PF-RINGS OF GENERALISED POWER SERIES

Zhongkui Liu

Let R be a commutative ring and (S, \leqslant) a strictly ordered monoid which satisfies the condition that $0 \leqslant s$ for every $s \in S$. We show that the generalised power series ring [[$\left.\left.R^{S, \leqslant}\right]\right]$ is a PF-ring if and only if R is a PF-ring.

1. Introduction and Preliminaries

Let R be a commutative ring. Recall that R is a PF-ring if every projective R module is free. A famous result of Quillen and Suslin independently states that for a field F, every finitely generated projective $F\left[x_{1}, \ldots, x_{n}\right]$-module is free. In [1], it was proved that $R\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is a PF-ring if and only if R is a PF-ring. In this paper, we shall prove that the generalised power series ring [$\left[R^{S, \leqslant} \leqslant\right]$ is a PF-ring if and only if R is a PF-ring, where (S, \leqslant) is a strictly ordered monoid which satisfies the condition that $0 \leqslant s$ for every $s \in S$. As an application, we obtain some new examples of PF-rings.

All rings considered here are commutative with identity. Any concept and notation not defined here can be found in $[5,6,7]$. For a ring R, we denote by $U(R)$ and $J(R)$ the multiplicative group of units, and the Jacobson radical of R, respectively.

Let (S, \leqslant) be an ordered set. Recall that (S, \leqslant) is Artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leqslant) is narrow if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S shall be denoted additively, and the neutral element by 0 . The following definition is due to $[5,6,7]$.

Let (S, \leqslant) be a strictly ordered monoid (that is, (S, \leqslant) is an ordered monoid satisfying the condition that, if $s, s^{\prime}, t \in S$ and $s<s^{\prime}$, then $s+t<s^{\prime}+t$), and R a commutative ring. Let $A=\left[\left[R^{S, \leqslant]]}\right.\right.$ be the set of all maps $f: S \longrightarrow R$ such that $\operatorname{supp}(f)=\{s \in S \mid f(s) \neq 0\}$ is Artinian and narrow. With pointwise addition, A is an Abelian additive group. For every $s \in S$ and $f_{1}, \ldots, f_{m} \in A$, let $X_{s}\left(f_{1}, \ldots, f_{m}\right)=$ $\left\{\left(u_{1}, \ldots, u_{m}\right) \in S^{m} \mid s=u_{1}+\cdots+u_{m}, f_{1}\left(u_{1}\right) \neq 0, \ldots, f_{m}\left(u_{m}\right) \neq 0\right\}$. It follows from [$6,1.16]$ that $X_{s}\left(f_{1}, \ldots, f_{m}\right)$ is finite. This fact allows us to define the operation of convolution:

$$
(f g)(s)=\sum_{(u, v) \in X_{s}(f, g)} f(u) g(v) .
$$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.

With this operation, and pointwise addition, A becomes a commutative ring, which is called the ring of generalised power series. The elements of A are called generalised power series with coefficients in R and exponents in S.
 ring of power series. If S is a commutative monoid and \leqslant is the trivial order, then $\left[\left[R^{S}, \leqslant\right]\right]=R[S]$, the monoid-ring of S over R. Further examples are given in [5]. Many results on $\left[\left[R^{S, \leqslant}\right]\right]$ have been obtained in $[2,3,4,5,6,7]$.

We shall use the following notations introduced by Ribenboim in [5].
Let $a \in R$. Define a mapping $c_{a} \in\left[\left[R^{S, \leqslant]}\right]\right.$ as follows:

$$
c_{a}(0)=a, \quad c_{a}(s)=0, \quad 0 \neq s \in S
$$

Let $s \in S$. Define a mapping $e_{s} \in\left[\left[R^{S, \leqslant]}\right]\right.$ as follows:

$$
e_{s}(s)=1, \quad e_{s}(t)=0, \quad s \neq t \in S
$$

 ded as a submonoid of $\left(\left[\left[R^{S, \leqslant}\right]\right]-\{0\}, \bullet\right)$. It is easy to see that e_{0} is the identity of $\left[\left[R^{S,} \leq\right]\right]$.

2. Main Results

We shall henceforth assume that (S, \leqslant) is a strictly ordered monoid which satisfies the condition:

$$
\begin{equation*}
0 \leqslant s \text { for every } s \in S \tag{SO}
\end{equation*}
$$

 $U(R)$.

Corollary 2.2. Let $f \in\left[\left[R^{S, \leqslant} \leqslant\right]\right.$. Then f is in $J\left(\left[\left[R^{S, \leqslant]]) \text { if and only if } f(0) ~}\right.\right.\right.$ is in $J(R)$.

Proof: Suppose that $f(0) \in J(R)$. Then $1-r f(0) \in U(R)$ for every $r \in R$. For each $g \in\left[\left[R^{S, \leqslant} \leqslant\right]\right]$, we have $(g f)(0)=\sum_{(u, v) \in X_{0}(g, f)} g(u) f(v)=g(0) f(0)$ by the condition (S0). Thus $\left(e_{0}-g f\right)(0)=e_{0}(0)-(g f)(0)=1-g(0) f(0) \in U(R)$. By Lemma 2.1, it

Conversely suppose that $f \in J\left(\left[\left[R^{S, \leqslant]]}\right)\right.\right.$. For every $r \in R, e_{0}-c_{r} f \in U\left(\left[\left[R^{S, \leqslant}\right]\right]\right)$. Thus, by Lemma 2.1, $1-r f(0)=\left(e_{0}-c_{r} f\right)(0) \in U(R)$, and so $f(0) \in J(R)$.

Proof: Since (S, \leqslant) satisfies the condition (S 0), it is easy to see that for any
 homomorphisms

$$
\begin{aligned}
\alpha:\left[\left[R^{S, \leqslant}\right]\right] & \longrightarrow R \\
f & \mapsto f(0)
\end{aligned}
$$

and

$$
\begin{gathered}
\beta: R \longrightarrow\left[\left[R^{S, \leqslant]]}\right.\right. \\
r \mapsto c_{r} .
\end{gathered}
$$

Clearly $\alpha \beta=1_{R}$. Thus $K_{0} \alpha$ is a surjective homomorphism. Let $f \in \operatorname{Ker}(\alpha)$. Then $f(0)=0 \in J(R)$. By Corollary 2.2, it follows that $f \in J\left(\left[\left[R^{S, \leqslant]}\right]\right)\right.$. This means that $\operatorname{Ker}(\alpha) \subseteq J\left(\left[\left[R^{S, \leqslant]]}\right)\right.\right.$. Thus, by [8, Proposition 9$], K_{0} \alpha$ is a monomorphism. Now the result follows.

We note that the group isomorphism above is also a ring isomorphism since the rings we considered are commutative (see [1]).

A ring R is called a Hermite ring provided for every $\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, if there exists $\left(p_{1}, \ldots, p_{n}\right) \in R^{n}$ such that $r_{1} p_{1}+\cdots+r_{n} p_{n}=1$, then there exists a $n \times n$ matrix M over R with first row (r_{1}, \ldots, r_{n}) and $\operatorname{det}(M)$ a unit in R.

Proposition 2.4. $\left[\left[R^{S, \leqslant]]}\right.\right.$ is a Hermite ring if and only if R is a Hermite ring.

Proof: Let [$\left.\left[R^{S,} \leq\right]\right]$ is a Hermite ring. Suppose that $\left(r_{1}, \ldots, r_{n}\right)$ and (p_{1}, \ldots, p_{n}) are in R^{n} such that $r_{1} p_{1}+\cdots+r_{n} p_{n}=1$. Since $\left(c_{r_{1}} c_{p_{1}}+\cdots+c_{r_{n}} c_{p_{n}}\right)(s)=$ $\sum_{i=1}^{n}\left(c_{r_{i}} c_{p_{i}}\right)(s)=\sum_{i=1}^{n} \sum_{(u, v) \in X_{s}\left(c_{r_{i}}, c_{p_{i}}\right)} c_{r_{i}}(u) c_{p_{i}}(v)=0=e_{0}(s)$ when $s \neq 0$, and $\left(c_{r_{1}} c_{p_{1}}+\cdots+c_{r_{n}} c_{p_{n}}\right)(0)=\left(c_{r_{1}} c_{p_{1}}\right)(0)+\cdots+\left(c_{r_{n}} c_{p_{n}}\right)(0)=r_{1} p_{1}+\cdots+r_{n} p_{n}=1=$ $e_{0}(0)$, we have

$$
c_{r_{1}} c_{p_{1}}+\cdots+c_{r_{n}} c_{p_{n}}=e_{0}
$$

Since $\left[\left[R^{S, \leqslant]}\right]\right.$ is a Hermite ring, there exists a $n \times n$ matrix M over $\left[\left[R^{S, \leq]] \text { with first }}\right.\right.$ row $\left(c_{r_{1}}, \ldots, c_{r_{n}}\right)$ and $\operatorname{det}(M)$ a unit in $\left[\left[R^{S, \leqslant}\right]\right]$. Suppose that

$$
M=\left(\begin{array}{cccc}
c_{r_{1}} & c_{r_{2}} & \ldots & c_{r_{n}} \\
f_{21} & f_{22} & \ldots & f_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
f_{n 1} & f_{n 2} & \ldots & f_{n n}
\end{array}\right)
$$

Denote

$$
N=\left(\begin{array}{cccc}
r_{1} & r_{2} & \ldots & r_{n} \\
f_{21}(0) & f_{22}(0) & \cdots & f_{2 n}(0) \\
\vdots & \vdots & \ddots & \vdots \\
f_{n 1}(0) & f_{n 2}(0) & \ldots & f_{n n}(0)
\end{array}\right)
$$

Since S satisfies the condition (S0), it is easy to see that

$$
\begin{aligned}
\operatorname{det}(M)(0) & =\left(\sum_{i_{1} \ldots i_{n}}(-1)^{\pi\left(i_{1} \ldots i_{n}\right)} c_{r_{i_{1}}} f_{2 i_{2}} \ldots f_{n i_{n}}\right)(0) \\
& =\sum_{i_{1} \ldots i_{n}}(-1)^{\pi\left(i_{1} \ldots i_{n}\right)} r_{i_{1}} f_{2 i_{2}}(0) \ldots f_{n i_{n}}(0)=\operatorname{det}(N)
\end{aligned}
$$

By Lemma 2.1, it follows that $\operatorname{det}(N) \in U(R)$. Thus R is a Hermite ring.
Conversely suppose that R is a Hermite ring. Assume that $\left(f_{1}, \ldots, f_{n}\right)$ and $\left(g_{1}, \ldots, g_{n}\right)$ are in $\left[\left[R^{S, \leqslant]]^{n}}\right.\right.$ such that $\sum_{i=1}^{n} f_{i} g_{i}=e_{0}$, the identity of ring $\left[\left[R^{S, \leqslant]] \text {. } . ~ . ~ . ~}\right.\right.$ Then

$$
\sum_{i=1}^{n} f_{i}(0) g_{i}(0)=1
$$

Since R is a Hermite ring, there exists a $n \times n$ matrix

$$
P=\left(\begin{array}{cccc}
f_{1}(0) & f_{2}(0) & \ldots & f_{n}(0) \\
r_{21} & r_{22} & \ldots & r_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
r_{n 1} & r_{n 2} & \ldots & r_{n n}
\end{array}\right)
$$

over R with first row $\left(f_{1}(0), \ldots, f_{n}(0)\right)$ and $\operatorname{det}(P) \in U(R)$. Let

$$
Q=\left(\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
c_{r_{21}} & c_{r_{22}} & \ldots & c_{r_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
c_{r_{n 1}} & c_{r_{n 2}} & \cdots & c_{r_{n n}}
\end{array}\right)
$$

Then, by condition (S0), it is easy to see that $(\operatorname{det}(Q))(0)=\operatorname{det}(P) \in U(R)$. Thus,
 Hermite ring.

Now we have:

ThEOREM 2.5. Let (S, \leqslant) be a strictly ordered monoid which satisfies the condition that $0 \leqslant s$ for every $s \in S$. Then $\left[\left[R^{S, \leqslant]]}\right.\right.$ is a $P F$-ring if and only if R is a PF-ring.

Proof: It is well-known that a commutative ring A is a PF-ring if and only if A is a Hermite ring and there exists a ring isomorphism $K_{0} A \cong \mathbb{Z}$ (see, for example, [9]). Thus the result follows from Proposition 2.3 and 2.4.

Corollary 2.6. [1] $R\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is a PF-ring if and only if R is a PF-ring.
Proof: Let $S=\mathbb{N} \times \cdots \times \mathbb{N}$ (n copies) with the product of the usual order. Then $\left[\left[R^{S, \leqslant}\right]\right] \cong R\left[\left[x_{1}, \ldots, x_{n}\right]\right]$. Now the result follows from Theorem 2.5.

The following corollaries will give other examples of PF-rings.
Corollary 2.7. Let $\mathbb{Q}^{+}=\{a \in \mathbb{Q} \mid a \geqslant 0\}, \mathbb{R}^{+}=\{a \in \mathbb{R} \mid a \geqslant 0\}$. Then the

Corollary 2.8. Let $\left(S_{1}, \leqslant_{1}\right), \ldots,\left(S_{n}, \leqslant_{n}\right)$ be strictly ordered monoids which satisfy the condition that $0 \leqslant_{i} s$ for every $s \in S_{i}, i=1, \ldots, n$. Denote by (lex \leqslant) and (revlex \leqslant) the lexicographic order, the reverse lexicographic order, respectively, on the monoid $S_{1} \times \cdots \times S_{n}$. Then R is a $P F$-ring if and only if $\left[\left[R^{S_{1} \times \cdots \times S_{n},(l e x \leqslant)}\right]\right]$ is a $P F$-ring if and only if $\left[\left[R^{S_{1} \times \cdots \times S_{n},(r e v l e x \leqslant)}\right]\right]$ is a $P F$-ring.

Proof: It is easy to see that $\left(S_{1} \times \cdots \times S_{n},(l e x \leqslant)\right)$ is a strictly ordered monoid which satisfies the condition that $(0, \ldots, 0)(l e x \leqslant)\left(s_{1}, \ldots, s_{n}\right)$ for every $\left(s_{1}, \ldots, s_{n}\right) \in$ $S_{1} \times \cdots \times S_{n}$. Thus, by Theorem $2.5, R$ is a PF-ring if and only if [$\left.\left[R^{S_{1} \times \cdots \times S_{n},(l e x \leqslant)}\right]\right]$ is a PF-ring.

The proof of the another assertion is similar.
Let R be a ring, and consider the multiplicative monoid $\mathbb{N}_{\geqslant 1}$, endowed with the usual order \leqslant. Then $A=\left[\left[R^{\mathbb{N}} \geqslant 1, \leqslant\right]\right]$ is the ring of arithmetical functions with values in R, endowed with the Dirichlet convolution:

$$
(f g)(n)=\sum_{d \mid n} f(d) g(n / d), \quad \text { for each } \quad n \geqslant 1
$$

Corollary 2.9. $\left[\left[R^{\mathbb{N}} \geqslant 1, \leqslant\right]\right]$ is a PF-ring if and only if R is a PF-ring.

References

[1] Chen Huanyin, 'Some results on Grothendieck groups', J. Nanjing Univ. 31 (1995), 1-8.
[2] G.A. Elliott and P. Ribenboim, 'Fields of generalized power series', Arch. Math. 54 (1990), 365-371.
[3] P. Ribenboim, 'Generalized power series', in Lattices, semigroups and universal algebra, (J. Almeida, G. Bordalo, and P. Dwinger, Editors) (Plenum, New York, 1990).
[4] P. Ribenboim, 'Rings of generalized power series: Nilpotent elements', Abh. Math. Sem. Univ. Hamburg 61 (1991), 15-33.
[5] P. Ribenboim, 'Noetherian rings of generalized power series', J. Pure Appl. Algebra 79 (1992), 293-312.
[6] P. Ribenboim, 'Rings of generalized power series II: units and zero-divisors', J. Algebra 168 (1994), 71-89.
[7] P. Ribenboim, 'Special properties of generalized power series', J. Algebra 173 (1995), 566-586.
[8] J.R. Silvester, Introduction to Algebraic K-Theory (Chapman and Hall, London, New York, 1981).
[9] Tong Wenting, 'Grothendieck groups and their applications', J. Math. Nanjing Univ. 3 (1986), 1-11.

Department of Mathematics
Northwest Normal University
Lanzhou 730070
People's Republic of China

[^0]: Received 18th September, 1997
 Research supported by National Natural Science Foundation of China 19501007 and 19671063.

