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NEW SETS OF EQUI-ISOCLINIC n-PLANES
FROM OLD
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Introduction

Two n-planes F and A in real Euclidean r-space Rr are called isoclinic
with parameter A if the angle 6 between any x in F and its orthogonal
projection Px on A is unique, with cos2 6 = A. Let v\(n, r) denote the
maximum number of equi-isoclinic (i.e. pairwise isoclinic) n-planes in Rr

with parameter A.

Problem 1. Compute vk(n, r) for given n, r, A.

Let k be any positive integer. Lemmens and Seidel (4) derived the
upper bound ( r - rA)/(n - r\), for n - r\ > 0, which is the same for (/en, kr)
as for (n, r). They deduced that if the bound is attained for (n, r) then it is
attained for each (kn, kr); for every set of v equi-isoclinic n-planes in Rr

yields a set of v equi-isoclinic fen-planes in Rkr with the same parameter,
via the tensor product construction. In fact all the above applies to vector
spaces over F, where F = R, C, or the quaternions H (3). We adopt here
the aim of deducing from a set of equi-isoclinic planes as many inequalities as
possible which are relevant to Problem 1. Hence:

Problem 2. What new sets of equi-isoclinic planes can be constructed
from a given set!

We give constructions which yield, in an obvious notation

vx(n, r, H) =s vk(2n, 2r, C), t>A(n, r, C) =£ t)*(2n, 2r, R),

and for F = R, C: vk(n, r, F) ^ «A»(1, Q , F), for example.
A short preview of some material in this paper is found in (2), which

contains the definitions of Construction 2 and of isoclinic functor, and a
special case of the exterior powers used in Section 2.

1. New n-planes by embedding matrices

We have inclusions RC C C H, leading to:

Proposition 1.1. vk(n, r, R) =£ vk(n, r, C) =£ vk(n, r, H). If the first attains
the upper bound ( r - rA)/(n - r\), so do the rest; if the second attains it, so
does the third.
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However, we can confirm that C and H do add new possibilities by the
result of (3): v2/5(l, 2) = 2, 3, 6 respectively for F = R,C, H.

Notation. Let F(m, n) denote the set of m by n matrices over F and
let F(n) = F(n, n). Throughout this section we identify linear trans-
formations with matrices via the standard basis of Fr, (1,0, . . . , 0 ) ,
(0, 1,0,.. . , 0) etc. The adjoint, or transpose conjugate of a matrix M is
written M*. Extending a result of (4), we have

Proposition 1.2. Let F = R, C, or H, then

(a) M G F(r) is the orthogonal projection onto its range iff M2 = M =
M*,

(b) two n-planes in Fr with projections P, Q are isoclinic with parameter
A iff PQP = \P.

Construction 1.

We can view H as a right vector space over C of dimension two by
writing quaternions in the form z + jw (z, w G C), where j2 = - 1 and ja = dj
for every a G C. Applying this to linear transformations yields an injective
function <f> from quaternionic to complex matrices (5) which replaces each
entry z + jw by the block {I ~f). Thus if Me.H(m,n) then <£M G
C(2m, 2n). Now <f> is easily seen to preserve

(1) composition of homomorphisms,
(2) identity homomorphisms,
(3) adjoints,
(4) multiplication by real scalars.

If T is a plane in Hr with projection P, let # r = (4>P)C2r, that is, the column
space of 4>P.

Theorem 1.3. // F, A are isoclinic n-planes in Hr with parameter A then
4>T, <£A are isoclinic 2n-planes in C2r with parameter A.

Proof. Firstly, Properties (1), (2) imply that <f> sends isomorphisms to
isomorphisms. Thus, as T, A have the same dimension, so do <t>F, <(>A. In
fact the latter have dimension 2n (exercise for the reader).

Secondly, (1), (3) show the property M2 = M = M* is preserved by <f>
(that is, (<£M)2= <j)M = (<j>M)*), which therefore sends projections to pro-
jections, by 1.2.

Finally, <£F and <£A are isoclinic with parameter A because the con-
dition PQP = \P of 1.2 is preserved by <f>, from Properties (1), (4).

Corollary 1.4. vk(n, r, ff)=s V\(2n, 2r, C). If the first attains the upper
bound (r— rA)/(n — r\), so does the second.
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Example 1.5. A set of 4 equiangular lines in H2 with parameter 1/3 is
given by vectors (l,j), (1-V2i , j-Vik), (V2 + V3 + i, V2/ - V3j + k),
( V 2 - V 3 + i, Vlj + Vlj + k). This set attains the upper bound ( r -
r\)l(n — r\), so is maximal.

Example 1.6. Since the isoclinic condition is trivial for lines, it is
interesting that Example 1.5 gives, via construction 1, a set of equi-isoclinic
2-planes in C4 with the same parameter, 1/3. The second set is maximal by
1.4, and is spanned by the pairs of vectors

(1,0,0,1), (0,1, - 1,0); (1 - V2i, 0,0,1 + V2i), (0,1 + Vli, - 1 + Vli, 0);
(V2 + V3 + i, 0,0, V 2 - V 3 - 0, (0, V 2 + V3 -1, - V 2 + V3 - i, 0);
(V2 - V3 + i, 0,0, V 2 + V 3 - i), (0, V 2 - V3 - i, - V 2 - V 3 - i, 0).

It is natural to conjecture vx(n, r,H) = vx(2n, 2r, C), but this is false in
general since v3n(2,4, H) = 6, while i;3/7(4,8, C) = 8, (3).

Construction 2. Described in (2), this is the analogy of construction 1
which makes complex n-planes F into real 2n-planes ij/T. From it, we make
here the following deductions.

Corollary 1.7. uA(n, r, C)=s vx(2n,2r,R). If the first attains the bound
( r - r\)l(n - rk), so does the second.

Remark. Just as for (j>, the inequality may be strict. For instance
iM/9(4, 8,C) = 7 but vwiS, 16, R) = 10 (3). On the other hand, from R C C,
we have

, r, C)« vx(2n, 2r, R) =£ vx(2n, 2r, C),

so that if the first equals the third then equality does hold in 1.7.
Similarly for

vx(n, r, H) =£ vx(2n, 2r, C)« vk{2n, 2r, H).

We note that in the fully solved case r = In with F = R,C,H (3) there
exists no value of n for which the above (four) inequalities are simul-
taneously strict.

2. New n-planes by exterior powers

Let A* denote the usual exterior power of a vector space, over F = R
or C. It can be shown that A* preserves

(1) composition of homomorphisms,
(2) identity homomorphisms,
(3) adjoints,

and that if T: V-> W is a homomorphism and A a scalar then A(t(AT) =
A*(AT).

20/4—B
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Theorem 2.1. Let F = R or C. If T, A are isoclinic n-planes in Fr with
parameter A then for 1 ^ k =s n, A*T and A* A are isoclinic (D-planes in F(j)

with parameter A*.

Proof. The dimensions of A*T and A* A are as stated because the
definition of induced homomorphism is actually independent of the choice
of basis. As Ak preserves both adjoints and composition of homomor-
phisms, it also preserves orthogonal projections, by 1.2(a). (Compare <j> and
</>)• For the parameter we observe that PQP = XP implies (A*P)(A*Q)
(AkP) = \k(AkP). The proof is completed by applying 1.2(b) to the latter
equality.

Corollary 2.2. For F = R, C, vx(n, r) =£ uA*((2), (0), l^k^n.

Corollary 2.3. For F = R, C, vk{n, r)« t>A»(l, Q)-

Examples 2.4. Our first example (1.5) was of 4 equiangular lines in H
with parameter 1/3. <f> makes these into equi-isoclinic 2-planes in C4 (1.6)
and \\i then produces 4-planes in R%, both sets with parameter 1/3. Using A2,
A3, A4, etc we can get infinitely many new examples (not in general of
maximal size). The reader may care to consider how, using the examples in
hand, we could derive lines in C6 with parameter 1/9, 6-planes in U28 with
parameter 1/9, lines in R10 with parameter 1/81.

3. Isoclinic functors

The constructions 4>, i/>, Ak each associate to every vector space V of a
certain kind, a new space &(V), and to each homomorphism T: V-* W a
new homomorphism ^(T): ^ ( V)-» ^(W) in such a way that Properties (1),
(2) hold. They are thus examples of covariant functors between the three
categories VF (F = R, C, H) whose objects are the spaces Fm and whose
morphisms are the F-linear homorphisms between them. Specifically,
cf>: VH -» Vc, $: Vc^ VR, Ak:Vc^> Vc and Ak: VR-> VB (Ak does not work
for H because of the noncommutativity of H).

However, these all have extra properties which ensure they send equi-
isoclinic planes to equi-isoclinic planes, under the standard inner-product
((xi,... ,xm), (yu . . . , ym)) = Xiyi + • • • + xmym on Fm. This motivates the
following.

Definition. A (covariant) functor 2F between any two of the categories
VF is isoclinic if it preserves adjoints and, for each homomorphism
T:V->W and A6[0 , l ] we have &(\T) = / (A)^(D, where / : [0, l]-»
[0, 1]. If fF satisfies this definition then it sends a set of equi-isoclinic
n-planes with parameter A to a set of equi-isoclinic d-planes (say) with
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parameter /(A). We may call n -»d the dimension function of 3F and / its
parameter function.

Problem 3. Determine all isoclinic functors.
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