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CoxIter – Computing invariants of hyperbolic Coxeter groups

R. Guglielmetti

Abstract

CoxIter is a computer program designed to compute invariants of hyperbolic Coxeter groups.
Given such a group, the program determines whether it is cocompact or of finite covolume,
whether it is arithmetic in the non-cocompact case, and whether it provides the Euler
characteristic and the combinatorial structure of the associated fundamental polyhedron. The
aim of this paper is to present the theoretical background for the program. The source code
is available online as supplementary material with the published article and on the author’s
website (http://coxiter.rgug.ch).

Supplementary materials are available with this article.

Introduction

LetHn be the hyperbolic n-space, and let IsomHn be the group of isometries ofHn. For a given
discrete hyperbolic Coxeter group Γ < IsomHn and its associated fundamental polyhedron
P ⊂ Hn, we are interested in geometrical and combinatorial properties of P . We want to
know whether P is compact, has finite volume and, if the answer is yes, what its volume
is. We also want to find the combinatorial structure of P , namely, the number of vertices,
edges, 2-faces, and so on. Finally, it is interesting to find out whether Γ is arithmetic, that
is, if Γ is commensurable to the reflection group of the automorphism group of a quadratic
form of signature (n, 1). Most of these questions can be answered by studying finite and affine
subgroups of Γ, but this involves a huge number of computations.

This article presents the algorithms used in CoxIter, a computer program written in C++
designed to compute these invariants. The program is published under a free license (the GNU
General Public License v3) and can be used freely in various projects. The source code and the
documentation are available as supplementary material with the online version of this article
and on the author’s website.

The input of CoxIter is the graph of a hyperbolic Coxeter group (encoded in a simple way
in a text file, see Appendix A) and a typical output can be the following.

Reading file: ../graphs/14-vinb85.coxiter

Number of vertices: 17

Dimension: 14

Vertices: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

Field generated by the entries of the Gram matrix: Q[sqrt(2)]

File read

Information

Cocompact: no

Finite covolume: yes
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Arithmetic: yes

f-vector: (94, 704, 2695, 6825, 12579, 17633, 19215, 16425, 11009,

5733, 2275, 665, 135, 17, 1)

Number of vertices at infinity: 5

Alternating sum of the components of the f-vector: 0

Euler characteristic: -87757/289236647411712000

Covolume: pi^7 * 87757/305359330843607040000

In the first section, we give the theoretical background that is needed to present the
algorithms and their implementation in the program. These algorithms are explained in the
second section. In the third part, we give some applications of CoxIter: we use the program
to compute the invariants of a few Coxeter graphs in higher dimensions, including recently
found groups of Vinberg in dimension eighteen. In the last section, we explain how CoxIter
was tested.

1. Theoretical background

In this section we present the theoretical tools needed to implement the algorithms in CoxIter.

1.1. Hyperbolic space

We denote by Rn,1 the space Rn+1 endowed with the Lorentzian product given by

(x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn)) 7−→ 〈x, y〉 = −x0y0 +

n∑
i=1

xiyi.

For a vector x ∈ Rn,1, we call the scalar ‖x‖2 := 〈x, x〉 ∈ R the square of the Lorentzian norm
of x. Then, we let Hn ⊂ Rn,1 be the set defined by

Hn := {x ∈ Rn,1 : 〈x, x〉 = −1, x0 > 0} ⊂ Rn,1.

If we endow Hn with the map d : Hn × Hn −→ R, which sends (x, y) to arcosh(−〈x, y〉),
then (Hn, d) is a metric space, which is the Minkowski model of the hyperbolic n-space. The
boundary of Hn can be identified with the set

∂Hn =

{
x ∈ Rn,1 : 〈x, x〉 = 0,

n∑
i=0

x2
i = 1, x0 > 0

}
,

and we let Hn := ∂Hn ∪Hn.
A hyperplane of Hn is given by the intersection of the orthogonal complement (with respect

to the Lorentzian product) of a vector v of Lorentzian norm one and Hn. We denote such a
hyperplane by Hv. Note that such a hyperplane splits Hn into two half-spaces H+

v := {x ∈
Hn : 〈v, x〉 > 0} and H−v := {x ∈ Hn : 〈v, x〉 6 0}, whose intersection is Hv. The relative
behaviour of two distinct hyperplanes Hv and Hw can be described by means of the Lorentzian
product of v and w (see [17, Theorems 3.2.6, 3.2.7 and 3.2.9] or [23, § 1.1]).

– The hyperplanes intersect if and only if |〈v, w〉| < 1. In this case, the acute dihedral angle
between them is given by arccos(|〈v, w〉|).

– The hyperplanes are parallel if and only if |〈v, w〉| = 1. In this case their dihedral angle
is zero.

– The hyperplanes are ultraparallel if and only if |〈v, w〉| > 1. In this setting, the two
hyperplanes share a common perpendicular of length arcosh(|〈v, w|〉).
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756 r. guglielmetti

Figure 1. Irreducible finite Coxeter groups.

1.2. Abstract Coxeter groups

Definition 1. A Coxeter group is a finitely presented group given by the presentation

〈s1, . . . , sd : (si sj)
mij = 1〉,

where mij = 1 if and only if i = j, and mij = mji ∈ {2, 3, . . .}∪{∞} if i 6= j. By mij =∞, we
mean that there is no relation between si and sj . If Γ is such a group and S := {s1, . . . , sd}
is the set of generators, we will refer to the group as (Γ, S), or just Γ if there is no ambiguity
on S. When it is convenient, we use the notation m(si, sj) := mij .

If S′ is a subset of S, we denote the subgroup of Γ generated by the elements of S′ by ΓS′ .

Definition 2. An easy way to represent a Coxeter group (Γ, S = {s1, . . . , sd}) is by its
Coxeter diagram, or Coxeter graph. The Coxeter diagram of Γ is the graph whose vertices
correspond to the elements of S. Moreover, there is an edge between the vertices si and sj if
and only if m(si, sj) > 3. We label such an edge with m(si, sj) if m(si, sj) > 4. Sometimes,
instead of labelling the edge, we use a double edge if m(si, sj) = 4 and a bold (or heavy) edge
if m(si, sj) =∞.

Notation 1. Let (Γ, S = {s1, . . . , sd}) be a Coxeter group. We can associate to (Γ, S)
the real d × d matrix G(Γ, S) = (gij) ∈ Mat(d,R) defined as follows: gii = 1, gij = −1 if
m(si, sj) =∞ and gij = −cos(π/m(si, sj)) otherwise.

Examples 1.
– It is well known that the symmetric group Sn is isomorphic to the Coxeter group An−1

(see Figure 1): the ith node of An−1 corresponds to the transposition (i, i+ 1) of Sn.

– The dihedral group of 2n elements is isomorphic to G
(n)
2 (see Figure 1).

– If P is a polyhedron (see Definition 4) in Rn whose dihedral angles are integer
submultiples of π and if Γ < IsomRn is the (discrete) group generated by the reflections
in the facets of P , then Γ is a Coxeter group.

Definition 3. A Coxeter group is said to be irreducible if its Coxeter diagram is connected.
It is easy to see that a Coxeter group is the product of the groups corresponding to the

connected components of its Coxeter diagram.

The finite irreducible Coxeter groups were classified by Coxeter [4] by means of their Coxeter
diagrams. The classification is presented in Figure 1.

1.3. Reflection groups

In this section, we present the connection between abstract Coxeter groups and discrete
reflection groups in the facets (sides of codimension one) of convex finite-sided polyhedra.
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In what follows, X denotes the unit n-sphere Sn, the Euclidean n-space En or Hn.
A vector v ∈ En and a real number t ∈ R determine an (affine) hyperplane Hv,t := {x ∈

En : 〈x, v〉 = t}, denoted by Hv if t = 0, and such a hyperplane splits En into two half-spaces
H+
v,t := {x ∈ En : 〈v, x〉 > t} and H−v,t := {x ∈ En : 〈v, x〉 6 t}, whose intersection is Hv,t. A

hyperplane in Sn is the intersection of a hyperplane Hv of En+1 with Sn.

Definition 4. A polyhedron P in X is a subset of X which is the intersection of a finite
number of half-spaces, each one bounded by a hyperplane. Moreover, we require that P has
non-empty interior and that no half-space contains the intersection of the others.

Definition 5. Let Hv be a hyperplane of X. The reflection rv = rHv
associated to the

hyperplane Hv is defined as (recall that we choose v with norm one)

rHv : X −→ X

x 7−→ x− 2〈x, v〉v.

Definition 6. Let P =
⋂d
i=1H

−
vi be a polyhedron in X and Γ 6 IsomX. We say that Γ is

the reflection group associated to P if Γ is generated by the reflections in the facets of P : that
is, Γ = 〈rHv1

, . . . , rHvd
〉.

Let P ⊂ X be a polyhedron and let Γ 6 IsomX be its associated reflection group. If Γ is
discrete, then all the dihedral angles of P are submultiples of π (that is, zero or of the form
π/k where k ∈ Z). For any facet Si of P , we let Hvi be the hyperplane containing Si such that
P ⊂ H−vi . Now, if the dihedral angle between two adjacent facets Si and Sj of P is π/θ(Si, Sj),
then the order of rvi ◦ rvj in Γ is θ(Si, Sj) (see [17, Theorem 7.1.2]). Suppose, now, that P is
of finite volume and has facets S = {S1, . . . , Sd}. Then, by [17, Theorem 7.1.4],

〈r1, . . . , rd|r2
i = 1, (ri · rj)θ(Si,Sj) = 1〉 ∼= Γ.

The matrix G = G(Γ, S) of a Coxeter group (Γ, S) (see Notation 1) induces a quadratic form
called the Tits form on Rd, where d = |S|, via x 7−→ xtGx. If the matrix G is indecomposable
(meaning that we cannot transform G to a block diagonal matrix with permutations of the
rows and columns of G) or, equivalently, if the graph of the group is connected, then we get
information about the group by looking at the signature (n, p, q) of the quadratic form, where
n (respectively, p, q) is the number of positive (respectively, negative, zero) eigenvalues of G.
For a positive n, we are interested in the following cases.

p = q = 0 (the quadratic form is positive definite). In this case, the group is finite (see the
classification of irreducible finite Coxeter groups in Figure 1). It can be shown that Γ
can be realized as a discrete group of isometries of the n-sphere Sn. Thus, Γ is called
spherical.

p = 0, q > 0 (the quadratic form is positive semidefinite). The group can be realized as a
discrete subgroup of IsomEn. Hence, it is said to be affine (or euclidean or parabolic).
The classification of irreducible affine Coxeter groups is given in Figure 2 (see, for
example, [2, Chapter 6, § 4.3, Theorem 4]).

p = 1, q > 0. The group can be realized as a discrete subgroup of IsomHn (see details in § 1.4).
Thus, it is called hyperbolic.

Now, if the matrix G is decomposable into a diagonal block matrix with blocks G1, . . . , Gl, we
say that the group is spherical (respectively, affine) if each block Gi is spherical (respectively,
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Figure 2. Irreducible affine Coxeter groups.

affine). If the matrix G has signature (n, 1, q) for some n and q, we say that the group is
hyperbolic.

If G is the Coxeter diagram of Γ, then a subdiagram of G is called spherical (respectively,
affine, hyperbolic) if the corresponding subgroup of Γ is spherical (respectively, affine,
hyperbolic).

1.4. Hyperbolic Coxeter groups and hyperbolic Coxeter polyhedra

In this section, we present some concepts related to hyperbolic Coxeter groups and polyhedra.
Let P ⊂ Hn be a polyhedron. Hence, there exist vectors v1, . . . , vr of Lorentzian norm one and
hyperplanes Hi = 〈vi〉⊥ such that P =

⋂r
i=1H

−
i , where H−i is the half-space delimited by Hi

and given by H−i := {x ∈ Hn : 〈x, vi〉 6 0}.

Remark 1. Unlike in the Euclidean space, there exist unbounded hyperbolic Coxeter
polyhedra of finite volume. Such a polyhedron is the convex hull of a finite set of points
x1, . . . , xk ∈ Hn with at least one xi ∈ ∂Hn. Such a vertex is called a vertex at infinity of the
polyhedron (see [17, § 6.4] for more details).

Definition 7. The Gram matrix of the polyhedron P ⊂ Hn is the matrix G = G(P ) ∈
Mat(r,R) defined as G = (〈vi, vj〉)16i,j6r.

Definition 8. Suppose now that P is a hyperbolic Coxeter polyhedron, that is, the dihedral
angles are either zero or submultiples of π. The Coxeter diagram, or Coxeter graph, of P is
the graph whose vertices si correspond to the hyperplanes Hi. For two hyperplanes Hi and
Hj , there is between the vertices si and sj :

– a dotted line if Hi and Hj are ultraparallel (labelled by the hyperbolic cosine of the
length of the common perpendicular of the two hyperplanes);

– a line labelled with∞ if Hi and Hj are parallel (we use sometimes a bold, or heavy, edge
with no labelling); and

– a line if the dihedral angle is π/mij with mij > 3, which is simple if mij = 3 and is
labelled by mij if mij > 3. Note that, sometimes, instead of labelling the edge, we use a
double edge if mij = 4.

Note that we do not distinguish between the Gram matrix of a hyperbolic Coxeter
polyhedron, the corresponding Coxeter diagram and the associated hyperbolic Coxeter group.

There is the following natural question: given a Coxeter graph, is it possible to find a
hyperbolic Coxeter polyhedron whose graph is the given one? The answer is yes if the Gram
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matrix of the graph has the correct signature, as explained in the next theorem.

Theorem 1.1 [23, Theorem 2.1]. Let G = (Gij) be an indecomposable symmetric matrix
of signature (n, 1, k) such that:

– Gii = 1 for every i; and
– Gij 6 0 for every i 6= j.

Then, there exists a convex polyhedron P in Hn whose Gram matrix is equal to G. Moreover,
P is unique up to isometry. We will refer to P as the polyhedron associated to G.

Therefore, given a hyperbolic Coxeter group Γ, we can speak of geometrical properties of
its associated polyhedron P ⊂ Hn. If the polyhedron P is compact, then the group Γ is called
cocompact. Note that there is a criterion to decide if Γ is cocompact or not (see § 1.6). In a
similar way, if P is of finite volume (with respect to the hyperbolic metric), we say that Γ is
cofinite or of finite covolume. In this case, the covolume of Γ is the volume of P . As before,
there is a nice criterion to decide whether the group is of finite covolume or not (see § 1.6).

It has been shown that hyperbolic Coxeter groups of finite covolume do not exist in
dimensions above 995 (see [16, Theorem C]), but examples of such groups are known only
up to dimension 21 (see [1, Example 5]). In the cocompact case, it is known that such groups
do not exist if the dimension is greater than 29 (see [22, Theorem 1]). However, examples of
such groups are known only up to dimension 8 (see [3] for the arithmetic cocompact hyperbolic
Coxeter group in dimension 8 and [14] for a list of cocompact groups in dimensions 5–8).

1.5. Euler characteristic, f -vector and volume

In what follows, unless stated otherwise, Γ < IsomHn denotes a hyperbolic Coxeter group
with finite set of generator S. Let P be its associated fundamental convex polyhedron.

Notation 2. Let G be a finitely generated group with generating set S. We denote by lS
the length function of G with respect to S: for an element g ∈ G,

lS(g) = min{k ∈ N : ∃g1, . . . , gk ∈ S ∪ S−1 such that g = g1 · . . . · gk}.

Definition 9. Let G be a finitely generated group with generating set S. The growth series
of G is the formal power series fS(x) =

∑
g∈G x

lS(g). This series is also called the Poincaré
series of G.

The next proposition gives the key tool which is used by CoxIter to compute the orbifold
Euler characteristic of Hn/Γ.

Proposition 1.2 [12, (1.2) and (1.3)]. Let (Γ, S) be an abstract Coxeter group and let
F = {T ⊂ S : ΓT is finite}. Then

χ(Γ) =
∑
T∈F

(−1)|T |

fT (1)
,

where fT is the growth series of the group ΓT 6 Γ generated by T (see Definition 1).

In order to compute χ(Γ), we see, by using the classification of finite Coxeter groups (see
Figure 1), that it is sufficient to know the value fT (1) for all irreducible finite Coxeter groups.
With the growth series (see [12, Table 1], for example), we find the values given in Table 1,
page 760.

The next result relates the Euler characteristic of a hyperbolic Coxeter group Γ < IsomHn
to its covolume when n is even.
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Proposition 1.3 [12, (1.4)]. When n is even,

covolume(Γ) = (−1)n/2 · π
n/2 · 2n · (n/2)!

n!
· χ(Γ).

Remark 2. When n is odd, χ(Γ) = 0.

We are also interested in the combinatorial properties of the Coxeter polyhedron P associated
to Γ. Thus, we consider the vector (f0, . . . , fn−1, 1) ∈ Zn+1, where fi is the number of faces of
dimension i of P . This vector is called the f -vector of P (or f -vector of Γ). To compute it, we
will use the following results.

Theorem 1.4 [23, Theorem 3.1]. Let G be the Coxeter diagram of Γ. There is a bijective
correspondence between spherical subdiagrams of rank k of G and faces of codimension k of P .

Theorem 1.5 [23, Theorem 3.2]. Let G be the Coxeter diagram of Γ. There is a bijective
correspondence between parabolic subdiagrams of rank n−1 of G and vertices at infinity of P .

As a test for the output of the program we also use the following classical result of Euler–
Schläfli.

Proposition 1.6 [15]. For a polyhedron (not necessarily in Hn), we have the equality

n∑
i=0

fi = 1− (−1)n.

1.6. Compactness and finite volume criterion

Since a polyhedron P is compact if and only if it is the convex hull of a finite number of
vertices in Hn (also called ordinary vertices), we have the following result.

Proposition 1.7 [23, Proposition 4.2]. The polyhedron P is compact if and only if the
following conditions are satisfied.

– P contains at least one vertex (that is, face of dimension zero) in Hn.
– For every vertex of P and every edge of P emanating from it there is another vertex of
P on that edge.

Since a polyhedron P is of finite volume if and only if it is the convex hull of a finite number
of vertices in Hn, we have the following result.

Proposition 1.8 [23, Proposition 4.2]. The polyhedron P has finite volume if and only if
the following conditions are satisfied.

Table 1. Orders of finite Coxeter groups.

Group fS(1) Group fS(1)

Am (m+ 1)! E6 51 840
Bm 2m ·m! E7 2 903 040
Dm 2m−1 ·m! E8 696 729 600
Gm 2m H3 120
F4 1152 H4 14 400
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– P contains at least one vertex (ordinary or at infinity).
– For every vertex (ordinary or at infinity) of P and every edge of P emanating from it

there is another vertex of P (ordinary or at infinity) on that edge.

Using Theorems 1.4 and 1.5 we deduce the following two criteria.

Proposition 1.9 (Cocompactness criterion in CoxIter). Let Γ < IsomHn be a Coxeter
group and G be its Coxeter diagram. The group Γ is cocompact if and only if the following
conditions hold.

– G contains at least one spherical subdiagram of rank n.
– Each spherical subdiagram of rank n− 1 of G can be extended in exactly two ways to a

spherical subdiagram of rank n of G.

Proposition 1.10 (Finite covolume criterion in CoxIter). Let Γ < IsomHn be a Coxeter
group and G be its Coxeter diagram. The group Γ has finite covolume if and only if the
following conditions hold.

– G contains at least one spherical subdiagram of rank n or one parabolic subdiagram of
rank n− 1.

– Each spherical subdiagram of rank n − 1 of G can be extended in exactly two ways to
one of the following type of subdiagrams of G:
∗ a spherical diagram of rank n; or
∗ a parabolic diagram of rank n− 1.

1.7. Arithmeticity

Definition 10. Let G := (Gi,j) ∈ Mat(n,K) be a square matrix with coefficients in a field
K. A cycle of length k, or k-cycle, in G is a product Gi1,i2 ·Gi2,i3 · . . . ·Gik−1,ik ·Gik,i1 . Such
a cycle is denoted by G(i1,...,ik). If the ij are all distinct, the cycle is called irreducible.

Observe that each cycle is a product of irreducible cycles.

Definition 11. Let G be an undirected graph. A cycle, or closed walk, in G is a sequence
(vi1 , . . . , vim , vi1) of adjacent vertices of G. We say that the cycle is simple if all the vij are
different.

Using Theorem 3.1 and the remarks of [24], we get the following result.

Theorem 1.11 [24]. Let Γ be a non-cocompact hyperbolic Coxeter group of finite covolume
and let G be its Gram matrix. Then Γ is arithmetic if and only if all the cycles of the matrix
2 ·G are rational integers.

Corollary 1.12. Let Γ = (W,S) be a non-cocompact hyperbolic Coxeter group of finite
covolume and let G′ = 2 ·G, where G is its Gram matrix. If the Coxeter graph of Γ contains
no dotted edges, then we have the following result.

Γ is arithmetic if and only if the following two conditions are satisfied:

(i) for every s, t ∈ S, we have m(s, t) ∈ {∞, 2, 3, 4, 6}; and
(ii) every irreducible cycle G′(i1,...,ik) of length at least 3 in G′ lies in Z.

In particular, a necessary condition for Γ to be arithmetic is G ∈ Mat(|S|,Q[
√

2,
√

3]).

From now on, we suppose that Γ = (W,S) is a non-cocompact hyperbolic Coxeter group of
finite covolume which satisfies condition (i) of Corollary 1.12 and we let G′ = 2 · G. If s ∈ S
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Figure 3. Two equivalent graphs for the arithmeticity criterion.

is a leaf of the Coxeter graph (meaning that m(s, t) = 2 for every t ∈ S \ {s} except for one
vertex), then it is clear that s cannot be a member of a non-zero irreducible cycle. Therefore,
we can forget this vertex for the test. Applying this idea successively, we see that we can
collapse every non-closed path of the graph. For example, the two Coxeter graphs of Figure 3
are equivalent for the arithmeticity criterion.

Now, if G′(i1,...,ik) is an irreducible k-cycle, then it corresponds to a simple cycle in the

Coxeter graph (see Definition 11) if and only if it is non-zero. Thus, it is sufficient to consider
simple cycles in the Coxeter graph. This can be summarized in the next proposition.

Proposition 1.13 (Arithmetic criterion in CoxIter). Let Γ = (W,S = {s1, . . . , sd}) be a
non-cocompact hyperbolic Coxeter group of finite covolume and let G be its Coxeter graph. We
suppose that G contains no dotted line. Then, Γ is arithmetic if and only if the two following
conditions are satisfied.

(i) For every s, t ∈ S, we have m(s, t) ∈ {∞, 2, 3, 4, 6}.
(ii) For every simple cycle (s1, . . . , sk, s1) in G, the product 2k ·

∏k−1
i=1 cos (π/m(si, si+1)) ·

cos (π/m(sk, s1)) is an integer. Moreover, it is sufficient to test this condition in the graph
obtained by collapsing every non-closed path.

Remark 3. If the graph contains dotted lines, we cannot decide the arithmeticity of the
group only by looking at the weights m(s, t) in the graph. In order to extend Proposition 1.13,
we need to know all the values in the Gram matrix. If there is a dotted line between vertices
i and j, a necessary condition for arithmeticity is that 4 ·G2

ij ∈ Z.

2. Algorithms

In what follows, we use the notations of the program. In particular, the r vertices of the Coxeter
graph are labelled 0, . . . , r − 1.

2.1. Euler characteristic and the f -vector

Here, we present the main steps for the computation of the Euler characteristic and the f -
vector. The main steps are the following.

(1) We find all paths (simple walks with all edges labelled with a 3) starting from every
vertex. Note that a single vertex is such a path.

(2) We extend these paths to finite and affine irreducible Coxeter groups.
(3) We compute all the possible products of groups.
(4) We count these products with their orders and multiplicities. The Euler characteristic

is then computed with Proposition 1.2 (by taking into account the orders of finite
irreducible spherical Coxeter groups in Table 1).

Note that, using (1)–(3), and Theorems 1.4 and 1.5, we can compute the f -vector of Γ.
First, we use a depth-first search algorithm to explore the graph from every vertex and to

find any subgraph Am (function CoxIter::DFS). For each such Am, we try to extend it to other
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connected spherical and Euclidean graphs (function CoxIter::addGraphsFromPath).
Once the connected graphs are found, we compute all the possible products. Counting them

with their multiplicities gives the f -vector and the Euler characteristic.

2.2. Arithmeticity

To check the arithmeticity of a given Coxeter group, we use Proposition 1.13. The code for
the test is in the Arithmeticity class.

First, we check whether the graph contains no dotted edge, if it is non-cocompact and if all
the edge labels m(s, t) lie in the set {∞, 2, 3, 4, 6}. These verifications are done in the beginning
of the Arithmeticity::test function. At this point, we know that the coefficients of the matrix
2 · G can take the values {0,−1,−2, 2,−

√
2,−
√

3}. We use multiple calls to the function
Arithmeticity::collapseQueues to collapse all non-closed paths of the graph (regardless of the
labels which appear in these paths) to reduce the computation time of the determination of
the cycles.

For each vertex v, we look for simple cycles passing through v (note that we only look at
cycles which contain vertices j with v 6 j to avoid multiple counting of the graphs). This is
done by using Arithmeticity::findCycles(v,v). For each cycle, we see if the number of edges
labelled with 4 and 6, respectively, along the cycle is even (labels 3 and ∞ are not an obstacle
to arithmeticity at this point).

As explained in Remark 3, if the graph contains dotted lines, we need to determine all the
relevant entries of the Gram matrix in order to decide about the arithmeticity of the group.
In this case, CoxIter will indicate what are the conditions for the group to be arithmetic. The
program would give conditions in the following way.

l1m3: weight of the dotted line between hyperplanes 2 and 4

l0m5: weight of the dotted line between hyperplanes 1 and 6

The group is arithmetic if and only if all the following values lie in Z:

4 * l1m3^2

4 * l0m5^2

2^3 * l1m3 * l0m5

3. Using CoxIter: some examples

In this section, we present some worked examples in dimensions 13, 16, 17, 18 and 19.
In dimension 18 we compute the invariants for three groups given by Vinberg in a recent
article [25]. The complete documentation of the program can be found online at http:
//coxiter.rgug.ch.

3.1. Two arithmetic groups of Vinberg

We start with the arithmetic groups Σ16 < IsomH16 and Σ17 < IsomH17 (see Figure 4
and [23]).

The program is called with parameters ‘-fv -compactness -arithmeticity’ (we want to test
the cocompactness, the arithmeticity and finite covolume) and the output is given in Table 2.
We see that the values match the theoretical results. For the Euler characteristic, see [18,
Theorem 22], and for a correction factor 2k, where k is the number of symmetry axis of the
graph, see [19, § 6]. In our case, k = 2.
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Figure 4. Σ16 and Σ17.

3.2. An arithmetic group of McLeod

In his paper [13], McLeod constructed the maximal reflection groups in the automorphism
groups of the quadratic forms −3x0 +x2

1 + . . .+x2
n for 2 6 n 6 13, using Vinberg’s algorithm.

We give here the invariants for n = 13 (see Figure 5). The program is called with parameters
‘-fv -compactness’ (we want to test the cocompactness and finite covolume), and the output
is given in Table 3.

3.3. A free product with amalgamation in dimension 18

In a recent paper [25], Vinberg explains how to construct a non-arithmetic group Γ in
dimension 18 as a free product with amalgamation Γ = Γ1 ?Γ0

Γ2, where Γ1 and Γ2 are
two non-commensurable arithmetic hyperbolic Coxeter groups (Γ is a mixture in the sense
of Gromov–Piatetski–Shapiro). Geometrically, we suppose that the two associated polyhedra
P1 and P2 of the groups Γ1,Γ2 < IsomH18 have an isometric facet P0. In this setting, the
associated polyhedron P of Γ is the gluing of P1 and P2 along their common facet P0. We use

Table 2. Output of CoxIter for Σ16 and Σ17.

Invariant Σ16 Σ17

Cocompact No No
Finite covolume Yes Yes
Arithmetic Yes Yes
f-vector (325, 2804, 11 914, 33 164, (807, 7586, 33 960, 98 184, 206 120,

67 410, 105 462, 130 646, 130 062, 332 982, 427 584, 444 428, 377 232, 262 050,
104 670, 68 042, 35 490, 148 500, 68 076, 24 884, 7089, 1518,
14 658, 4690, 1122, 189, 20, 1) 230, 22, 1)

Alt. sum of the
comp. of the f-vector 0 2
Euler characteristic 642 332 179

2 360 171 042 879 569 920 000
0

Running time 0.6 s 2.7 s
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Figure 5. Group of reflections related to automorphism group of the quadratic form
−3x0 + x21 + . . .+ x213.

CoxIter to compute the invariants of the groups Γ1,Γ2 and Γ and we check that the covolume
of Γ is indeed the sum of the covolumes of the two components.

3.3.1. First component of the product. Information about the construction of the first
component Γ1 of the product are given in [10] and [25]. The generators {s1, . . . , s37} of Γ1 are
given by the roots of a certain integral lattice L1 (in fact, L1 is the unique odd unimodular
quadratic lattice of signature (18, 1)).

We use the terminology and present the results of [10]. There are 22 long roots (that is roots
of norm two) and fifteen short roots (that is roots of norm one). The action of the symmetry
group of the graph (which is isometric to S4; see below) splits the short roots into two orbits of
size three and twelve. The three roots are called roots of the first kind while the twelve other
elements are called roots of the second kind. The diagram Σ∗ of the long roots is presented
in Figure 6(a). If we consider the six ‘long edges’ (or ‘tetrahedral edges’) of Figure 6(b), then
each pair of opposite edges gives rise to a root of the first kind. Hence, we get the three
vertices of the first kind 18, 25, 26 connected, respectively, to vertices (17, 22), (1, 9) and (5, 13)
by a double edge. The Figure 6(c) depicts the connection of one vertex of the second kind
with the graph Σ∗. We then let the symmetry group of Σ∗ (see below) act on the triple of

Table 3. Output of CoxIter for the reflection group corresponding to the automorphism group of
the quadratic form −3x0 + x21 + . . .+ x213 (see Figure 5).

Invariant Value

Cocompact No
Finite covolume Yes
f-vector (413, 2964, 10 238, 22 761, 36 024, 42 265,

37 380, 25 005, 12 556, 4641, 1218, 213, 22, 1)
Alt. sum of the comp. of the f-vector 2
Euler characteristic 0
Running time 0.18 s
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(a) (b) (c)

Figure 6. Construction of Γ1 < IsomH18: first component of the product.

vertices (1, 20, 24) and find 11 other triples, corresponding to the 11 other vertices of the second
kind. The 12 triples of vertices are the following: (1, 20, 24), (1, 6, 12), (5, 16, 20), (5, 10, 21),
(9, 16, 19), (9, 4, 14), (13, 2, 8), (13, 19, 24), (17, 2, 10), (17, 4, 12), (22, 8, 21), (22, 6, 14). Now,
vertices of the first kind are connected among themselves by lines labelled with an ∞, while
vertices of the second kind are connected among themselves by broken edges. Each vertex of
the first kind is connected to each vertex of the second kind either by an ∞ or by a broken
edge according to the rule explained in [10, § 2]. Finally, we found a Coxeter graph Σ(Γ1) with
37 vertices and 171 edges. When given to CoxIter, it produces the output given in Table 4.

Lemma 3.1 [10]. The symmetry group of the graph Σ(Γ1) is isometric to S4.

Proof. To determine the symmetry group of the graph of the group Γ1, we first compute
the group of symmetries Sym Σ∗ of the graph Σ∗, presented in Figure 6. It is easy to see that
Sym Σ∗ has order 24. We consider the automorphisms

σ1 = (22 9) (1 17)

σ2 = (1 5) (9 13)

σ3 = (22 1) (9 17)

and we see that σ1 ◦ σ2 has order three, σ2 ◦ σ3 has order three and σ1 ◦ σ3 has order two.
Therefore, Sym Σ∗ = S4. Finally, as explained in [10], we have Sym Σ∗ ∼= Sym Σ.

Table 4. Output of CoxIter for Γ1.

Invariant Value

Cocompact No
Finite covolume Yes
f-vector (3839, 37 842, 177 812, 540 624, 1 197 240, 2 050 008, 2 807 602,

3 135 528, 2 883 540, 2 189 924, 1 369 854, 700 352, 288 801,
94 113, 23 497, 4282, 525, 37, 1)

Alt. sum of the comp. of the f-vector 0
Euler characteristic − 109 638 854 849

22 028 263 066 875 985 920 000

Volume π9 · 109 638 854 849
1 482 580 623 111 880 900 608 000 000

Running time 55 s

https://doi.org/10.1112/S1461157015000273 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000273


coxiter 767

Figure 7. Γ2 < IsomH18: second component of the product.

Figure 8. Γ0 < IsomH17.

3.3.2. Second component of the product. The lattice for the second group is L2 = L0 ⊕
Ze ⊂ R18,1, where:

– L0 is the unique even unimodular quadratic lattice of signature (17, 1) (its maximal
subgroup generated by reflections is Γ0, the hyperbolic Coxeter group whose associated
fundamental polyhedron is P0, the common facet of P1 and P2); and

– e is a long root of norm two.

The graph of the group Γ2 < IsomH18 is presented in Figure 7 and its computed invariants
in Table 5.

3.3.3. Amalgamated product. As written previously, we want to construct the amalgamated
product of the groups Γ1 and Γ2. We see that they have a common hyperbolic subgroup Γ0

of signature (17, 1, 1) (see Figure 8). The hyperplane in H18, which contains the associated
polytope P0, is the one corresponding to the black dot in the graphs of Γ1 and Γ2.

Table 5. Output of CoxIter for Γ2.

Invariant Value

Cocompact No
Finite covolume Yes
f-vector (535, 5160, 24 876, 79 590, 188 352, 348 012, 517 247, 628 599,

629 544, 520 631, 354 651, 197 676, 89 148, 31 977, 8892, 1843,
267, 24, 1)

Alt. sum of the comp. of the f-vector 0
Euler characteristic − 109 638 854 849

22 600 997 906 614 761 553 920 000

Volume π9 · 109 638 854 849
1 521 127 719 312 789 804 023 808 000 000

Running time 3.2 s
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A presentation for the product Γ = Γ1 ?Γ0
Γ2 is obtained as follows.

– Start with the presentation of Γ1 = 〈s1, . . . , s37|(si · sj)mij 〉.
– Remove the vertex 23, corresponding to the hyperplanes containing P0.
– Add four generators s38, s39, s40, s41 corresponding to the crossed vertices of Γ2.
– The relations between these four new generators and the generators s2, . . . , s17, s19, s21,
s22 are according to Figure 7.

– There is no relation between any of the generators s38, s39, s40, s41 and any of s1,
s18, s20, s24, . . . , s37, meaning that the corresponding mij are infinity. Note that at this
point we do not know if the corresponding hyperplanes are parallel or ultraparallel (or,
equivalently, if in the graph we have dotted or bold edges). This means that we cannot
fully determine the f -vector (that is the number f0 of vertices is unknown). However,
this does not influence the computation for the Euler characteristic.

The output of CoxIter for the product Γ is given in Table 6. As expected, we find the equality
χ(Γ) = χ(Γ1) +χ(Γ2). Moreover, using Proposition 1.6, we find that the number f0 of vertices
of the polyhedron is 4212.

3.4. An arithmetic group in dimension 19

Kaplinskaja and Vinberg described in [10] the construction of an arithmetic hyperbolic Coxeter
group Γ19 in IsomH19 related to the standard quadratic form −x2

0 + x2
1 + . . . + x2

19. This
construction is similar to the first component of the free amalgamated product in § 3.3.1.

In this section, we use the terminology of [10]. There are 25 long roots (depicted in the
diagram Σ∗ of Figure 9), five roots of the first kind (such as the vertex 19 in Figure 9(b)) and
twenty roots of the second kind (such as the vertex 24 in Figure 9(c)). In order to explain
how to connect the vertices of the first and second kind to the graph Σ∗, we first compute the
automorphism group of the graph Σ∗.

Lemma 3.2 [10]. The automorphism group of Σ∗ is isomorphic to S5.

Proof. Using the same method as in Lemma 3.1, we find the four generators of Sym Σ∗ in
order to conclude that

σ1 = (27 4) (14 20) (16 18) (2 12) (21 22) (26 10)

σ2 = (4 6) (8 20) (2 25) (10 21) (16 22) (18 26)

σ3 = (6 25) (4 16) (14 20) (2 22) (12 21) (18 27)

σ4 = (2 20) (18 26) (8 25) (21 22) (12 14) (10 16).

3.4.1. Vertices of the first and second kind. In order to determine the vertices of the
first kind and their connections to the graph Σ∗, we consider the triple of vertices (27, 26, 18)

Table 6. Output of CoxIter for Γ.

Invariant Value

f-vector (4212, 41 464, 195 047, 594 510, 1321 044, 2 271 012, 3 123 717, 3 503 919, 3 235 974,
2 467 015, 1 548 147, 793 376, 327 561, 106 710, 26 575, 4814, 583, 40, 1)

Euler characteristic − 8 661 469 533 071
1 738 538 300 508 827 811 840 000

Volume π9 · 8 661 469 533 071
117 009 824 562 522 292 617 216 000 000

Running time 74 s

https://doi.org/10.1112/S1461157015000273 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000273


coxiter 769

(a) (b) (c)

Figure 9. Construction of Σ19 < IsomH19.

(see Figure 9(b)) and look at its images under action of Sym Σ∗ ∼= S5. We find five triples
which correspond to five vertices of the first kind. These are

(27, 26, 18), (2, 12, 25), (21, 22, 6), (16, 10, 4), (8, 14, 20).

The vertices of the first kind are connected among themselves by bold edges.
To determine the vertices of the second kind and their connections to the graph Σ∗, we

consider the quadruple of vertices (27, 1, 21, 25) (see Figure 9(c)) and look at its images under
the action of Sym Σ∗. We find twenty quadruples which correspond to the twenty vertices of
the second kind. These are

(1, 21, 25, 27), (8, 22, 23, 27), (4, 8, 15, 21), (4, 11, 22, 25), (2, 10, 17, 27)

(9, 16, 20, 27), (4, 9, 14, 18), (4, 12, 17, 26), (2, 8, 13, 18), (13, 20, 25, 26)

(3, 10, 14, 25), (3, 8, 12, 16), (1, 6, 12, 18), (6, 14, 23, 26), (2, 6, 11, 16)

(6, 10, 15, 20), (2, 7, 14, 21), (7, 12, 20, 22), (5, 16, 21, 26), (5, 10, 18, 22).

The vertices of the second kind are connected among themselves by broken edges.
A vertex of the first kind and a vertex of the second kind are connected by a double edge or

a broken edge according to the rule described in [10, § 2, p. 196].

3.4.2. Summary and computations. Finally, the connections between the 50 vertices of
the group Γ19 are as follows:

– 30 simple edges in Σ∗;
– a complete graph with 5 vertices (vertices of the first kind, bold edges);
– 15 double edges (vertices of the first kind and Σ∗);
– a complete graph with 20 vertices (vertices of the second kind, broken edges);
– 80 bold edges (vertices of the second kind and Σ∗); and
– 100 edges between vertices of the first and second kind.

The output of CoxIter for the group Γ19 is presented in Table 7.
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Table 7. Output of CoxIter for Γ19.

Invariant Value

Cocompact No
Finite covolume Yes
f-vector (27 841, 292 340, 1 429 615, 4 465 955, 10 081 519, 17 518 035,

24 310 230, 27 542 850, 25 791 030, 20 062 168, 12 956 240, 6 908 365,
3 009 960, 1 054 645, 290 315, 60 660, 9125, 905, 50, 1)

Alt. sum of the comp.
of the f-vector 2

Appendix A. Example of the introduction

The output presented in the introduction is the group Γ generated by reflections in the group
of units of the Lorentzian quadratic form −x2

0 + x2
1 + . . . + x2

14 of signature (14, 1) described
in [21]. We describe the group Γ by means of the text file ‘14-vinb85.coxiter’, as shown in
Figure A.1.

Remarks.
– The first line indicates that the Coxeter group Γ has 17 generators and that it is a

subgroup of IsomH14.
– Each of the remaining 17 lines describes one edge of the Coxeter diagram: the first two

numbers are the labels of the generators and the third one is the label of the edge (a ‘0’
indicates a bold edge).

Appendix B. Program testing and some values

To test the accuracy of the program, we ran it on a collection of (around 800) groups for which
some of the invariants were known. These graphs can be found in the graphs/folder of the
source code. Except for a few graphs, the name of each file goes

dimension− reference page number− name or number of the graph.

The reference is as given in Table C.1.

Figure A.1. 14-vinb85.coxiter
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B.1. Euler characteristic

The groups of Table C.2 were tested.

B.2. f -vector

The f -vectors of the groups of Table C.3 were tested. The alternating sum of the components of
the f -vectors of the groups [8, 20], [14, Appendix C] and [23] were tested (see Proposition 1.6).

B.3. Cocompactness and finite covolume criterion

The groups of Table C.4 were tested for cocompactness and the ones of Table C.5 were tested
for the finite covolume.

B.4. Arithmeticity

The groups of Table C.6 were tested.

B.5. Some more complicated Coxeter graphs

Using cocompact groups in dimensions five and six we constructed twelve sequences Si =
{Γ0 < Γ1 < . . . < Γ9} of ten hyperbolic Coxeter groups such that Γi is of index two in Γi+1.
These groups allowed us to test CoxIter on more complicated graphs (the number of nodes
ranges from 7 to 775).

Appendix C. Tables

Table C.1. Correspondence between bibliography and file names.

Reference in the paper Name of the file

[5] ess96

[6] ftz07

[8] jkrt

[13] mcl11

[14] per09

[20] tum04

Table C.2. Euler characteristic of some groups.

Reference Group Theoretical value

[8, 20, 23]
[14, Appendix C] All groups of odd dimension Remark 2
[6] 13 compact simplicial prisms in H4, page 117 [6]
[8] 14 groups in H4 [8]
[8] 3 groups in H6 [8]
[14, Appendix C] Bugaenko P6 ⊂ H6, Bugaenko P8 ⊂ H8 [11]
[8] 4 groups in H8 [8]
[23] Σ10 and a subgroup [17, Theorem 22]
[7] P 10

1 [7]
[23] Σ12 and a subgroup [17, Theorem 22]
[23] Σ14 [17, Theorem 22]
[23] Σ16 [17, Theorem 22]
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Table C.3. f -vector of some groups.

Group Theoretical value

All groups of [8] Simplexes
All pyramids in H3 of [20]
Bugaenko P6 [11]
Bugaenko P8 [26]
Birectified 5-simplex http://en.wikipedia.org/wiki/Rectified 5-simplexes

Table C.4. Cocompactness.

Reference Cocompact Groups

[5] Yes Groups in IsomH4

[14, Appendix C] Yes All groups
[6] Yes 13 compact simplicial prisms in H4, page 117

[9] Yes BH3, J̄3, DH3, ÂB3, K̄3, ÂH3 B̂B3

B̂H3, ĤH3, H̄4, BH4, DH4, K̄4, ÂF 4

[20] No All groups
[20] No All groups obtained by removing a polar
[23] No {Σn : 10 6 n 6 17}
[9] No V̄3, R̄3, P̄3, BV 3, Ō3, Ȳ3, HV 3, BP 3, DV 3, N̄3, Z̄3

B̂R3, HP3, ÂV 3, DP3, M̄3, V P 3, B̂V 3, ĈR3, ĤV 3

V̂ V 3, R̂R3, P̂P 3, S̄4, R̄4, P̄4, Ō4, N̄4, M̄4, BP 4, F̂R4

DP 4, Ū5, S̄5, X̄5, Q̄5, R̄5, P̄5, Ō5, N̄5, ÂU5, M̄5

L̄5, ÛR5, S̄6, Q̄6, P̄6, T̄7, S̄7, Q̄7, P̄7, T̄8, S̄8, Q̄8, P̄8

Table C.5. Finite covolume.

Reference Finite covolume Groups

[6] Yes 13 compact simplicial prisms in H4, page 117
[8] Yes All groups
[14, Appendix C] Yes All groups
[20] Yes All groups
[23] Yes {Σn : 10 6 n 6 17}

[20] No Every polar was removed to create 387
groups which do not have finite covolume

Table C.6. Arithmeticity.

Reference Arithmetic Groups

[8] Yes (see [9]) S̄6, Q̄6, P̄6, T̄7, S̄7, Q̄7, P̄7, T̄8, S̄8, Q̄8, P̄8

[23] Yes {Σn : 10 6 n 6 17}
[20] All groups
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