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§ 1. Definitions and general remarks.

I begin by recalling the well known definitions for summability
t y the methods of Cesaro and Riesz.

The series 2 aH is said to be summable (C, k), k > — I, to the sum
•s if, as n-> GO ,

Ak) _
n ~

where

and E^ is defined formally by the relation

T,E^xn= (1 —a:)-*-1.
o

If Ao, Xlt .. .., A,,, . . . . , OJ are positive numbers such that

0 ^ Ao < Ax < A2 < . . . . < A,,.. . . , Ay < to ̂  A_v+1,

the series 2 an is said to be summable (H, An, k), k S: 0, to the sum s
if, as co tends to infinity continuously,

M

or

-where, for k > — 1, -4(W (OJ) is defined to be
L(w - An)*o.7l.
o

Kogbetliantz1 and Obreschkoff2 have given the following defini-
tions for the absolute summability of 2 an by these methods:

1 Kogbetliantz, 7. For theorems on summability | C, k \ see also Fekete 2, 3, 4,
and Winn 11.

2 Obreschkoff, 8, 9.
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N THE ABSOLUTE STXMMAB1LITY OF SERIES BY RlESZIAN MEANS 47

If aW = c<f> — c^lx and if Eojf1 is absolutely convergent, then
an is said to be summable \C, k\.

If k > 0, a ^ 0, and if the integral

dt

converges, then S an is said to be summable R, A,,, k \. Summability
) R, An, k | is therefore equivalent to the bounded variation of the
function (71*1 (a>) in the range (a, oo ).

It is at once obvious that summability | R, An, k \ implies
summability (R, An, k), that a similar result is true for summability
| C, k , and that summability | R, A,,, 0 I1 and C, 0 j are each equivalent
to the absolute convergence of S an. Also it has been proved2 that
summability \R, An, k\ implies summability | R, \n, k' | for k' > k^ 0,
and there is a corresponding theorem3 for the Cesaro method.

J. M. Whittaker4 has also denned absolute summability for the
Abel or Poisson method, but this will not be required here.

When discussing the summability (C, k) of special series such as
Fourier series or Dirichlet series it has often been found convenient
to deal with the Rieszian mean rather than with the Cesaro mean.
It is permissible to do so in virtue of the well-known equivalence
theorem5 between the methods (C, k) and (R, n, k). The object of
the present paper is to show that the method \R, n, k\ is equivalent
to the method | C, k |. It seems reasonable to expect that this result
will be of some use in dealing with the summability | C, & | of certain
particular series6.

§ 2. The equivalence theorems.

It will be proved first of all that summability | C, k | implies
summability \R, n, k\. Several lemmas will be required in the
course of the proof.

LEMMA 1. If7 k > — 1, S > 0, we have

> -

1 This really constitutes the definition of summability \ R, kn, 0 \ .

2 Obreschkoff 9. 3 Kogbetliantz 7. 4 Whittaker 10. 5 Hobson 6, 90-93.
0 Some results have been obtained recently concerning the summability \ G, k \ of

Fourier series ; see Bosanquet 1.
7 Hardy and Riesz 5, 27.
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48 J. M. HYSLOP

This result is proved by Hardy and Riesz for the case k > 0. To
prove it for k > — 1, substitute for A{k) (u) in terms of an and inter-
change the order of summation and integration.

I t follows from the lemma that, for k > 0,

Jo
so that A(k) (OJ) may be differentiated as though k were an index.

LEMMA 2. / / 2?'*' (w) is the Rieszian sum of order k for the series
2 bn = 2 nan, then, for k>0,

(OJ) =
act)

We have, by Lemma 1,

w*+i A G<» (co) = to ~ AW («) - A 4̂<*» (w)
(lOJ ttO)

N

l,(cj - n)k~l nan
o

The proof of this lemma is valid as it stands for the more general
case of summability | R, An, k \ if bn = Xnan.

LEMMA 3. We have, for k > — 1, the formal identities

(i) S AW zn=(l - a;)-*"1 I aBa;n,
o o

(ii) £ %.#{,*> o<*> a;" = (1 - x)~k I wa,t a;",
o o

The first of these follows at once from the definition of A(k\ The
second has been proved by Kogbetliantz1.

LEMMA 4*. / / k is any real number except a negative integer, and if

1 Kogbetliantz 7.
2 I am greatly indebted to Mr A. E. Ingham for permission to reproduce the proofs

of Lemmas 4 and 5 which have been taken from notes of lectures delivered by him in
1930-31. In that course of lectures he gave a proof of the equivalence theorem for
summability (0, k) and (R, n, k) which has not been published. The proof of Theorem I
of this paper has been influenced to some extent by his proof for the corresponding case
of ordinary summability. I have also to thank Mr Ingham for important criticisms on
this and the earlier part of the paper.
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q is any positive integer, then there exists a sequence of polynomials
p0 (6), .. .., pq (0), such that, for n ̂  1,

(n + 6? = S pr (6) E«-r) + 0 (n"-"-1)
r = 0

uniformly in 0 ̂  8 ̂  1.
Suppose that k is not an integer. By Taylor's Theorem it is

clear that

(n + ef= ii-ifi'-'-ws-n'-' + OK-'-1),
s = 0

uniformly in 0 ̂  6 rgi 1.
Employing Stirling's Theorem we have

Mt-r) _ (^Tl r +nASk -r + n- 1). . . . ( & - r + 1)
- l ) 3 . 2 . 1

= S 8r)8

where r = 0, 1, 2, .. .., q, Sr s is a constant and

since k is not an integer.
It follows that

2 ^ r ^ ' " r ) = S Z pr8r,sn
k-s + O(nk-v-1)

r=0 r = 0 8=r

= S n*-s S j5r Sr j + O ^ - " - 1 ) .
8 = 0 r = 0

Obviously we can now determine the polynomials pr from the
equations

iprSr.^i-lYK-*-1**, {8 = 0,1,2,.., q).
T = 0

If k is zero or a positive integer the same argument gives an
exact formula without the 0 term if we take q = k. If q > k the
lemma is still true provided pr = 0 for r > k.

LEMMA 5. / / 0 < 6 ̂  1, k > 0, q is any positive integer, or zero, and

yn(6)= £ (n+6- r )*-1 E\rk~l\
*=o

then

yn (6) = 8 (6) Elr"-1^ 0 {"s („ + l)-*-i (n - *)*-«-*},
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where

and eT

I t

S (6) = 0*-i

is a constant.
is clear that

E y,, (0) z«
0

Now, by Lemma 4,

where,

(n + 0)4 a

for n ^ 1,

J. M.

+ S er
r=0

= ( 1 -

= 1 Pt

HYSLOP

6',

x)k

r(0)

2 (n
0

Let e, be denned by the relation

r=0 r=0

and let po{d)=8(6). Then

S yB (0) as- = (1 - *)*{!: S PrE^-»x»
0 0 r = 0 0

= S p , ( l — a:)' -4- (1 _ *)* S A»a:»,
r=0 0

and therefore, for n > q,

yn(6)= S &-*-*&-..
r = 0

Since ^J-*-1) = 0 (n"*"1) the result follows. If n is less than q
the lemma is obviously true.

This lemma is slightly more general than that given by Ingham,
who only required k> 1, but the proofs in the two cases are almost
identical. When k > 1 the 8(8) term can be incorporated in the
summation term giving

yn(d)=O{ S ( , + i ) -*- i (»-v+l )*-»-2} .
•,=0

This result will be required in the proof of Theorem II.

T H E O R E M I . / / k ^ 0 a n d i / <Ae series S an i s summable \C,k\, then it

is also summable \R, n, k\.

It will sometimes be found convenient to use, in the proofs of
jr

the theorems which follow, symbols such as 2 where X is a continuous
o
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a

variable. This is to be taken to mean 2 where a = X — 1 or [X]
o

according as X is a positive integer or not. A similar meaning is to
30

be attached to 2.
x

The theorem is true when k = 0 since summability | R, n, 01 and
| C, 0 | are each equivalent to the absolute convergence of 2 an. We
shall therefore assume that k is positive.

By Lemmas 2 and 3,

doj
(•>

= kco~k~1 2 (a) — n)k~1nan
i

Let OJ = N + 8, 0 < 6 <^, I and let n — v = jj,. Then, interchanging
the orders of summation, we obtain

( ) = iko-*-i S vEfaf-L{N + 0 - v -

and, using the notation of Lemma 5,

• • = ]

where

/2 = 0 j T a,-*-1 da> £ ^*» 1 o») 11 s w; 1 ^irir1 ' ll-
lJl =̂1 J

Rearranging the orders of summation and integration, and
putting p — v + 1 = n, we obtain

lk)ialk) I £ (P - v + I)"*"1 T a,-*"1 (2V - pf-^d
p = ^ J P + I

= 0 { I vElk)\aik)\ £ (P-v+ i)-*-ip-*-i s fP+*+(iy-p)*-«-2«k>l

2 p-*-i(p- w+i)-t-i 2
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Choose q greater than k — 1. Then

1\ = O { S vE™ | «<,*> | S p-*-i (p - v + I

= O-{ S v - ^ ^ l a f I 1 (p _ „+ i)-*

= O (1).
Also

a ) - * - 1 (JV - v + I ) -*-11 S

= 0 { I | a*' | T (to - A7)*"1 (AT - v + I ) - * - 1 cZ
I x = l J x
f -y oo c^+P + 1

= 0 ] S I o^l S (a* - i^)*"1 (JV - f + l)
I K = l p = 0 J l + P•+p
{ X a, (V+p + 1 "I

= 0 S | a f » | E ( P + l ) -*- i (w - v - p)*"1 do>[
{ v=l p=Q Jv+p J

00 00

= 0 (1).
The theorem is therefore proved.

We require another lemma1 in order to prove the converse:

LEMMA 6. If k is a positive integer or zero, A^ can be expressed in the
form

£ d,AM(n+p/k),

where dp is a constant.

THEOREM II. / / k ^ 0 and if 2 a n is summable \R,n, k\, then it is also
summable ,C, k\.

As in Theorem I we take k to be positive. Using Lemmas 3, 6, 1
and 2 we have

n

p
p=0 >-=0

1 Hobson 6, 93.
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where i is some integer greater than k, <f> = <j> (p) = p/i, and

•Ls k = = ~. •

Employing Lemma 2 and interchanging the order of the summa-
tions and integration we obtain

C <> = Dk 2 dp | w i + 1 ^ {C<*> (u)} du 2

But

(-i-2)

n n—)*
2 JS^Tj1' ^ 'Z '~ 2 ) = 2 J

1*=^ p=0

which is the coefficient of xn~lx in the expansion of

This coefficient, by definition, is ^J*^'"2'. Hence

af = - «)*-* ^»r;-2>.

Divide by nE^\ take absolute values, sum from 0 to N and
apply Lemma 5. Then, since i > k,
N ( i N

2 | a f | = CM 2 |dp| 2 (» + 1)-*-
o IP=O o

2 (n - p + !)*• + ^ + 1 -

Taking g = i and interchanging the order of the summations
and integration we obtain

I of | = 0 { 2 I d
lp=0

S (

du

+ $ + 1-u)-*-1 S (n + I)"*"1 (n-/ i +

= 0 { S Idp I pu**1 — C<*> («) dtt S (/* + ^ + 1 - tt)-*"1^ 4-
[ p=0 Jo du n = ic-4>

Jo at*
= o{ s

[ p = o

= 0(1).

The theorem is therefore proved.
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