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This study extends our previous work (McCloughan & Suslov, J. Fluid Mech., vol. 887,
2020, A23), where the existence of a saddle-node bifurcation of steady axisymmetric
electrolyte flows driven by the Lorentz force in a shallow annular domain was first
reported. Here we perform further weakly nonlinear analysis over a wider range of the
governing parameters to demonstrate that the previously reported saddle-node bifurcation
is a local feature of a global fold catastrophe, which, in turn, is a part of cusp
catastrophe occurring as the thickness of the fluid layer increases. The amplitude equation
characterising multiple flow solutions in the finite vicinity of catastrophe points is derived.
The sensitivity of its coefficients and solutions to the distance from the catastrophe points
is assessed demonstrating the robustness of the used analytical procedure. The asymptotic
flow solution past the catastrophe point is subsequently obtained and its topology is
explored confirming the existence of the secondary circulation in the bulk of flow (two-tori
background flow structure). The latter is argued to lead to the appearance of experimentally
observable vortices on the fluid surface. The rigorous justification of this conjecture is to
be given in Part 2 of the study.

Key words: bifurcation, nonlinear instability, low-dimensional models

1. Introduction

Electrolytes are weakly electrically conducting fluids that can be easily prepared in
laboratory conditions, say, by dissolving salt in water. When the salt concentration is not
high, the electric conductivity of such solutions is relatively low, and so are the electric
currents occurring in them when an electric potential difference is applied to electrodes
submerged in the fluid. However, when such currents interact with an externally applied
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Figure 1. Problem geometry.

magnetic field, a Lorentz force arises that is sufficient to set the bulk of electrolyte in
motion without any mechanical intervention (Digilov 2007). This makes such set-ups an
attractive playground for designing various non-mechanical fluid mixing systems that have
a wide range of practical applications (Moffatt 1991; Pérez-Barrera, Ortiz & Cuevas 2016).
A large body of literature also exists on using electromagnetically driven flows in physical
modelling of atmospheric phenomena in laboratory conditions (Dovzhenko, Novikov
& Obukhov 1979; Dovzhenko, Obukhov & Ponomarev 1981; Dovzhenko, Krymov &
Ponomarev 1984; Krymov 1989; Manin 1989; Dolzhanskii, Krymov & Manin 1990;
Bondarenko, Gak & Gak 2002; Kenjeres 2011). A more detailed review of relevant
applications can be found in our previous publication (Suslov, Pérez-Barrera & Cuevas
2017b).

While originally our research reported here was prompted by such applications, our
present work is motivated primarily by our interest in fundamental features of such flows
that are surprisingly rich and subtle despite their deceptively simple geometry. Here we
consider the experimentally realisable (Digilov 2007; Pérez-Barrera et al. 2015, 2016,
2019) flow occurring in a shallow annular container formed by two vertical coaxial copper
cylinders that serve as electrodes. The radial electric current flows through an electrolyte
filling the annular gap between them, see figure 1 (also refer to figure 2 in Suslov et al.
(2017b) for a more detailed view of an experimental set-up and the description of the
experimental procedure). If the set-up is placed in a magnetic field created by a vertically
polarised magnet, the azimuthal Lorentz force occurs driving the fluid circumferentially.
At first glance this motion appears to be unidirectional, but on closer inspection it turns
out that even a relatively slow flow has non-zero radial and vertical velocity components
(Suslov et al. 2017b). Due to inertia (the perceived centrifugal force) the bulk of fluid tends
to move outwards, that is it acquires a radial velocity component. However, the top–bottom
symmetry is broken: since the upper surface of the electrolyte layer is free while the
bottom is subject to the no-slip condition, the fluid flows towards an outer cylindrical
electrode along the free surface. The deceleration of an outward radial flow caused by
the outer wall leads to the increase of the bulk pressure there, which, subsequently, forces
the fluid near the bottom to flow inwards. In this way, a meridional circulation with fluid
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Swirling electrolyte. Part 1

flowing towards the outer annulus wall along the free surface and returning along the
solid bottom is created that is combined with the circumferential flow so that the overall
fluid motion becomes toroidal. Such a steady toroidal flow was termed as the Type 1
solution in Suslov et al. (2017b). A careful comparison of this flow with other similar
counterparts such as Ekman (Ekman 1905; Lilly 1966; Greenspan 1968; Faller 1991),
Bödewadt (Bödewadt 1940; MacKerrell 2005) or Stewartson (Stewartson 1957; Schaeffer
& Cardin 2005) boundary layers or flows between rotating discs (Moisy et al. 2004)
that was undertaken in Suslov et al. (2017b) revealed that none of these candidates are
equivalent to the electromagnetically driven flow arising in shallow annular layer.

Quite unexpectedly, a different type of azimuthally uniform flow referred to as Type 2
solution was also discovered in Suslov et al. (2017b). The prominent feature distinguishing
it from Type 1 flow is the existence of a secondary counter-rotating toroidal flow structure
near the corner formed by the free surface and the outer electrode. Finding this solution
came as a surprise because the existence of such a spatially complicated flow structure
would generally not be expected in thin layers of viscous fluids. Moreover, the basin
of attraction of such a solution has been numerically found to be rather small. Because
of that, the convergence of Newton-type iterations to it from a randomly chosen initial
guess was literally a ‘lucky’ coincidence. With one such solution found accidentally, the
Type 2 solutions for other sets of governing parameters were obtained by using a careful
parametric continuation when the solution obtained for one parameter set was used as an
initial guess for iterations performed at slightly varied parametric values.

Such a parametric continuation procedure lead to yet another surprise discovery: for a
fixed fluid layer depth, Type 2 flow was found to exist only for a finite range of values
of the driving electric current or, equivalently, Reynolds numbers (to be defined in § 2)
Re∗ ≤ Re ≤ Re∗∗. A further careful investigation undertaken in McCloughan & Suslov
(2020a) revealed that the ways in which Type 2 solution ceases to exist for Re < Re∗
and Re > Re∗∗ are completely different. For small Reynolds numbers, Type 2 solution
disappears abruptly via a finite-amplitude ‘jump’ towards Type 1 flow that continues to
exist down to Re = 0 when the driving electric current is switched off and the motion
stops. In contrast, in McCloughan & Suslov (2020a) we established that both Type 1 and
2 flows cease to exist at Re∗∗ as a result of a local saddle-node bifurcation when these two
solutions ‘collide’ (that is become topologically indistinguishable) and annihilate each
other with no other steady azimuthally uniform solution found numerically beyond Re∗∗.
This posed a question: what happens to a physical flow for large driving currents, that is,
for Re > Re∗∗?

The experimental observations reported in Pérez-Barrera et al. (2015, 2016), Suslov
et al. (2017b) and Pérez-Barrera et al. (2019) provide several hints. First, the
circumferential/toroidal flow persists. Second, experiments confirm the existence of a
secondary toroidal structure similar to that of Type 2 solution, see figure 17 in Suslov
et al. (2017b). Third, and most importantly, laboratory observations demonstrated the
existence of a robust system of anticyclonic vortices appearing on the free surface of
the electrolyte layer (Suslov, Pérez-Barrera & Cuevas 2017a). Such vortices form an
azimuthally propagating periodic structure and thus cannot be attributed to either Type 1
or 2 circumferentially uniform steady solutions. The observations of the flow’s temporal
evolution also showed that after the driving current is switched on, the circumferential
azimuthally invariant flow always establishes first, and only then the vortices appear.
This naturally leads to the hypothesis that free-surface vortices result from an instability
of an azimuthally uniform steady basic flow, and that they are effectively perturbations
superposed on such a basic flow. This led us to perform a linear stability analysis of Type 1
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and 2 solutions reported in McCloughan & Suslov (2020a,b) for cases when either the
Reynolds number or the electrolyte layer depth were varied. It revealed that only Type 2
flows can be unstable with respect to various azimuthally periodic perturbations whereas
Type 1 flows are always linearly stable. Therefore, we concluded that the necessary
condition for the existence of free-surface vortices is the presence of the secondary toroidal
flow structure distinguishing Type 2 solution from its Type 1 counterpart. Our further
investigation of the character of such an instability discovered yet another surprising
result: while the observable vortices look very much like Kelvin–Helmholtz ‘cat eyes’,
Kelvin–Helmholtz instability has nothing to do with their origin. They appear primarily
due to Rayleigh’s centrifugal instability at the border between two counter-rotating toroidal
components of the Type 2 flows.

Since free-surface vortices are observed experimentally even for Re > Re∗∗
(Pérez-Barrera et al. 2015, 2016), we hypothesise that they continue to arise on a two-tori
background even though the numerical procedure reported in Suslov et al. (2017b)
and McCloughan & Suslov (2020a) has failed to find it for large Reynolds numbers.
Therefore, our goal here is to make an analytic progress to confirm the existence of a
two-tori azimuthally uniform steady flow component beyond the saddle-node bifurcation
reported in McCloughan & Suslov (2020a). We achieve this goal by employing an
amplitude expansion procedure specifically designed for regimes that exist a finite
parametric distance away from a bifurcation point (Pham & Suslov 2018). We demonstrate
its robustness by using it to develop an asymptotic solution beyond the saddle-node
bifurcation and subsequently using it as an initial guess for an iterative search of a full
steady solution. We show that the so-initiated iterations converge to a new steady state,
which we term Type 3 flow, that is in excellent qualitative and close quantitative agreement
with the developed asymptotic approximation. Part 2 of the study then focuses on the
stability characteristics of the newly discovered Type 3 flow, compares them with those of
the Type 1 and 2 counterparts reported previously and concludes on the roles both Type 2
and Type 3 azimuthally invariant flows play in the formation of experimentally observed
free-surface vortices, which are of ultimate interest in various mixing applications.

The structure of Part 1 is as follows. In § 2 we formulate the mathematical problem
and specify the appropriate boundary conditions. In § 3, the weakly nonlinear amplitude
expansion procedure is developed that aims to approximate solutions at a post-bifurcation
point using quantities computed at pre-bifurcation values of the governing parameters.
This requires us to deviate from a standard solvability-condition-based derivation of
amplitude equations and rigorously justify the variations we introduce to it in order
to achieve our goal. In § 4 we discover that the saddle-node bifurcation that leads to
the disappearance of Type 1 and 2 solutions is a local feature of a larger-scale fold
catastrophe. This enables us to develop an approximate steady-state azimuthally uniform
post-bifurcation solution that is different from both Type 1 and 2 solutions but features
a prominent two-tori structure satisfying the necessary condition for the existence of
experimentally observable free-surface vortices. In § 5 we make further analytical and
computational steps and demonstrate that a newly discovered fold catastrophe itself is a
part of yet another higher-dimensional (two-parameter) cusp catastrophe. The conclusions
are given in § 7, where we also formulate further questions that are answered by a dedicated
investigation that is reported in Part 2 of this work.

2. Problem formulation and governing equations

We consider an annular layer of an electrolyte of depth h laterally confined by
vertical coaxial cylindrical electrodes located at r∗ = R1 and r∗ = R2 (asterisk denotes
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Figure 2. Steady azimuthally invariant distributions of the externally applied (a) and fluid-motion-induced
(b) components of the electric potential given by (2.18) and the current components given by (2.21) (c) and
(2.22) (b), respectively, for the Type 2 flow at (Re, ε) = (1493.88, 0.248) and ε2Ha2 = 1.59 × 10−6. The
colour in the bottom right panel represents the value of the azimuthal electric current component induced
by fluid motion.

dimensional quantities), see figure 1. The electrically non-conducting stationary bottom
of a container is placed on top of a vertically polarised disc magnet of radius R2 that
produces magnetic field B0 at the reference location marked by the black dot in figure 1.
The top of the layer is assumed to be stress-free.

The magnetic field created by a permanent magnet is assumed to be axisymmetric. In
general, it has both vertical and radial components that vary with horizontal and vertical
coordinates: B∗ = [B∗

r (r
∗, z∗), 0, B∗

z (r
∗, z∗)]. The magnetic field configuration and details

of its computation were discussed in Suslov et al. (2017b), see figure 4 in § 4 there. When
the electric potential difference Δφ0 is applied between the electrodes, the total current

I0 ≈ 2πσehΔφ0

ln(R2/R1)
(2.1)

flows mostly radially (see figure 2c) through the layer between them. The interaction of
the current and the applied magnetic field creates a Lorentz force F ∗

L = j∗ × B∗, where j∗
is the current density. This force drives the flow predominantly circumferentially.

Because of a low conductivity of electrolytes (see Pérez-Barrera et al. (2016) and Suslov
et al. (2017b) for typical physical characteristics of an electrolyte), hydrodynamic flows
arising in the considered set-up practically do not influence the magnetic field of a magnet
and the so-called small magnetic Reynolds number approximation (Davidson 2001) to the
equations describing fluid motion can be used. Non-dimensional axisymmetric Poisson’s
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equation for the electric potential, the momentum equations and the continuity equation
for an incompressible fluid are then written in cylindrical coordinates as

∂zzφ + ε2
[
∂rrφ + ∂rφ

r

]
= ε2Ha2

[
Br

(
ε2∂θw

r
− ∂zv

)
+ Bz

(
∂rv + v

r

)]
, (2.2)

∂tu + u∂ru − v2

r
+ w∂zu = −∂rp + jθBz

ε2Re
+ 1

Re

[
∂rru + ∂ru

r
− u

r2 + ∂zzu
ε2

]
, (2.3)

∂tv + u∂rv + uv

r
+ w∂zv = jzBr − jrBz

ε2Re
+ 1

Re

[
∂rrv + ∂rv

r
− v

r2 + ∂zzv

ε2

]
, (2.4)

∂tw + u∂rw + w∂zw = −∂zp
ε2 − jθBr

ε2Re
+ 1

Re

[
∂rrw + ∂rw

r
+ ∂zzw

ε2

]
, (2.5)

∂ru + u
r

+ ∂zw = 0, (2.6)

where φ is the electric potential, (u, v, w) are the velocity components in the radial (r),
azimuthal (θ ) and vertical (z) directions, respectively, and p is the pressure including the
hydrostatic component. In the above equations, the non-dimensional magnetic field created
by a disc magnet is B = (Br, 0, Bz). The electric current density components are

jr = −∂rφ + Ha2vBz, jθ = −Ha2(uBz − ε2wBr), jz = −∂zφ − ε2Ha2vBr.

(2.7a–c)

Equations (2.2)–(2.7a–c) are non-dimensionalised as

(r∗, z∗) = R2 − R1

2
(r, εz), (u∗, v∗, w∗) = U0(u, v, εw),

t∗ = R2 − R1

2U0
t, p∗ = ρU2

0p,

( j∗r , j∗θ , j∗z ) = 2σeΔφ0

R2 − R1

(
jr, jθ ,

1
ε

jz

)
, (B∗

r , B∗
θ , B∗

z ) = B0(εBr, 0, Bz),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

where star denotes dimensional quantities. Here the aspect ratio of the electrolyte layer ε,
the square of Hartmann number Ha2 characterising electromagnetic effects and Reynolds
number Re quantifying viscous effects are

ε = h
R2 − R1

, Ha2 = σeB2
0h2

4μ
, Re = ρU0(R2 − R1)

2μ
, (2.9a–c)

where the velocity scale is defined as U0 = σeΔφ0B0h2/2μ(R2 − R1). The typical
experimental values of these parameters are ε ∼ 10−1, Ha2 � 10−5 and Re ∼ 103 (Suslov
et al. 2017b).

The no-slip/no-penetration velocity boundary conditions at the cylindrical electrodes
and non-conducting bottom are

u = v = w = 0 at z = −1 and at r = α ± 1, (2.10)

where α = (R2 + R1)/(R2 − R1) (α ≈ 1.84 in experiments described in Pérez-Barrera
et al. (2015) and Suslov et al. (2017b) and in our current computations). Neglecting the
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Swirling electrolyte. Part 1

deformation of the free surface (Satijn et al. 2001; Suslov et al. 2017b) the tangential
stress-free condition is written as

w = ∂zu = ∂zv = 0 at z = 1. (2.11)

The boundary conditions for the electric potential at the electrode surfaces, the
non-conducting bottom and the free surface are

φ = 0 at r = α − 1 and φ = 1 at r = α + 1, (2.12a,b)

∂zφ = 0 at z = −1 and ∂zφ = −ε2Ha2vBr at z = 1, (2.13a,b)

respectively.
We also note that a steady-state θ -independent pressure field component satisfies the

following Poisson equation (unfortunately, a similar equation given in Suslov et al. (2017b)
contained a number of unnoticed typesetting errors; it should be replaced with (2.14), with
the Froude number multiplying its right-hand side due to a different pressure scaling)

∂zzp + ε2
[
∂rrp + ∂rp

r

]
= Ha2

Re
[B2

z ∂zw + BrBz(∂zu + ε2∂rw) + ε2B2
r ∂ru]

− Ha2

2Re
[u∂rB2 + w∂zB2] + ε2ω2

− 1
2

[
∂zzu2 + ε2

(
∂rru2 + ∂ru2

r

)]

+ u
[
∂zzu + ε2

(
∂rru + ∂ru

r
− u

r2

)]

+ v

[
∂zzv + ε2

(
∂rrv + ∂rv

r
− v

r2

)]

+ ε2w
[
∂zzw + ε2

(
∂rrw + ∂rw

r

)]
, (2.14)

where ω2 = ω2
r + ω2

θ + ω2
z , u2 = u2 + v2 + ε2w2 and B2 = ε2B2

r + B2
z are squares of the

non-dimensional flow vorticity and velocity and of the applied magnetic field. The pressure
must satisfy the following boundary conditions

∂rp = 1
Re

(
∂rru + ∂ru

r

)
at r = α ± 1, (2.15)

∂zp = 1
Re

∂zzw at z = −1, (2.16)

∂zp = 1
Re

(∂zzw + Ha2BrBzu) at z = 1 (2.17)

that are consistent with the momentum equations in the vicinity of the physical boundaries
and take into account the velocity boundary conditions (2.10) and (2.11).

These equations with the specified boundary conditions admit steady θ -independent
solutions (referred to as Type 1 and 2 solutions) that have been discussed in detail in
Suslov et al. (2017b) and briefly outlined in the introduction here. Linear stability of
such solutions with respect to the m-periodic infinitesimal perturbations in the form
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w′(r, z) exp(σ t + imθ) has been subsequently investigated in McCloughan & Suslov
(2020a). Note that the solution of Poisson’s equation (2.2) for electric potential with
boundary conditions (2.12a,b) and (2.13a,b) can be written as

φ = φ̄(r) + ε2Ha2φ̃(r, z) =
ln

r
α − 1

ln
α + 1
α − 1

+ ε2Ha2φ̃(r, z), (2.18)

where

φ̃ = 0 at r = α − 1 and r = α + 1, (2.19a,b)

∂zφ̃ = 0 at z = −1 and ∂zφ̃ = −vBr at z = 1. (2.20a,b)

This potential induces the electric current j = j̄ + j̃, where

j̄ =
[
−
(

r ln
α + 1
α − 1

)−1

, 0, 0

]T

, (2.21)

j̃ = Ha2[vBz − ε2∂rφ̃, ε2wBr − uBz, −ε2(∂zφ̃ + vBr)]T. (2.22)

The example of such steady azimuthally invariant electric potential and current
distributions is shown in figure 2. It demonstrates that the maximum variation of
the electric potential across the flow domain induced by a steady fluid motion field
ū = [ū(r, z), v̄(r, z), w̄(r, z)]T does not exceed 1.5 × 10−4% of the applied electric
potential difference so that the associated variation of the Lorentz force remains negligible.
The induced current tends to reduce the total (predominantly radial) current, but
quantitatively such a reduction is negligible compared with the current applied externally.
In view of this, in what follows we neglect any time-dependent perturbations φ′(r, z, t)
of the steady-state potential φ̄ + φ̃ that could be induced by an unsteady velocity field
perturbations |u′(r, z, t)| � |ū(r, z)|. This reduces the system of perturbation equations
and the corresponding computational cost. A systematic relative error |φ′|/|u′| introduced
by neglecting φ′ in the linearised equations discussed in the following is of the order of
ε2Ha2 ∼ 10−6 that we deem acceptable compared with the error of the order of 10−4

introduced by truncating the asymptotic series developed in § 3. The resulting linearised
perturbation equations have been given explicitly in McCloughan & Suslov (2020a) and
will not be repeated here. We just mention for the future reference that they can be written
in an operator form as

Lσ ;Πw′ ≡ (AΠ − σB)w′ = 0, (2.23)

where σ = σR + iσ I is the complex amplification rate and Lσ ;Π , AΠ and B are
matrix-differential and matrix operators, respectively, arising from the linearised
perturbation equations and boundary conditions,

w′ = [u′(r, z), v′(r, z), u′
z(r, z), p′(r, z)]T (2.24)

is the vector of meridional perturbation quantities, Π = {Re, ε, m} is the set of the
governing parameters. Hartmann number is fixed to zero in stability equations. In the
subsequent analysis we also take m = 0 so that only θ -independent component of the flow
is considered.
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3. Weakly nonlinear formulation

Solutions of linearised equations (2.23) for various values of the governing parameters Π

are eigenfunctions corresponding to a discrete eigenvalue spectrum σi. The eigenvalues
are sorted in the order of a decreasing real part

σR
0 ≥ σR

1 ≥ σR
2 ≥ · · · (3.1)

and only eigenfunctions corresponding to σR
i > 0, i = 0, 1, 2, . . . (temporally growing

perturbations) are deemed to represent physically observable flow patterns. For Type 1 and
2 basic flows, they have been discussed in detail in McCloughan & Suslov (2020a), where
it was shown computationally that at most one unstable eigenfunction can be identified for
each set of the governing parameters. Furthermore, it was also established in McCloughan
& Suslov (2020a) that Type 1 basic flow remained linearly stable whereas Type 2 solutions
were unstable with respect to perturbations with wavenumbers m belonging to a finite
range. Importantly, it was demonstrated that azimuthally invariant perturbations with
m = 0 grew most rapidly. This prompted their weakly nonlinear consideration that was
carried out up to the second order in perturbation amplitude, which enabled the authors to
conclude that Type 1 and 2 solutions undergo a local saddle-node bifurcation at Re = Re∗∗.
Here we extend that study to include third-order terms so that we can understand global
dynamics of the considered physical system beyond the bifurcation point and discover
a hierarchy of catastrophes experienced by the flow as its governing parameters change.
The same Chebyshev pseudo-spectral collocation method was used as that described in
Suslov et al. (2017b) and McCloughan & Suslov (2020a). Further details of the numerical
implementation will be presented in Part 2 of this paper.

Let w̄ represent the steady θ -invariant basic flow solution vector computed at Re0 �
Re∗∗ (Re0 cannot be exactly equal to or greater than Re∗∗ because both the Type 1 and
2 solutions cease to exist and the computational procedure fails to converge there). As
discussed in McCloughan & Suslov (2020a) the generalised eigenvalue problem (2.23)
derived for m = 0 from equations linearised about w̄ results in a real growth rate σ0 = σR

0 ,
which tends to zero at Re0 → Re∗∗. The corresponding eigenfunction is defined up to
an arbitrary multiplicative amplitude A. Since the maximum perturbation growth rate is
close to zero, the magnitude of the amplitude must be small. Therefore, we rescale it by
introducing a formal order parameter ζ : A = ζ Ã, where Ã = O(1). We also introduce the
scaled parametric distance from point Re0: δ = ζ 2δ̃ = (Re − Re0)/Re0, δ̃ = O(1).

We look for the asymptotic solution in the vicinity of Re0 in the form that is informed
by the fact that the governing equations have a quadratic nonlinearity (e.g. Pham & Suslov
2018):

w = w̄ + Aw′
0 + δw21 + A2w22 + Aδw31 + A3w32 + · · ·

= w̄ + ζ Ãw′
0 + ζ 2(δ̃w21 + Ã2w22) + ζ 3(Ãδ̃w31 + Ã3w32) + O(ζ 4), (3.2)

where the vector of flow quantities is w = [u, v, w, p]T. Subscripts 21, 31 and 22, 32 denote
flow deviations from w̄ computed for Re0 due to the variation of the governing parameter
(Re /= Re0) and contributions due to the nonlinearity of the problem, respectively.

Substituting (3.2) into the governing equations (2.3)–(2.7a–c) and boundary conditions
(2.10) and (2.11) we regain the basic flow equations from the ζ 0 terms and the linearised
perturbation equations at the order of ζ 1, that is,

ÃLσ0;Π0w′
0 ≡

(
ÃAΠ0 − dÃ

dt
B
)

w′
0 = 0, Π0 = {Re0, ε, 0}. (3.3)
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It follows from comparing (2.23) and (3.3) that

dÃ
dt

= σ0Ã (3.4)

and that Lσ0;Π0 is necessarily a singular operator, which is required to obtain a non-trivial
perturbation solution w′

0.
Equations arising at the second order of ζ can be written as

δ̃A0;Π0w21 +
(

Ã2AΠ0 − dÃ2

dt
B
)

w22 ≡ δ̃L0;Π0w21 + Ã2L2σ0;Π0w22 = δ̃f 21 + Ã2f 22,

(3.5)

since in view of (3.4)
dÃ2

dt
= 2σ0Ã2, (3.6)

where f 21 = [ f (1)
21 f (2)

21 f (3)
21 0]T and f 22 = [ f (1)

22 f (2)
22 f (3)

22 0]T are defined in Appendix A.
Equation (3.5) is equivalent to a system of two-component equations

L0;Π0w21 = f 21 and L2σ0;Π0w22 = f 22. (3.7a,b)

The operators in the left-hand sides of these equations are not singular and, thus,
(3.7a,b) can be solved uniquely. However, since the computational parametric point Π0
is arbitrarily chosen in the vicinity of Π∗∗ = {Re∗∗, ε, 0}, it can approach it asymptotically
closely. In this limit, σ0 → 0 and the operators in the left-hand sides of (3.7a,b) become
singular. Therefore, the existence of solutions of these equations with non-zero right-hand
sides cannot be guaranteed unless the right-hand-side vectors are put in the range of the
operators. The additional degree of freedom required for adjusting the right-hand sides is
obtained by noting that (3.4) describing a fast exponential evolution is only valid for an
infinitesimal amplitude and it must be modified whenever the amplitude acquires a finite
size. Algebraically, this is done by adding terms to the evolution equation (3.4) that have
functional forms identical to those of terms appearing in the amplitude expansion (3.2) at
any particular order. Therefore, we write

dÃ
dt

= σ0Ã + ζ(K12δ̃ + K22Ã2), (3.8)

which leads to the appearance of additional terms in (3.7a,b):

L0;Π0w21 = f 21 + K21Bw′
0, L2σ0;Π0w22 = f 22 + K22Bw′

0. (3.9a,b)

Taking the limit of Π0 → Π∗∗ or, equivalently, σ0 → 0, w′
0 → w′∗∗, which makes the

operators in the left-hand side of (3.9a,b) identical and singular, and considering the
inner product of these equations with the adjoint eigenvector w†∗∗ of L0;Π∗∗ normalised
as 〈w†∗∗,Bw′∗∗〉 = 1 we obtain the classical solvability conditions that define constants K21
and K22 (Landau 1944; Stuart 1960; Watson 1960)

0 = 〈w†
∗∗, f 21〉 + K21, 0 = 〈w†

∗∗, f 22〉 + K22. (3.10a,b)

However, implementing the above in practice in the current problem is impossible because
neither steady-state basic flow solutions, nor their linearised perturbation, nor the adjoint
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Swirling electrolyte. Part 1

eigenvector can be found at Π∗∗ (see also the discussion in McCloughan & Suslov 2020a).
This means that all computations necessarily have to be performed at Π0 /=Π∗∗ so that
σ0 /= 0 and the operators in the left-hand sides of (3.9a,b) remain non-singular, thus,
making the choice of K21 and K22 ambiguous (given that for non-singular left-hand sides
these equations can be solved for any values of the constants). As was explained in Pham
& Suslov (2018) such an ambiguity is not an algebraic artefact but rather is a reflection
of physical reality: away from the critical point one must chose explicitly the angle of the
desired projection of the full solution of the physical problem onto a space spanned by the
eigenfunctions of the linearised perturbation problem. In other words, this means that one
has to provide an additional condition specifying the main features of the physical problem
that are to be retained as closely as possible under the solution projection given by (3.2).
As algorithmically proven in Pham & Suslov (2018) and discussed previously in Suslov &
Paolucci (1997, 1999) and references therein this additional requirement is formulated as
the weighted orthogonality conditions

0 = 〈w21,Mw′
0〉, 0 = 〈w22,Mw′

0〉, (3.11a,b)

where M is an appropriate weight matrix. Here we choose

M = B =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎦ (3.12)

so that the higher-order terms in (3.2) are weight-orthogonal to the eigenfunctions of the
linearised perturbation problem and the low-order truncation of this asymptotic series
retains most of the kinetic energy of the full nonlinear solution of the original problem.
Subsequently, as shown in Pham & Suslov (2018) equations (3.9a,b) are recast as extended
systems [L0;Π0 −Bw′

0

w′T
0 B 0

][
w21

K21

]
=
[

f 21

0

]
,

[L2σ0;Π0 −Bw′
0

w′T
0 B 0

][
w22

K22

]
=
[

f 22

0

]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.13a,b)

that are proven to be non-singular and, thus, can be solved using any standard
computational routine for systems of linear equations to simultaneously define (w21, K21)
and (w22, K22).

Proceeding similarly with equations arising at the third order of ζ and taking into
account that

dÃ2

dt
= 2Ã

dÃ
dt

= 2σ0Ã2 + 2ζ Ã(K12δ̃ + K22Ã2),

dÃ3

dt
= 3Ã2 dÃ

dt
= 3σ0Ã3 + 3ζ Ã2(K12δ̃ + K22A2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.14a,b)

we obtain
dÃ
dt

= σ0Ã + ζ(K21δ̃ + K22Ã2) + ζ 2(K31Ãδ̃ + K32Ã3) (3.15)
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and

Ãδ̃Lσ0;Π0w31 + Ã3L3σ0;Π0w32 = Ãδ̃(K31Bw′ + f 31) + Ã3(K32Bw′ + f 32), (3.16)

where f 31 = [ f (1)
31 f (2)

31 f (3)
31 0]T and f 32 = [ f (1)

32 f (2)
32 f (3)

32 0]T are defined in Appendix A.
Then (w31, K31) and (w32, K32) are found from

[Lσ0;Π0 −Bw′
0

w′T
0 B 0

][
w31

K31

]
=
[

f 31

0

]
,

[L3σ0;Π0 −Bw′
0

w′T
0 B 0

][
w32

K32

]
=
[

f 32

0

]
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.17a,b)

respectively. Finally, rewriting Ã and δ̃ in terms of A and δ in (3.15) leads to the amplitude
equation

dA
dt

= σ0A + K12δ + K22A2 + K31δA + K32A3 (3.18)

governing the temporal evolution of the θ -independent flow component near Π0.

4. Fold catastrophe

4.1. Determining fold points
The cubic amplitude equation (3.18) with real coefficients can have either one or three real
fixed points, see figure 3(a). Of interest here is the parameter set, where the number of such
points changes, that is, the fold catastrophe. In terms of parameters defined in the previous
sections, the task is to estimate Re∗∗ at which the Type 1 and 2 steady θ -independent
solutions cease to exist given (3.18) with coefficients estimated at Re0 < Re∗∗. This is
required since direct computations at Re∗∗ are impossible, see figure 3(b), where a closeup
of a fold is shown. The circles show the closest location to the catastrophe at which
computing the two distinct steady θ -independent basic flow solutions is still possible.
The phase diagram in figure 3(b) is topologically equivalent to that discussed in detail in
McCloughan & Suslov (2020a). Therefore, we conclude that the saddle-node bifurcation
analysed there is just a local feature of a larger-scale fold catastrophe that we discovered
here by considering a higher-order amplitude expansion of the flow fields.

Setting dA/dt = 0 in (3.18), differentiating it with respect to A, taking into account
that at the catastrophe point dδ/dA = 0 and solving for δ we find the location of the fold
catastrophe in terms of A:

δ∗∗ = −3K32A2 + 2K22A + σ0

K31
. (4.1)

Substituting δ = δ∗∗ from (4.1) to (3.18) leads to a cubic equation for A at the fold
catastrophe point:

2K31K32A3 + (K22K31 + 3K21K32)A2 + 2K21K22A + σ0K21 = 0, (4.2)
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δ

0–1
(×10–5)
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Figure 3. (a) Fold catastrophe and (b) saddle-node bifurcation phase diagrams computed for the Type 2 basic
flow at Π0 = (Re0, ε, Ha, m) = (1493.88, 0.248, 5.08 × 10−3, 0). The curves show the location of fixed points
of (3.18) and the vectors correspond to the value of dA/dt. The circles indicate values of the fixed-point
amplitudes at δ = 0 corresponding to the computational parametric point Π0 and the square marks the position
of the predicted fold catastrophe point that is not accessible by direct computations.

which for σ0 → 0 has an asymptotically small solution

A∗∗ = −1
2

σ0

K22
− 1

8

(
K31

K21
+ 3

K32

K22

)
σ 2

0

K2
22

− 1
16

(
9

K2
32

K2
22

+ 4
K31

K21

K32

K22
+ K2

31

K2
21

)
σ 3

0

K3
22

+ O(σ 4
0 ). (4.3)

Finally, from (4.1) and (4.3) we obtain the approximate location of the fold catastrophe
point

Re∗∗ = Re0(1 + δ∗∗), δ∗∗ = σ 2
0

4K21K22

[
1 + 1

2

(
K31

K21
+ K32

K22

)
σ0

K22
+ O(σ 2

0 )

]
.

(4.4a,b)

4.2. Parameter sensitivity considerations
While (4.4a,b) enables one to determine the fold catastrophe point by computing
coefficients of the amplitude equation (3.18) at a parametric point Π0 some distance
away from it, the question arises how sensitive such a prediction is to the choice of
Π0. As seen from figure 4(a–e) the coefficients of (3.18) do not remain constant as
Re deviates from Re∗∗, which is expected since they depend on the structure of both
basic flow and perturbation fields that vary with the strength of an electric current that
determines the value of Re. However, the estimations of Re∗∗ remain sufficiently robust,
see figure 4( f ). For example, for Re0 = 1493.88 (the largest value of Reynolds number for
which the steady θ -independent basic flow solutions can be computed, see black circles
in figure 4) we obtain Re∗∗ = 1493.92, whereas for Re0 = 1470.00 we compute Re∗∗ =
1491.49. Therefore, shifting the computational point by 1493.88/1470.00 − 1 ≈ 0.016
leads to the Re∗∗ estimation error that is at least an order of magnitude smaller than this
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Figure 4. Coefficients of (3.18) evaluated for Type 2 basic flow and estimations of Re∗∗ as functions of Re0 for
(ε, Ha) = (0.248, 5.08 × 10−3). Black circles show the values computed at the parametric point that is closest
to the catastrophe point, where convergence of iterations can still be achieved.

shift: 1493.92/1491.49 − 1 ≈ 0.0016. Thus, the suggested weakly nonlinear expansion
procedure enables one to obtain accurate solutions without approaching the catastrophe
point asymptotically closely. This is a practically important conclusion: while the solution
at Re0 = 1470.00 can be obtained starting with a relatively crude initial guess, a very
careful parametric continuation procedure with at least 50 intermediate computations,
each providing an initial guess for the subsequent run, was required to approach the
value of Re0 = 1493.88. This is so because such an approach has to be strictly one-sided
with progressively decreasing parametric increments since overshooting Re∗∗ completely
breaks the catastrophe search process given that for Re > Re∗∗ solutions cease to exist and
Newton-type iterations cannot converge in principle.
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4.3. Post-fold catastrophe solution
Once the location of the catastrophe point Re∗∗ is determined, the natural question arises:
what happens to the physical flow at larger Reynolds numbers? Since Type 1 and 2 steady
θ -independent basic flow solutions cease to exist, multiple scenarios may be considered.
One of them is that another steady θ -invariant flow state may exist. However, as reported in
Suslov et al. (2017b) and McCloughan & Suslov (2020a), attempts to find the third solution
directly using Newton-type iterations, similarly to how Type 1 and 2 basic flows were
found, fail. This indicates that even if such a solution does exist, its basin of attraction is
sufficiently far from solutions found previously. Thus, we resort to the analysis of the third
fixed point of (3.18) that belongs to the upper branch of the S-shaped curve in figure 3(a),
see the top circle there. It exists in the finite neighbourhood of Π∗∗ for Re ≷ Re∗∗. We
denote the value of the amplitude at that point by A3 and find an explicit asymptotic
expression for it in the limit σ0 → 0 (or, equivalently, Π → Π∗∗):

A3 = −K22

K32
+ σ0

K22

[
1 + K32

K22

σ0

K22
+ 2

K2
32

K2
22

σ 2
0

K2
22

]

+ γ

4
σ 2

0

K2
22

[
K31

K21
− K32

K22
+ 1

2
K32

K21

(
5

K31

K22
+ K31

K21
− 7

K21

K22

K32

K22
− K32

K22

)
σ0

K22

]

+ O(σ 4
0 ), (4.5)

where γ = (Re − Re0)/(Re∗∗ − Re0), Re is the Reynolds number of interest, Re0 is the
Reynolds number at which the coefficients of (3.18) are evaluated and Re∗∗ is the Reynolds
number of the catastrophe point (approximately given by (4.4a,b)). This enables us to
reconstruct the corresponding steady azimuthally invariant component of the flow field
using (3.2). To do that, we choose Re0 = 1493.88 < Re∗∗ for which we still can find
two distinct steady-state solutions by a standard iterative process. It has been shown in
McCloughan & Suslov (2020a) that both Type 1 and 2 basic flows can be used to determine
equally good estimations of the catastrophe point Re∗∗. However, since our goal here is to
approximate the third steady-state solution that is topologically ‘closer’ to the Type 2 basic
flow (corresponding to the middle segment of the S-shaped curve in figure 3a), we use the
latter as w̄ in (4.4a,b). Subsequently, we compute the coefficients and component fields
w′, w21, w22, w31 and w32. The coefficient values that we obtain using Nr × Nz = 51 × 40
spectral collocation modes (rather than Nr × Nz = 45 × 31 used in Suslov et al. (2017b)
and McCloughan & Suslov (2020a), where the details of numerical approximation have
been given) are listed in table 1. Note that the σ0, K21 and K22 values reported here are
somewhat different from those reported previously in McCloughan & Suslov (2020a).
This is partially because of a higher spatial resolution used to produce the current results
as well as because of the properties of the Matlab (The MathWorks 2020) routine eigs
used to compute eigenvectors. It has an internal eigenvector scaling procedure returning
results that generally depend on a particular computer architecture so that the same code
can return differently scaled eigenvectors when it runs on different computers. Of course,
this has no effect on the reported physical results: different scaling of eigenvectors leads
to the corresponding change of the computed coefficients and amplitudes so that the
product Aw′ remains invariant and so does the location Re∗∗ ≈ 1493.92 of the catastrophe
point.

This enables us to estimate the value of A3 ≈ 1.04 × 10−1 at a representative value
of Re = 1500 > Re∗∗ (γ = 153), see figure 3(a), where we now can reconstruct the
post-catastrophe steady θ -independent flow component that cannot be computed directly.
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σ0 K21 K22 K31 K32 δ∗∗ A∗∗

5.92 × 10−4 2.03 × 10−2 8.49 × 10−1 6.67 × 10−1 −8.23 5.13 × 10−6 −3.49 × 10−4

Table 1. Values of coefficients entering (3.18) and the location of a catastrophe point computed for
Π0 = (Re0, ε, Ha) = (1493.88, 0.248, 5.08 × 10−3).
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Figure 5. Meridional θ -independent steady Type 2 basic flow velocity (a) and azimuthal vorticity (b) fields
near the fold catastrophe point for (Re0, ε, Ha) = (1493.88, 0.248, 5.08 × 10−3).

Figures 5–8 depict the flow fields for each component of the asymptotic solution and
figure 11 shows the approximated full flow field given by (3.2). Panels (a) and (b) in
each figure illustrate the meridional velocity and the azimuthal vorticity of the flow field,
respectively.

Figure 5 shows the converged Type 2 basic flow field. It corresponds to a toroidal flow,
which, for lower Reynolds numbers, possess a secondary recirculation in the top outer
corner of the meridional cross-section. However, for Re0 in the close vicinity of Re∗∗
the secondary circulation is completely suppressed so that visually the Type 2 solution
depicted in figure 5 is indistinguishable from a typical Type 1 flow. However, such a basic
flow is linearly weakly unstable (the growth rate σ0 is slightly positive, see table 1) with
respect to a perturbation that contains a prominent counter-rotating toroidal structure near
the outer cylinder with the flow in the rest of the meridional plane almost not affected by
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Figure 6. Meridional θ -independent linearised perturbation velocity (a) and azimuthal vorticity (b) fields for
the same parameters as in figure 5.

it, see figure 6. It is also seen from figure 6(a) that the secondary circulation occurs along
with the formation of an azimuthal jet near the corner between the outer cylinder and the
free surface. It is directed against the main flow and, consequently, decelerates the overall
azimuthal fluid motion there. Therefore, the secondary circulation occurs at the expense
of energy taken from the local azimuthal flow.

The second-order perturbation field induced by the problem’s nonlinearity enhances
both this secondary toroidal structure and the primary meridional circulation of
the basic flow and further retards azimuthal flow near the upper right corner, see
figure 7. The secondary circulation near the right top corner is also enhanced by
the third-order nonlinear perturbation shown in figure 8. However, the second- and
third-order perturbations have opposite influences on the main flow structure in the
meridional plane: while the second-order perturbations are characterised by clockwise
main circulation, its third-order counterpart counteracts it with anti-clockwise motion in
the bulk of fluid. The ultimate balance between these two influences leads to the existence
of an equilibrium amplitude A3 defining the fixed point of (3.18), see the top circle
in figure 3(a).

Figures 9 and 10 show the variation of the basic flow and the linearised
perturbation fields with the parametric shift δ away from the computational point
Π0, respectively. Even though the contribution of these variations to the overall
balance is negligible given a very small parametric shift δ = 1500/1493.88 − 1 ≈
4.1 × 10−3 considered here, these figures demonstrate a noteworthy but somewhat
counterintuitive tendency: the increase of Reynolds number, that is strengthening
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Figure 7. Second-order meridional θ -independent perturbation velocity (a) and azimuthal vorticity (b) fields
for the same parameter values as in figure 5.

of electromagnetic flow forcing, leads to the decreasing intensity of both primary
and secondary circulations (fluid circulation in figures 5 and 9 and in figures 6
and 10 occurs in opposite directions). From the energy point of view this cannot
continue indefinitely and eventually as Re increases the flow is forced to transition
to a more energetic state, which provides a physical explanation to the detected fold
catastrophe.

Figure 11 depicts the overall asymptotic solution (3.2) at Re = 1500. Despite the original
basic flow shown in figure 5 having no visible secondary circulation, the reconstituted
solution has it very strongly pronounced. Having constructed this asymptotic solution
we now can use it as an initial guess for Newton iterations hoping to find the expected
steady state that would differ from the previously reported Type 1 and 2 flows and exist
for Re > Re∗∗. Reporting numerical implementation details of such an attempt are left for
Part 2 of this study whereas here we state that indeed the derived asymptotic solution is
found to be sufficiently close to the previously undetected steady state that we call the
Type 3 flow so that Newton iterations do converge. The resulting field that represents
the solution of nonlinear steady θ -independent governing equations (2.2)–(2.6) obtained
for Re > Re∗∗ is illustrated in figure 12. It is remarkable that while the approximate
asymptotic solution shown in figure 11 differs from the full Type 3 solution illustrated
in figure 12 quantitatively, it accurately captures all qualitative features of the full solution
including the existence of the secondary circulation and of the submerged jet, where
the magnitude of the azimuthal velocity component v exceeds that at the free surface.
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Figure 8. Third-order meridional θ -independent perturbation velocity (a) and azimuthal vorticity (b) fields
for the same parameter values as in figure 5.

This demonstrates once again the robustness of the asymptotic procedure developed
here.

Even though the analysis here says nothing about the stability of the steady
θ -independent Type 3 flow that is different from both Type 1 and 2 basic flows
investigated previously, our past studies (McCloughan & Suslov 2020a) demonstrated that
the experimentally observable vortices arise on the free surface due to instabilities at the
border between the two toroidal flow structures. Therefore, the new θ -independent flow
state obtained here has the necessary physical features to serve as a background for to
the formation of such vortices in post-catastrophe regimes at Re > Re∗∗ as indeed will be
confirmed in Part 2 of this study.

5. Cusp catastrophe

All numerical results presented so far have been obtained for a fixed value of
ε. To complete the discussion we now turn to investigating what happens as the
thickness of an electrolyte layer changes. A significant effort was invested into
drawing a parametric existence map of the Type 1 and 2 steady θ -independent basic
flow solutions locating fold (saddle-node bifurcation) points by direct computations
with parametric continuation in McCloughan & Suslov (2020a). The weakly
nonlinear consideration based on the third-order amplitude expansion developed in
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Figure 9. Meridional variation of θ -independent Type 2 basic flow velocity (a) and azimuthal vorticity
(b) fields near the computational point Π0 for the same parameters as in figure 5.

the present work offers a computationally much cheaper procedure for achieving
the same goal and providing a much more insightful view of the arising flow
structures.

In figure 13 we present the collection of fixed-point diagrams for (3.18) computed for
various non-dimensional electrolyte layer depths ε. The individual S-shaped amplitude
curves have two turning points. The one corresponding to a larger value of Re approximates
Re∗∗, where Type 1 and 2 basic flows annihilate each other in a local saddle-node
bifurcation, see the blue solid line in figure 13(a,c). The red solid lines in the same panels
connect the second fold points. Qualitatively, they correspond to Re∗ < Re∗∗ at which the
Type 2 solution ceases to exist as found in McCloughan & Suslov (2020a). No conclusive
evidence that at Re∗ the Type 2 solution is replaced with yet another θ -independent
solution different from both Type 1 and 2 flows was given in McCloughan & Suslov
(2020a) (a numerical steady-state solver used there failed to produce it starting from a
random initial guess or using parametric continuation from the Type 2 solution). Yet, the
S-shaped curves in figure 13 strongly suggest that such a flow topologically similar to the
asymptotic solution shown in figure 11 should exist as indeed will be confirmed in Part 2
of this study.

As the depth of the electrolyte layer increases, the difference between the two turning
points of the S-shaped curves approaches zero at ε ≈ 0.649 (which correspond to the
depth of 19.6 mm in the experiments of Pérez-Barrera et al. 2015, 2016), where the
fold disappears. Algebraically, this can be seen from (4.2) that in the limit σ0 → 0
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Figure 10. Third-order variation of meridional θ -independent perturbation velocity (a) and azimuthal
vorticity (b) fields for the same parameters as in figure 5.

factorises to

A(2K31K32A2 + (K22K31 + 3K21K32)A + 2K21K22) = 0, (5.1)

which has three solutions: A1 = 0 and

A2,3 = −K22K31 + 3K21K32 ± √
D

4K31K32
,

D = (K22K31 + 3K21K32)
2 − 16K21K22K31K32.

⎫⎪⎬
⎪⎭ (5.2)

The behaviour of the discriminant D is shown in figure 14. When it becomes negative,
the real amplitude solutions A2,3 cease to exist. Therefore, D = 0 corresponds to
the two-parameter cusp catastrophe. Indeed, the projection of the lines connecting
the two fold points in figure 13(a,c) onto the (Re, ε)-plane (the solid blue and
red lines) form a cusp shown in figure 13(b,d) with the fold existing between
them.

The location of folds predicted by the analysis of (3.18) remains very close to the values
of Re∗ and Re∗∗ determined from very expensive direct numerical computations completed
in McCloughan & Suslov (2020a), compare the dashed and solid lines in figure 13(b,d).
In figure 13(b) the coefficients of (3.18) were computed for Re0 chosen close to Re∗∗
so that the dashed and solid blue lines are indistinguishable within the plot resolution.
The difference between the parametric location of the second fold and Re∗ (the red lines)
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Figure 11. Approximation of the steady θ -independent component of the flow for Re = 1500 > Re∗∗:
meridional velocity (a) and azimuthal vorticity (b) fields for the same values of ε and Ha as in figure 5.

is noticeable, yet topologically the two curves are identical and lead to the same cusp
location.

Of course, from a practical point of view one would wish to avoid expensive direct
computations of the catastrophe points Re∗ and Re∗∗ replacing them with a much less
time-consuming analysis of (3.18). Thus, one generally cannot rely on choosing Π0 at
which its coefficients are to be computed to be close to Π∗ or Π∗∗ as they may not
be known. To demonstrate the robustness of the developed analysis in figure 13(c,d) we
present the cusp catastrophe diagrams computed using coefficients of (3.18) evaluated far
away from both Re∗ and Re∗∗, namely, at a half of parametric distance between them,
see the black dashed line in figure 13(d). Despite such a remote computational position,
the predicted locations of Re∗ and Re∗∗ (the solid red and blue lines) remain close to the
true values (the dashed lines) with the position of the cusp point determined accurately
regardless of where the coefficients were computed.

Finally, we note that once the fold disappears in the cusp catastrophe the topologically
different solutions obtained for the past-catastrophe parametric values are expected to
morph into each other in a continuous way. This is indeed demonstrated in figure 15. It
shows that as the strength of electric current (the magnitude of the Reynolds number)
increases near the cusp catastrophe the single-torus flow field very quickly develops
the secondary circulation. However, unlike in the fold catastrophe existing in thinner
electrolyte layers, this transition occurs in a continuous way.
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Figure 12. Full numerical steady θ -independent (Type 3) flow solution: meridional velocity (a) and
azimuthal vorticity (b) fields for the same parameters as in figure 11.

6. Is there a similarity with vortex breakdown or its variants?

Prior to concluding Part 1 of this study we touch upon a question that a reader familiar
with other types of swirling flows in a cylindrical geometry may naturally ask: do
the azimuthally invariant steady flows discussed in this paper bear any similarity with
those described previously in the literature? Our past paper (Suslov et al. 2017b) has
addressed it in length with the main conclusion being that despite a superficial similarity
the electromagnetically bulk-driven flow considered here has no physically equivalent
counterparts among mechanically induced flows. However, consideration in Suslov et al.
(2017b) was primarily given to boundary/shear layer-type flows as mentioned in the
introduction in this paper. With the full topology of various steady azimuthally invariant
flows bulk-driven by the Lorentz force in a shallow annular channel now being established,
it is of interest to re-examine this conclusion in a specific context of vortex breakdown, the
phenomenon that received much attention starting from the 1960s (Benjamin 1962; Vogel
1968; Escudier 1984).

A classical vortex breakdown occurs in a closed cylinder filled with a fluid the swirling
motion of which is driven by the rotation of one of the solid end walls (see, for example,
Gelfgat, Bar-Yoseph & Solan (1996) and Blackburn & Lopez (2002) and references
therein). The resulting Ekman layer is centrifugally driven towards the side wall next
to it. The end-to-end symmetry is broken when the opposite wall of the container is either
stationary or rotates with a different speed. The overall flow then consists of the fluid
moving along the side wall from the quickly rotating end to the opposite and spiralling
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Figure 13. Cusp catastrophe diagrams computed for (a,b) Re0 = Re∗ + 0.99(Re∗∗ − Re∗) and (c,d) Re0 =
(Re∗ + Re∗∗)/2 in the (Re, ε) parametric space. The red and blue dashed lines in panels (b) and (d) correspond
to the values Re∗ and Re∗∗, respectively, reported in McCloughan & Suslov (2020a), the black dashed lines
show the values Re0 at which coefficients of (3.18) have been computed in each panel. The solid lines illustrate
the positions of folds.
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Figure 14. Variation of discriminant D given by (5.2) with non-dimensional layer thickness ε.

back near the axis of the vessel. Superficially, this may appear to be similar to the Type 1
flow in the context of the present study (with the obvious difference that the fluid has to
move up along the inner solid cylinder in our case rather than to spiral down freely).
As the rotation speed of the end wall increases the recirculation bubble near the axis
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Figure 15. Rapid appearance of the secondary toroidal flow structure near the cusp catastrophe point:
azimuthal vorticity fields computed for ε = 0.649 (h = 19.6 mm), Ha = 1.33 × 10−3 and (a) Re = 525,
(b) Re = 542 and (c) Re = 559 (I0 = 0.030, 0.031 and 0.032 A, respectively).

of the cylinder forms and this is referred to as the vortex breakdown. Again, this may
appear similar to the formation of a secondary circulation as in the Type 2 and 3 solutions
reported here (with the difference that in our set-up the secondary circulation occurs near
the outer stationary solid wall rather than at the axis). This is where the similarities stop.
The physical reasons for that may be explained following the discussion in Shtern, del Mar
Torregrosa & Herrada (2012). These authors argue that the classical vortex breakdown
is closely related to the so-called swirl decay, that is, to the fact that the influence of
the end wall rotation driving the swirling motion of fluid decreases with the distance
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from it. This changes the balance between the centrifugal and viscous forces in the axial
direction, which, in turn, creates non-monotonic variation of pressure along the axis, which
ultimately causes the formation of recirculation bubbles and vortex breakdown along the
axis. In other words, the reason why vortex breakdown becomes possible is that the source
of the angular momentum is localised at the rotating end wall with the fluid dissipating
it through friction at stationary solid walls and viscous shear in the bulk. The principle
physical difference of the set-up considered in our study from that of the vortex breakdown
is that the swirl decay mechanism is inactive here because the source of the angular
momentum (Lorentz force) is distributed throughout the bulk of fluid. It is somewhat
weaker near the free surface than at the bottom of the annulus due to the reduction of the
magnetic field with the distance from the magnet on top of which the annulus rests, but
in thin layers considered here such a reduction is inconsequential. Numerical experiments
show that even if Lorentz force is assumed to be constant, this does not affect the existence
of secondary circulations in the Type 2 and 3 solutions.

This fundamental physical distinction between electromagnetically bulk-driven flows
and surface-induced vortex breakdown flows brings about further differences in how they
depend on the two main governing parameters, the aspect ratio Λ = h/R2 and Reynolds
number Re. The majority of the vortex breakdown results reported in literature have been
obtained for sufficiently long cylinders with Λ > 1 (for example, Λ = 2.5 in Blackburn &
Lopez (2002), Λ up to 4 in Gelfgat et al. (1996) and Shtern et al. (2012), Λ = 3.5, 4.6, 5.3
in Lopez (2012, and experimental works cited there)). Multiple azimuthally invariant
solutions were reported in these studies for sufficiently large rotation speeds and it was
found that they are not steady (Blackburn & Lopez 2002) and that their topological and
temporal complexities increase with the aspect ratio. Our results indicate the opposite
trend: all azimuthally invariant solutions remain steady and their topological complexity
reduces as the thickness of the fluid layer increases (further discussion of this is given in
Part 2).

The comparison of our present results obtained for thin annular layers with Λ < 0.25
with those for mechanically driven flows in similar short cylinders, perhaps, would be
more meaningful. Unfortunately, to the best of the authors’ knowledge the data for such
thin flows driven by a rotating end wall are rather limited, presumably because of the
relative flow simplicity dictated by strong viscous dissipation that does not warrant detailed
studies. For example, Gelfgat et al. (1996) reports that only one-torus steady solution with
no secondary circulation could be found for Λ = 0.5. It is likely that this observation
holds for even shorter cylinders (clearly, the swirl decay mechanism for vortex breakdown
suggested in Shtern et al. (2012) cannot work in thin layers). Therefore, we are led to
conclude that physical trends we discovered for electromagnetically bulk-driven flows are
significantly different to those existing in well-studied vortex breakdown flows with any
analogy being only superficial. We also note that a recent study of the influence of the
axial magnetic field on a flow of an electrically conducting fluid filling a cylinder with
all or some conducting walls and a rotating bottom reported in Laouari et al. (2021)
demonstrated that vortex breakdown is suppressed by the arising Lorentz force. However,
this occurs at much larger values of Hartmann number (Ha > 15) than those relevant to a
weak electrolyte used as a working fluid in the current work.

A variation of the vortex breakdown problem, where the opposite end walls of a cylinder
co- or counter-rotate, has also received much attention in the literature. Such studies have
been performed for relatively thin fluid layers and, thus, may potentially reveal features
somewhat similar to those reported here. In particular, Lopez (1998) used direct numerical
simulations (DNS) to find two distinct stable azimuthally invariant steady states in a

980 A59-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

75
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.75


Swirling electrolyte. Part 1

cylindrical flow between two counter-rotating discs. Subsequently, the author hypothesised
that there should be a third, unstable and thus unaccessible by DNS, state sandwiched
between the two stable flows in a parametric space. It was then qualitatively suggested
that these three states could form a cusp/fold similar to that we computed and presented
in figure 13 here with the Type 1 and 3 being stable and Type 2 unstable solutions (as
shown in McCloughan & Suslov (2020a) for the Type 1 and 2 flows and in Part 2 of
this manuscript for the Type 3 state). Of course, the physical mechanisms responsible
for the existence of multiple steady flow states, which are associated with topologically
different boundary layer separation patterns, between two counter-rotating discs are
completely different from those acting in a bulk-driven electrolyte layer, where boundary
layers either do not exist (at the free surface) or remains safely attached (at the solid
bottom).

Finally, we mention a set-up of a free-surface flow in a cylindrical tank with a
rotating bottom (e.g. Spohn, Mory & Hoppinger 1993, and references therein). In an
idealised formulation the free surface is assumed to be flat, and this approximation
has also been used in our computations, see Suslov et al. (2017b) for justification. It
might be tempting then to refer to such a similarity and argue the potential equivalence
of the bottom-driven cylindrical flow set-up with bulk-driven flows investigated here.
Following symmetry arguments Lopez et al. (2004) calculated azimuthally invariant
steady flow states by doubling the height of the computational domain and treating the
free surface as a symmetry plane of such an extended cylinder with co-rotating end
walls. They found that steady flows computed for small values of aspect ratio (Λ =
0.25), which are of relevance here, contained a prominent solid-body-rotation core, the
conclusion also confirmed by Yang et al. (2019) for computations performed accounting
for a realistic free-surface deformation. No such structure has been found in flows
discussed here. Therefore, reinforcing the arguments of Suslov et al. (2017b) we are led
to conclude that despite a superficial resemblance none of the well-studied wall-driven
swirling flows share their features with flows caused by the action of the bulk Lorentz
force.

7. Conclusions

Despite the geometric simplicity of an annular flow domain and of the electromagnetic
forcing driving the primary circumferential fluid motion, the investigated flow reveals
a surprisingly rich range of experimentally observable flow patterns that is shown to
differ from other swirling flow set-ups such as vortex breakdown in a cylinder with a
rotating end wall. The current study has focused primarily on the azimuthally invariant
flow component. It continues the computational and analytic effort made in our previous
study that discovered a saddle-node bifurcation in which two different steady flow
patterns termed Type 1 and 2 in Suslov et al. (2017b) and McCloughan & Suslov
(2020a) merge into one and then cease to exist as the Lorentz force driving the flow
increases. The current study undertook a higher order (cubic) asymptotic analysis based
on perturbation amplitude (A) expansion. It enabled us to strengthen the hypothesis
proposed in McCloughan & Suslov (2020a) that another azimuthally invariant flow
pattern exists for sufficiently large values of the radial current (and, thus, the driving
Lorentz force parameterised by the Reynolds number Re). Such a pattern is different
from Type 1 and 2 flows but has a secondary circulation that is qualitatively similar
to that of Type 2 flow reported previously. In the amplitude-forcing (A, Re) phase
space, along with Type 1 and 2 flows such a pattern forms a classical fold catastrophe.
The previously reported saddle-node bifurcation is found to be its local feature.
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Our subsequent consideration of flows arising in layers of different depths parameterised
by the non-dimensional layer thickness ε has established that the discovered fold
catastrophe is a part of a cusp catastrophe arising in the three-dimensional (A, Re, ε)
space. Overall, azimuthally invariant flow patterns found for sufficiently strong forcing
in past-fold- and past-cusp-catastrophe regimes are characterised by the presence of a
secondary circulation flow structure near the corner formed by the outer cylindrical wall
and the free surface.

We note that locating parametric positions of catastrophes mentioned above is a
challenging task: the traced solutions cease to exist beyond the catastrophe point so
that computationally one cannot ‘overshoot’ the bifurcation and then ‘come back and
refine’. This breaks standard iterative search procedures that may be successful for,
say, locating pitchfork bifurcations, where at least one solution exists on either side
of the critical point. Thus, one has to rely on strictly one-sided-approach procedures
that become unreliable in the vicinity of catastrophes or saddle-node bifurcations. To
overcome such a difficulty we introduced a procedure for deriving amplitude equations
describing canonical catastrophes that is capable of accurately estimating critical points
without the need of approaching them asymptotically closely in a parametric space,
which has the value of its own in a wider context than that of the considered physical
problem.

It was argued in McCloughan & Suslov (2020a) that the existence of the secondary
circulation is a necessary condition for the appearance of experimentally observable
anti-cyclonic vortices on the free surface. The current study shows that with the discovery
of the Type 3 two-tori steady azimuthally invariant flow such a condition is satisfied for
wide ranges of fluid layer depths and strengths of electromagnetic flow forcing, which can
explain the robustness of free-surface vortices observed in experiments (Pérez-Barrera
et al. 2015, 2016, 2019). However, there are still a number of flow aspects that require
further investigation that we will report in Part 2 of this study. In particular, it is of
interest how such a steady flow establishes starting from a motionless state. To answer
this question a time integration of the governing equation is required that we will
undertake and report in Part 2. In Part 2 we also investigate the instability of the newly
determined steady-state pattern, discuss how it leads to the formation of the experimentally
observable free-surface anti-cyclonic vortex patterns in strong-forcing regimes and report
their quantitative characteristics.

Declaration of interests. The authors report no conflict of interest.
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Sergey A. Suslov https://orcid.org/0000-0002-0998-2712.

Appendix A. Expressions appearing in weakly nonlinear expansions

The terms appearing in the right-hand sides of asymptotic equations appearing at the
second and third order of perturbation amplitude in § 3 are

f (1)
21 = 1

Re0

[
∂2

r ū + 1
r
∂rū − 1

r2 ū + 1
ε2 ∂2

z ū + Ha2
(

w̄Br − 1
ε2 ūBz

)
Bz

]
, (A1a)

f (2)
21 = 1

Re0

[
∂2

r v̄ + 1
r
∂rv̄ − 1

r2 v̄ + 1
ε2 ∂2

z v̄ − Ha2v̄

(
B2

r + 1
ε2 B2

z

)

+ 1
ε2 (Br∂zφ − Bz∂rφ)

]
, (A1b)
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f (3)
21 = 1

Re0

[
∂2

r w̄ + 1
r
∂rw̄ + 1

ε2 ∂2
z w̄ + Ha2

(
1
ε2 ūBz − w̄Br

)
Br

]
, (A1c)

f (1)
22 = u′∂ru′ − 1

r
v′2 + w′∂zu′, (A1d)

f (2)
22 = u′∂rv

′ + 1
r

u′v′ + w′∂zv
′, (A1e)

f (3)
22 = u′∂rw′ + w′∂zw′, (A1f )

f (1)
31 = u′∂ru21 + u21∂ru′ − 2

r
v′v21 + w′∂zu21 + w21∂ru′

+ 1
Re0

[(
∂2

r + 1
r
∂r − 1

r2 + 1
ε2 ∂2

z

)
u′ + Ha2

(
w′Br − 1

ε2 u′Bz

)
Bz

]
+ 2K21u22,

(A1g)

f (2)
31 = u′∂rv21 + u21∂rv

′ + 1
r

u′v21 + u21v
′ + w′∂zv21 + w21∂rv

′

+ 1
Re0

[(
∂2

r + 1
r
∂r − 1

r2 + 1
ε2 ∂2

z

)
− Ha2

(
B2

r + 1
ε2 B2

z

)]
v′ + 2K21v22, (A1h)

f (3)
31 = u′∂rw21 + u21∂rw′ + w′∂zw21 + w21∂zw′

+ 1
Re0

[(
∂2

r + 1
r
∂r + 1

ε2 ∂2
z

)
w′ − Ha2

(
w′Br − 1

ε2 u′Bz

)
Br

]
+ 2K21w22,

(A1i)

f (1)
32 = u′∂ru22 + u22∂ru′ − 2

r
v′v22 + w′∂zu22 + w22∂zu′ + 2K22u22, (A1j)

f (2)
32 = u′∂rv22 + u22∂rv

′ + 1
r

u′v22 + 1
r

u22v
′ + w′∂zv22 + w22∂zv

′ + 2K22v22, (A1k)

f (3)
32 = u′∂rw22 + u22∂rw′ + w′∂zw22 + w22∂zw′ + 2K22w22. (A1l)
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