM(K)

WK̃

.

Plugging this into (4.2) and using the facts (see the proof of Proposition 3.3)

Λ(s, χK̃/F̃) = Λ(s, χK/F), β(K̃/F̃) = β(K/F)

and

WK = WK̃ =

{
10 if K = Q(ζ5),

2 otherwise,

one obtains the theorem.

Proof of Theorem 1.2 Now the proof of Theorem 1.2 is clear. Indeed, one has by

(4.1) and Theorem 4.1 g(τ ) = φ(τ ) − f (τ ).
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