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Abstract

The symbol $5(X) denotes the inverse semigroup, under composition of functions. of all
homeomorphisms between open subsets of a T, topological space X. The first result is that two
such semigroups $5(X) and $5(Y) are isomorphic if and only if the spaces X and Y are
homeomorphic. Ideals of #5(X) are next examined and it is shown that for many spaces X the
semigroup $(X) is O-simple. We also look at congruences on $(X); one result is that we
determine a congruence which in many instances is the largest proper congruence on $(X).

1. Introduction

If X is a nonempty topological space then the set of all homeomorphisms
whose domain and range are open subsets of X forms a semigroup under
composition of functions; we denote it by $5(X). In fact this semigroup is an
inverse semigroup (for every element a in the semigroup there exists a unique
element b, called the inverse of a, such that aba = a and bab = b). $5(X)isa
subsemigroup of the symmetric inverse semigroup #x (the inverse semigroup,
under composition, of all injective partial maps on the set X) and consists of
all maps which preserve the topological structure of X and have as domain
and range open subsets of X. The empty map, denoted by 0, belongs to
F6(X). We will consider $5(X) for topological T, spaces X.

The first result is an isomorphism theorem: if $5(X) and $5(Y) are
isomorphic then X and Y are homeomorphic (the converse clearly holds).
The next section of the paper examines ideals of $5(X). It turns out that for
many spaces X, including R" (the cartesian product of n copies of the real
line), the rationals, and the Cantor discontinuum, the semigroup $5(X) is
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0-simple (the only ideals are $5(X) and {0}). This is not always the case,
however, and as an example the ideals of #;(I) are enumerated (I denotes
the closed unit interval). The last section examines congruences on $5(X) for
T, spaces X. If $5(X) is O-simple then the largest proper congruence on
Ja(X) is given; in other instances a minimal proper congruence on $5(X) is
determined. Another result of this section shows that the only idempotent
separating congruence on J5(X) is the diagonal congruence.

General information about semigroups will be from Clifford & Preston
(1961, 1967). The notations dom f and ran f will denote the domain and the
range of a function f. If f, g € $5(X) and domfNrang = J then fog =0
(the empty map). It is clear that 0 is the zero of $5(X). If f € $5(X) then the
inverse of f (in the semigroup) is just the inverse mapping f~'. Idempotents
(elements f such that fo f = f) are identity maps on open subsets U of X and
will be denoted by iy.

2. Isomorphism theorem for $;(X)

THeoOREM 2.1, There exists an isomorphism ¢ from $5(X) onto $5(Y) if
and only if there exists a homeomorphism h from X onto Y. If ¢ is such an
isomorphism then h can be chosen so that ¢ (f)=hofeh™' for all f € $5(X).
Conversely, if h is a homeomorphism from X onto Y, then ¢, defined by
¢(fy=heofoh ' forf € $5(X), is an isomorphism from $5(X) onto $5(Y).

ProoF. Suppose ¢ is an isomorphism from $5(X) onto $5(Y). If X
has one point then the conclusion immediately follows (0 and ix are the only
elements in $5(X)). So now suppose X has more than one point and let
x € X. Since X isa T, space the set X —{x} is a nonempty open subset of X.
Homomorphisms of semigroups carry idempotents onto idempotents and so
¢ (ix-xy) = iv where V is open in Y. Since ¢ is an isomorphism we have that
V#Y and V# . Suppose y € V. Then VC Y —{y} and if ¢ '(iv_,)) = iv
then

ix- =@ (V)= ¢ '(ivav-on)=¢ '(iveivy) =@ '(iv)ee (iv o)
Slix iy = ium(x—(x))~
Hence X —{x}C U. Since Y —{y}# Y we have that U# X. Thus X —{x} =
U and so V=Y —{y}. Define a map h from X into Y by h(x)=y. Then

¢(ix—10) = iy oo

If x# x"then X —{x}# X —{x’}and so h(x)# h(x’). Thus h is injective.
The above reasoning applied to ¢ ™' yields that ¢ "(iv_i,)) = i x-( for some
x € X and so ranh = Y. Thus h is a bijection from X onto Y.

Next we show that ¢ (iv) = inw, for all U open in X, and ¢ “'(iv) = i vy
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for all V open in Y. If ¢(iy)=iw and x € U then U is not contained in
X —{x} and so W is not contained in Y —{h(x)}. Hence h(x)E W and so
h(U)C W.Conversely, if y € W then W is not contained in Y —{y} and so U
is not contained in X —{h '(y)}. Thus h '(y)€ U and so y € h(U). Hence
h(U)= W and ¢(iv) = inw, Now suppose Visopen in Y and ¢ '(iv) = ic.
Then h(G)= V and since h is injective we have that G = h '(V). Thus
¢ (iv) = b

Now we show that h is a homeomorphism. If V is open in Y then
¢ '"(iv) =i v, and since i, ', € $5(X) this means that h '(V)is open. Thus
h is continuous. Likewise h is open.

To complete this part of the proof we must show that if f € $5(X) then
e(fy=heofeh ' If f€ $5(X) and U =dom f then

dom ¢ (f) = dom ¢ (f "o f) = dom ¢ (i) = h(U) = dom (hofoh ).

Likewise ran ¢ (f) = h(ran f). Now let y € dom ¢(f). Then y = h(x) where
x €dom f. Let G be any open neighborhood of the point x which is contained
in dom f. Then foisc € $5(X) with dom(fe°i;)= G and ran(feis)= f(G).
Thus dom ¢ (feis)= h(G)and ran ¢ (foic) = h(f(G)). Now since x € G we
have that ¢ (f)(h(x)) € h(f(G)). Such sets f(G) form a basis for the point
f(x) and so ¢(f)(h(x))=h(f(x)). But this means that ¢(f)(y)=
(hefeh™")(y). Thus ¢(f)y=hefoh".

The proof of the converse of the theorem is straightforward.

Thron (1962) has shown that two Tp-spaces (a weaker requirement than
T} X and Y are homeomorphic if and only if their lattices of closed subsets
are lattice-equivalent. An isomorphism from 95 (X) onto $5(Y) induces an
equivalence between the lattices of open subsets (idempotents in $5(X) are
identity maps on open subsets) which in turn induces an equivalence between
the lattices of closed subsets. Hence theorem 2.1 may be derived from Thron’s
result. Schein (1965) also has a similar result for differentiable manifolds. If V~
is a differentiable manifold of class C” (where r 2 0) and LDiff?(V") (where
p =r) denotes the class of all local diffeomorphisms of class C? whose
domain and range are open subsets of V' then LDiff’(V") forms an inverse
semigroup under composition. Schein’s paper states that if W is an isomorph-
ism from LDiff?(V*) onto LDiff’(W") then there exists a diffeomorphism h
of class C* from the manifold V? onto the manifold W’ such that W(f)=
hofoh ! for all fELDiff?(V?).

3. Ideals of J.(X)

If S is an inverse semigroup and % C S then % is an ideal of S if and
only if SUS = U. If S contains a zero element 0, then {0} will be an ideal of S.
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Now if X is a discrete space then $5(X) is just $#x, the symmetric inverse
semigroup on the set X, and so if f and g belong to $5(X) then they will
generate the same ideal of #5(X) if and only if dom f and dom g have the
same cardinality. Thus there are many ideals. The next results present the
contrasting situation and show that for many spaces X the semigroup $5(X)
is O-simple. Recall that all topological spaces are assumed to be nonempty.

THEOREM 3.1. $5(X) is O-simple if and only if every nonempty open
subset of X contains an open subset homeomorphic to X.

Proor. Suppose $;(X)is 0-simple and U is a nonempty open subset of
X. Let 4 be the ideal generated by i,. Then U # {0} and so U = J5(X).
Hence ix € % and so ix = foi, g for some f, g € $5(X). But then domg =
X and g maps X homeomorphically onto an open subset of U.

Now suppose that every nonempty open subset of X contains an open
subset homeomorphic to X. Let % be an ideal of $5(X) with U # {0}.
Suppose f € AU and f# 0. Then if U = dom f we have that i, € % and U # .
By assumption U contains an open subset V which is homeomorphic to X.
Let h be a homeomorphism from V onto X. Then h € $5(X) and so
heigoch '€ But heiyoh '=ix and so U = F5(X). Thus F5(X) is
0-simple.

CoroLLARY 3.2, $6(R") is O-simple for n finite.

CoroLLary 3.3, Let Q denote the space of rational numbers. Then
F6(Q) is O-simple.

CoroLLARY 3.4. $;(€) is O-simple where € is the Cantor discontinuum.

CororrLary 3.5. If $5(X) is O-simple and Y is an open subset of X then
F6(Y) is O-simple.

ProposiTion 3.6.  Suppose $5(X.) is O-simple for all a« € A. Then
J6(laey X,) is 0-simple.

Proor. Let U be a nonempty open subset of [, X... Then there exist
a finite number of distinct a;, i = 1---n and nonempty open sets U, C X.,
i=1---n such that

pa(U)N---Np.(U.,)CU
where p,, 1s the projection map from Il,c\ X, onto X,. Since $5(X.) is
D-simple for each i = 1--- n there exist open sets V,, and maps h,, such that

V. C U, and h, i1s a homeomorphism from V, onto X,, for i=1:--n
Define a set V in ll,c, X. by
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V=p(V)N =N poi(Va,).
Then V is open and V C U. Define a map h from V into Il.c. X, by

(h(x))a =

{ha‘(xa,)ifa =a forsomei=1---n

x, otherwise.

Then h is a well defined map and it is straightforward to show that h is a
homeomorphism from V onto Il,c4 X.. Now by theorem 3.1 $5 (Il es X.) is
0-simple.

CoRroOLLARY 3.7. Let X be any open subset of R" (n not necessarily
finite). Then $5(X) is 0-simple.

The discrete case and the spaces mentioned in the last few results are at
opposite ends of the spectrum. When X = I, the closed unit interval, the
semigroup Js(I) is not O-simple and yet has very few ideals. Its ideals are
enumerated below.

The ideal, in $s(I), generated by the map in, is just the semigroup
F6(0,1). If U is the ideal generated by i, and 7 is the ideal generated by i,
where V ={0,3) U (, 1] then

01 IO DSUSV S Fo(]).

Now let f belong to $5(I). We show that the ideal generated by f is one of the
ideals listed above. The maps f and isms generate the same ideal. Let
G =dom f and suppose U’ is the ideal generated by is. Assume G# . If
G C(0,1) then ic € $5(0,1) and if f,h € $5(I) then foicgoh € $5(0, 1) also.
Hence %' C $5(0,1). But if G C (0, 1) then G contains an interval (a, b) and
so i; generates $5(0,1). Thus $5(0,1)C U’ and so U'= F5(0,1). If 0€ G
but 1 £ G then G contains a set [0, a) which is homeomorphic to (0, 1]. Thus
UCU'. Now i, € U since [0,1) and (1,0] are homeomorphic. But then
ic = igoipnandsoic € U. Hence W' C U andso U' = U Hf0E G and1 EG
but G#[0,1] then G contains a set of the form [0-a)U (b, 1] which is
homeomorphic to [0,5) U (3, 1]. Thus ¥ C U%’. But G C[0,¢) U (c, 1] for some
¢ and since this set is homeomorphic to V we have that ic € V. Hence 4’ C ¥
and so ¥ =U'. This shows that any element in $s(I) generates
one of the listed ideals and since these ideals form a finite chain, any ideal in
Fa (1) is of this form.

4. Congruences on $5(X)

In this section we look at various congruences on $s(X). All spaces are
assumed to be T.. If p is a congruence then 0, will denote the set
{f: (0, f) € p}. The notation U means the closure of U.
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THEOREM 4.1. Let p be a congruence on $5(X) such that 0, = {0}.
Suppose (f.g)€ p. Then dom f=dom g and if x €dom f Ndom g then f(x) =
3 (x).

Proor. Let p be a congruence on Js(X) with 0, = {0} and suppose
fg)Ep Lety Ed?m_f. If y Ea)m—g then there exists an open set U such
‘hat y € U but U Ndom g = . Now U Ndom f# Jsince y € dom f. Hence
foi.# 0. Since (f.g)€ p we have that (feiy.goiv)€E p. But since goiy =0
‘his means that feoi, €0, which is a contradiction. Hence dom fC dom g.
Likewise dom g C me

Now suppose (f.g)Ep and x EdomfNdomg. If f(x)# g(x) then
choose open U, V such that f(x)E U, g(x)E V but UN V =. Then
x€f(U)yNng (V) and if G=f"(U)Ng '(V) then (ivefeois ivegois)
Zp. But ivofeic =0 and ivegeis#0. This is a contradiction. Hence
Fx) = g(x).

THEOREM 4.2, Let f, g € $5(X). Define a relation p, on $5(X) by
f.g)Ep. if domf=domg and for every x €dom fNdomg, f(x)=g(x).
Then p, is a congruence.

Proor. Let p, be defined as above. First we show that p, is an
zquivalence relation. Clearly (f. f) € p, for all f € $5(X) and if (f. g) € p, then
8. f) € p;. Now suppose (f. g) € p, and (g. h) € p,. Then (k)—m?: m and
m = dom h. Hence me= domh. If x EdomfNdomg Ndomh then
f(x)= g(x) since (f,g)€ p, and g(x)= h(x) since (g, h) € p,. Hence f(x)=
h(x). Since X is T> and f and h agree on dom f N dom g N dom A, then f and
h agree on domf Ndomg NdomhNdomfNdomh. Now let x EdomfnN
dom h. We must show that f(x)= h(x). If U is any open set containing x then
UnNdomfNdomh is an open set containing x. Since x Edomf and
domf=domg we have x€&domg Hence (UNdomfNdomh)N
domg# J. This shows that any open set containing x has nonempty
intersection with dom f Ndom g Ndom h. Thus x € dom f Ndom g Ndomh
and by the above f(x)= h(x). This means that (f.h)€ p, and so p, is an
equivalence relation.

Next we show that p, is a congruence. Let (f. g) € p, and h € J5(X). We
will first show that (feh,goh)€ p,. Now

dom(feh)=h '(ranh Ndom f)

dom(geh)=h '(ranh Ndomg).

Let y € h '(ran h Ndom f) and let V be any open subset of dom h containing
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y. Then h(y)€ranh Ndom f and h(V) is an open set containing h(y). Let
G = h(V)Ndomf. Then h(y)€ G and since dom f=domg we have that
G Ndomg# . Hence G Nranh Ndomg# & and h '(G Nranh Ndomg)
A But h"'(GNranhNdomg)CV and so VNh '(ranh Ndomg)
# . This means that y € h™'(ran h Ndom g). Hence h~'(ran h Ndom f) C
h~'(ran h Ndom g). But then dom(feh)C dom(geh) and so dom(foh)C
dom{(ge°h). The exact same method shows that dom(geh)Cdom{(f-h).
Thus dom(feh)=dom(geh). Now let x €dom(feh)Ndom(geoh). Then
xE€domh and h(x)EdomfMNdomg. Since (f g)& p, this means that
f(h(x))=g(h(x)) and so (foh,g°h) € p:. ‘
Finally we consider h o f and h °g. We have that

dom(hof)= f'(domh Nran f)

dom(hog)=g '(domh Nrang).

Let x € f'(domh Nranf) and suppose U is an open subset of domf
containing x. Then f(x)& dom h. Let V = f(U) N dom h. Then V is open and
f(x)E V. Now f'(V)is an open set containing x and so f"(V)Ndomg# &
(dom f=domg, x Edomf). Let G = f'(V)Ndomg. Then G C U, G#QJ
and G Cdom f Ndom g. This means that f(G)= g(G). Hence g(G)C V C
dom h. But then g(G)Cdomh Nrang and so G C g~ ' (domh Nrang). But
then U N g '(domh Nran g)# & and so x € g”'(dom h Nran g). This means
that dom(hef)Cdom(hg). The reverse inclusion follows in the same
manner and hence dom(heof)=dom(heog). Now if x Edom(hef)N
dom(h o g) then x €dom f Ndom g and so f(x) = g(x). But then h(f(x))=
h(g(x)) and hence (hof heg)€E p,. This completes the proof that p, is a
congruence.

CoroLLARY 4.3. Let p be a congruence on $5(X). Then 0, = {0} if and
only if p C p.. N
ProoF. Suppose p is a congruence and 0, = {0}. Then by theorem 4.1

we have that if (f,g) € p then (f, g) € p,. Conversely, suppose p C p,. Let
(f,0) € p. Then (f,0) € p, and so dom f= . Hence f =0 and 0, = {0}.

CoroLLARY 4.4. Suppose $5(X) is 0-simple and p is a proper congru-
ence on $5(X). Then p C p..

Proor. If p is a congruence on $4(X) then since 0, is always an ideal of
F6(X) and $5(X) is 0-simple we have that 0, = $s(X)or 0, ={0}. If p is a
proper congruence then 0, # $5(X) and so 0, = {0}. But then p C p, by the
last corollary.
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In the last section we showed that for many spaces X, $5(X) is O-simple.
Recall that R" denotes the Cartesian product of n copies of the real line (n
nay be infinite), Q denotes the space of rational numbers, and € denotes the
Cantor discontinuum. The last corollary then yields:

COROLLARY 4.5. p, is the largest proper congruence on“$s(R"), on
¥5(Q) and on J5(%€).

When X is a discrete space p, =i (the diagonal congruence) since if
fom f= dom g then dom f = domg and so if (f,g)E p, then f=g. If X isa
Jiscrete space and p is a congruence on $5(X) such that 0, = {0} then p C p.,
sy corollary 4.3 and so p is the diagonal congruence. In general, the
rongruence p, does not separate idempotents. In fact, if p, separates
dempotents then X is discrete. This result stems from the following general
‘heorem which proves that the only idempotent separating congruence on
#5(X) is the diagonal congruence.

THEOREM 4.6. Let p be a congruence on 9 (X) which separates idempo -
tents. Then p is the diagonal congruence.

Proor. Suppose p is a congruence which separates idempotents. First
we show that 0, ={0}. If (0,h)E p then (0,h'oh)E p. Since p separates
dempotents this means that A =0 and 0, = {0}. Now suppose p is not the
diagonal congruence. Then there exist f, g € $5(X) such that (f, g) € p but
f# g. Since 0, = {0} we can apply thoerem 4.1 to conclude that dom f= dom g
and f(x)= g(x) for all x € dom f N dom g. Since f# g but f and g agree on
their common domain we must have that dom f# dom g. Set dom f = U and
domg = V. Let p* denote the canonical homomorphism from $5(X) onto
#5(X)/p. Since (f,g)E p we have that p*(f)= p*(g) and hence p*(f™') =
p*(g™"). But then

p (iv)=p"(f e N)=p " (f e (N =p (g NP"(g)
=p"(g 'og)=p"(iv).
This means that (iy,iv)E p which is a contradiction since p separates
idempotents and U# V. Hence p is the diagonal congruence.

THeoreEM 4.7.  The following are equivalent for $5(X):
1) p: separates idempotents.

2) p. is the diagonal congruence.

3) X is discrete.

Proor. 1)implies 2)is a consequence of the last theorem. We now show
that 2) implies 3). If | X | = [ then trivially X is discrete. Suppose [ X | > 1 and
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x € X. Since X is T, the set X —{x} is open. If X —{x} is not closed also then
X —{x} = X. But then domix_,=domix and ix_, and ix agree on their
common domain. Hence (ix . ix) € p;. But we are assuming that p, is the
diagonal congruence. This is a contradiction. Thus the set X —{x} must be
closed. But then the set {x} is open and X is discrete.

We now show that 3) implies 1). Suppose X is discrete and (f, g) € p,.
Then dom f = m= domg=domg and f(x)=g(x) for all x EdomfnN
dom g. Hence f =g and p, is the diagonal congruence and so certainly p,
separates idempotents.

If X is a discrete space then, as remarked earlier, $5(X) is just the
inverse semigroup $x of all partial injective maps on the set X. Congruences
on $x have been studied (see Scheiblich (1973)). If X is not a discrete space
then by the last theorem p, is not the diagonal congruence. Clearly p, is not
the universal congruence nor a Rees congruence (0,, = {0}). The next few
results will be used to determine another congruence pz on Js(X) and gain
some information about it. We will use the notation U=V if U and V differ
by at most a finite number of points.

DermviTion 4.8. (Reilly & Scheiblich (1967)). Let S be an inverse
semigroup and P = {E,: « € J} be a partition of the idempotents of S. Then P
is a normal partition if

1) « B € J implies that there exists y € J such that E,E, C E,.

2) a€J and f€S implies that there exists 8 &€ J such that
fEf C Ea

THEOREM 4.9. (Reilly & Scheibich (1967)). Let P={E,:a € J} be a
normal partition of the idempotents of an inverse semigroup S. Let o= "
{(f,g)E S X S: there exists « € J with f™'f, g”'g € E, and, for some e € E,,,
fe = ge} and o.={(f,g) E S X S: a € J implies that, for some B E J, f 'E.f,
g 'E.g CEy}. Then o and o, are, respectively, the smallest and largest
congruences on S which induce the partition P of idempotents.

THEOREM 4.10. (Preston (1954)). Let p be a congruence on an inverse
semigroup S. Then p is a congruence on the idempotents of S and the partition
(into equivalence classes) that p induces is a normal partition.

THEOREM 4.11. Let f, g € $5(X). Define a relation p, on $5(X) by
(f.g)ep: if domf;domg and |{x:x EdomfNdomg, f(x)# g(x)} <N,
Then p; is a congruence on $5(X). Furthermore, if p is a congruence on $5(X)
which induces the same partition of idempotents that p, does, then p, C p.

Proor. Define a relation o on the idempotents of $5(X) by (iy, iv)E o
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f UZV. Then o is an equivalence rel*ation and induces a partition P =
(Ev: U open in X} where E, = {i,: U=V}. We show that P is a normal
partition. Let Ey, Ev € P. Then Eu o Ev C Eunv. If f € $5(X) then we will
show that f'eEyof C E; v, Suppose iv € Ey. Then floivef=1i 1, But
i1, € Ef v, since U=V. Hence f'oEy°f C E;-vy, and P is a normal
partition.

According to theorem 4.9 P has associated with it a smallest congruence
o ={(fg):f'°f,g ' og € E, for some E, € P and feiv = geiy for some
iv € Ey}. But this just says that domf=domg and [{x:x EdomfnN
dom g, f(x)# g(x)}| <N.. Hence p. = oy, and p- is a congruence which is the
smallest congruence inducing the partition P of idempotents.

Note that in most cases the congruences p, and p; are distinct. In fact, if X
has an open dense subset D such that | X — D | = R, then p, # p, ((ip, ix ) € p1,
but (ip, ix) & p-). If X is a finite space then X is discrete and p. is the universal
congruence. On the other hand, if X isinfinite then p- is a proper congruence.
If #6(X) is O-simple then p, is the largest proper congruence on $6(X). In
some instances the congruence p, is a minimal congruence on % (X).

THEOREM 4.12.  Suppose X and $5(X) satisfy the following two condi-
tions:

1) $6(X) is 0-simple.

2) |X|>1 and every open subset U of X is homogeneous (if a.b € U
then there exists a homeomorphism h from U onto U such that h(a)=b). Then
p- is a minimal proper congruence on 9 (X) (if p is a congruence on J5(X) and
p C p: then either p = p. or p is the diagonal congruence).

Proor. Suppose X and 4. (X) satisfy the conditions of the theorem.
Since | X |>1 and $4(X) is O-simple we have that p. is not the diagonal
congruence and using corollary 4.4 we have that p, C p, and so 0,. = {0}. This
means that p. is not the universal congruence and so is a proper congruence.

Now suppose p is a congruence on $.(X). p is not the diagonal
congruence and p C p.. We will eventually prove that p. C p. Since p is not the
diagonal congruence there exist f. g € (X)) such that (f.g)E p but f# g
This means that (ismsn feome ) € p (see proof of theorem 4.6). Now since $4(X)
is 0-simple and | X|>1 we get that p C p-C p, and hence f and g agree on
their common domain. But f# g and so dom f# domg. Let W = dom f and
V =domg. Then (iw.iv)Ep, W# V and W = V. Hence | W|=N,. Since
p Cp- we have that W=V. Now (i\.iw)E p and so (iv.ivaw)E p and
(iw.iv~w) € p also. Since V# W we have that VN W# V or VAWFEW.
Without loss of generality suppose that V. N W# V. Since V=W this means
that V=(VNO W)U {x, - - x,} where n = 1, nisfinite and x, € (V N W) for
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i=1---n Now since V and VN W are open we have that the set
G =((VNW)J{x}) is open. But since VN W C G CV and (iv, ivanw)Ep
we get that (ic, ivrw) € p. Hence we have a nonempty infinite open set G such
that (i, ic—«y) € p where x, € G. Now let y € G. Since G is homogeneous
there exists a homeomorphism A from G onto G such that h(x,)=y. But
then (heigeh ™ heig_,°oh™") € p which means that (i, ic_,)Ep. lf y,z €
G,y # z then (ig °iG—-(z), l6-1,1°ic. ) € p and hence (i (), Ic -(=,) € p- Since
(i, i3} € p this means that (ig, i_i.,;) € p. We can continue this process to
obtain the result that if F is a finite subset of G then (is, ic .r) € p.

Let K be any finite subset of X. We will show that (ix, ix_x) € p. Since
Fa(X) is O-simple G contains an open subset G’ which is homeomorphic to
X. Let f map G’ homeomorphically onto X and let F = f"'(K). Then F is a
finite subset of G and so (ig, ic_r)E p and so (foigof ', foic.r [ ') E p. But
this means that (ix, ix-x ) € p.

Now let U be an open subset of X and let F be any finite subset of U.
Then (ix © iy, ix-r°iv) € p and so (iy, iv-r) € p. We finally show that p and p,
induce the same partition of idempotents. If (iv, iv) € p then (iy, iv) € p, since
p C p.. Conversely, if (iy, iv) € p, then UsVand U=V (Fs(X)i is 0-simple
and [X|>1 means that p,Cp,). Then UU V= U and UUV=U. This
means that (ivuv, iv) € p: also. But then U = (U U V)— F where F is a finite
subset of U U V and so (ivuv, iv) € p. Likewise (ivuv, iv) € p and so (iy, iv) €
p. Thus (iu, iv) € p if and only if (iy, iv) € p,. Hence p and p, induce the same
partition of idempotents of $5(X). Now by theorem 4.11 p,C p. But this
means that p. = p and completes the proof.

CoroLLARY 4.13.  The congruence p. is a minimal proper congruence on

Fc(R), $:(Q), and $5(¥6).
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