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Abstract

In this paper we consider the Plateau problem for surfaces of annular type bounded by a pair of convex,
non-compact curves in parallel planes. We prove that for certain symmetric boundaries there are solutions
to the non-compact Plateau problems (Theorem B). Except for boundaries consisting of a pair of parallel
straight lines, these are the first known examples.

1991 Mathematics subject classification (Amer. Math. Soc): 35A10.

1. Introduction

In this paper we consider the Plateau problem for surfaces of annular type bounded
by a pair of convex, non-compact curves in parallel planes. We will prove that for
certain symmetric boundaries there are solutions to the non-compact Plateau problems
(Theorem B). Except for boundaries consisting of a pair of parallel straight lines, these
are the first known examples.

We now fix some notation in this paper. hetP, = {(x, y,z) e R3\z — t) be the plane
at height t parallel to the xy-plane, and let S(tu t2) = {(x, y, z) 6 IR31 tx < z < t2} be
the slab with boundary equal to Pt] U Pt2.

We briefly review the known results for a pair of Jordan curves. Let F c R3 be a
pair of rectifiable Jordan curves, F = F] U F2, T\ D F2 = 0. Douglas [2] considered
the Plateau problem for F. He proved that if

inf{Area(5)} < Area (Si) + Area(S2),
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370 Yi Fang [2]

where 5 denotes any continuous annulus such that dS = V, and 5i and S2 are area
minimizing disks such that 8St = Tu dS2 = F2, then there is an area minimizing
annulus A such that dA = F.

D. Hoffman, W. Meeks, and B. White, also considered this kind of Plateau's
problem. A combined result of Hoffman and Meeks, and Meeks and White, is as
follows.

THEOREM A. (Theorems 1.1, 1.2 of [5], and Theorem 1.1, Lemma 2.1 of [6])
Suppose D\ and D2 are two open disks lying on parallel planes, and suppose their
boundaries C\ and C2 are smooth convex Jordan curves. If A' is a connected non-
planar compact branched minimal surface such that dA' c Dx U D2, then there exist
exactly two embedded compact minimal annuli A and B, dA = dB = C\U C2. The
annulus A is stable and has the property that for any disks D' C Dt and D" c D2 with
continuous boundaries, if there is a connected compact branched minimal surface N
such that dN = 3D' U 3D", then N is contained in the solid bounded by A U D, U D2.
In particular, if A ^ N, then int(i4) D int(N) = 0. On the other hand, B is unstable
and int(fi) n int(iV) / 0.

If merely 3 A' C D\ U D2, then there exists at least one embedded minimal annulus
A such that dA = C\ U C2. Such an A is almost stable in the sense that the first
eigenvalue of the second variation of A is larger than or equal to zero. Let N be a
connected compact branched minimal surface such that dN = dD' U 3D", then N
is contained in the solid bounded by A U D\ U D2. In particular, if A / N, then
int(A) n int(A0 = 0.

Furthermore, the symmetry group of A and B are the same as the symmetry group
o/C,UC2.

A very useful fact (which we will use) about minimal annulus is a result of Shiffman
[11]. He proved that if C\ and C2 are continuous convex Jordan curves lying on planes
parallel to the xv-plane, say on /)_i/2 and P\/2, and A is a minimal annulus such that
dA = C\ U C2, then each level set of A D P, is a strictly convex Jordan curve for
-1 /2 < t < 1/2. This is called Shiftman's first theorem.

If C\ and C2 are circles, Shiftman's second theorem states that each A n P, is a
circle for-1/2 < t < 1/2.

From Shiffman's first theorem, it is clear that if A is a non-planar minimal annulus
and 3 A consists of convex Jordan curves lying on planes parallel to the xy-plane, then
A does not have vertical normal directions in its interior, as otherwise some level set
would not be a Jordan curve.

We now state our existence theorem. Let r > 0 and 0 < b < oo be fixed. Let K be
the rotation of angle n about the y-axis and R be the reflection through the xz-plane.
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Define a convex curve C in P-\/2 by

C = {(x,y,-l/2)\x =

where / satisfies :

(i) / : (-b, b) - • K is a C°° function such that f(-y) = f(y)\
(ii) /(0) = - r , / " > 0, and l im^6 / (y) = oo.

Define the planar domain

(1) X = {(x,y,-1/2) \x

Now consider the non-compact Plateau problem with the boundary

(2) r = cu/s:(C) = 3xu^(3X).

We have

THEOREM B. If there exists a compact non-planar minimal annulus A' such that
dA' C X U K(X), then there are two embedded non-compact minimal annuli srf and
38 in S(—1/2, 1/2), which are solutions to the non-compact Plateau problem with the
boundary F given in (2).

For any —1/2 < t < 1/2, s/ D P, and 3$ n P, are strictly convex Jordan curves.
Furthermore, \nt(s/) Pi va\.(3§) = 0. Let N be any connected compact non-planar

branched minimal surface such that dN c X U K(X). Then s/ and SB have the
properties

int(^) n int(/V) = 0 and SB D N ^ 0.

REMARK 1. Let Q be the circle of radius /? in P_i/2, centered at (0, 0, -1/2) . It
is well known that there is a constant h2 > 0, such that if R > \/h2 ~ 0.754439698
then the coaxial circles C^ and ^ (C^) bound a piece of a catenoid. Hence by Theorem
A, if C'R C X, then there will be two non-compact minimal annuli si and 88 which
solve the Plateau problem with the boundary F given in (2).

The only previously known example of a non-planar non-compact embedded min-
imal annulus in a slab S(tu t2) is an embedded minimal annulus s/ such that ds/
consists of a pair of parallel straight lines, and s/ D P, is a circle for every tt < t < t2.
Repeatedly rotating about the straight-line boundaries produces a singly-periodic com-
plete minimal surface which is called a Riemann's example. There is a one-parameter
family of Riemann's examples. It was Riemann who discovered these minimal sur-
faces. See [7, pp. 85-90].

A basic piece of a Riemann's example is the portion bounded by two consecutive
parallel straight lines. Such a piece is an annulus, which we will denote by 3%. In [4],
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it is proved that any embedded minimal annulus bounded by a pair of parallel straight
lines must be a basic piece 8$ of some Riemann's example. See also [12]. For a more
general result, see [3].

Since the proof of Theorem B is quite long, we give a sketch here to give the ideas
and also the difficulties encountered when one tries to simplify the proof. The basic
idea is to approximate the non-compact boundary with compact ones. Then by using
Theorem A, we get a sequence of approximating minimal annuli {An} and {Bn}. We
use the symmetry conditions of the boundary to divide the approximating annuli into
two graphs, each of which is stable and simply connected. Then we estimate the
boundary arc-length of compact pieces of the graphs to prove the existence of a limit
surface. The trouble is to prove that the limit surface is an annulus with the claimed
properties. To accomplish this, we use the properties stated in Theorem A of these
approximating surfaces, and the estimates of An n Po and Bn D Po in Lemmas 1 - 8
to prove that the limit surface intersecting P, in a convex Jordan curve for |?| small
enough. The last difficulty is to prove that the limit surface is not only an annulus,
but is also a compact annulus in any proper subslab contained in the original slab. We
use the Enneper-Weierstrass representation of the approximating surfaces to establish
the needed estimate. Together with a result of Osserman and Schiffer, we are able to
prove the desired fact.

It turns out that the argument for the existence of A (which is the limit of sequence
of stable annuli) is much easier than the argument for the existence of B (which is
the limit of sequence of unstable annuli). For the former, we can give a much shorter
and simpler proof, without using Lemmas 5 to 8. For the latter, we have to establish
those lemmas to be able to apply Theorem A. We prove those preparatory lemmas in
Section 2. Section 3 is devoted to the proof of Theorem B.

2. Preparatory lemmas

We denote the xz-plane by P. Suppose that C" C X is a smooth convex Jordan
curve symmetric with respect to P. Let A c 5(—1/2, 1/2) be a minimal annulus
such that 3A = C'U AT(C).

In Lemmas 1 to 4, we study the properties of such a minimal annulus A.

LEMMA 1. The intersection A C\ P consists of two curves O\ and o-i such that
K(a{) = CT2. Moreover, ax C {(x, 0, z) e P \ x < 0} anda2 C {(x, 0, z) € P | x > 0}
are two convex graphs. Precisely, there are two smooth functions f\ and fi, f\ (z) < 0,
/2(z) > O.for - 1 /2 < z < 1/2, and f['{z) < 0, /2"(z) > 0,for -1 /2 < z < 1/2,
such that

CT, = {(X, O,Z)\X = / , ( Z ) } , *2 = {(X, 0 , Z) | X = / 2 ( z ) } .
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PROOF. By Theorem A and Shiftman's first theorem, A is invariant under both K
and R, and A D P, is strictly convex for —1/2 < t < 1/2. Since each A DP, is a strictly
convex curve and symmetric with respect to P, A n P has exactly two components
and they are graphs over the z-axis. Let them be ax and a2. By K(A C\ P) = A D P
we have K{oi) = o2. If we write

cr, = {(x, 0, z) | x = /,(z)}, a2 = {(x, 0, z) | x = /2(z)}, - 1 / 2 < z < 1/2,

then /2(z) = —/i(—z). By the symmetry with respect to P, (fi(z),0,z) and
(/2(z), 0, z) are the extreme points of the strictly convex curve A n P, and we can
assume that f{(z) < f2(z) and A n Pz C {(x, y, z) | /i(z) < x < /2(z)}. As the
fixed point sets of an isometry (the reflection R) on A, both ax and cr2 are geodesies,
and their tangent directions are the principal directions on A. The tangent directions
of each level set A D Pz at y = 0 are also principal directions on A, since they are
perpendicular to P by the invariance under R and hence perpendicular to the tangent
direction of ox or a2 respectively. Let (sin 9, 0, cos 0) be the inward normal vector to
A at the point p e au where 0 is the angle between the inward normal vector and the
positive z-axis. Since A cannot have vertical normal vectors, sin# > 0, and hence it
must be the case that 0 < 9 < it. Let k{ and k2 be the principal curvatures of A at
p e ox n Pz along the directions of ox and A D Pz respectively. Notice that k{ is also
the plane curvature of a! with respect to the normal direction of positive x-coordinate.
Letting k be the plane curvature of A D Pz with respect to the inner normal, then k > 0
and k2 = k sin9 > 0 on a, n Pz. Since A is minimal, kx — —k2 < 0 at cr, n P.. By
it, = /"(z)/(l + /,'(z)2)3/2, we know that /,"(z) < 0. Since /2(z) = - / , ( - z ) , we
have /2"(z) > 0.

We need to prove that /\ (z) < 0 and /2(z) > 0. If f2(z) < 0 for some z, then since
/i (z) < /2(z) and A n Pz C {(x, >>, z) | / , (z) < x < /2(z)}, the convex curve Ad P:

is contained in the half plane [x < 0}. Thus /I n P_z = K(A n Pz) c P_z n {x > 0}
and the orthogonal projections of A n Pz and A D P_z on Po have at most one common
point (0, 0, 0) and, in particular, z ^ 0. Without loss of generality we may assume
that z > 0. Let C\ and C2 be two circles lying on P_z and Pz respectively, such that
A D P_z and A D Pz are contained in the disks bounded by C\ and C2. We can arrange
that R(Cj) = C, for / = 1,2 and the orthogonal projections of Cx and C2 on the
x>>-plane have at most one common point (0, 0, 0). This means that the horizontal
distance between the centers of C\ and C2 is greater than or equal to the sum of their
radii. By Theorem A there is a minimal annulus N in S(—z, z) bounded by C\ and
C2. By Shiftman's second theorem N D P, is a circle for — z < t < z. By a theorem
of Nitsche, the horizontal distance between the two centres of C\ and C2 is less than
the sum of their radii, see [7, pp. 88-89]. This contradiction proves that /i(z) < 0
and /2(z) > 0.
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Let rf(r) = /2(z) - /i(z) for - 1 / 2 < z < 1/2. The function d is the distance
function between (/i(z), 0, z) and (/^(z), 0, z).

LEMMA 2. The function d satisfies

(3) rf(z) > d(0) >0 for - 1/2 < z < 1/2, z / 0.

PROOF. We have d(z) = /2(z) - /,(z), rf'(z) = /2'(z) - /,'(z) = /2'(z) - /2'(-z),
and rf"(z) = /2"(z) + /2"(-z) > 0. Since d'(0) = /2'(0) - /2'(0) = 0, </(0) is the
unique minimum value of d, and hence d(z) > d(0) > Ofor—1/2 < z < 1/2, z ^ 0.

Let H be the half space {y > 0} and D = A n // . Let £>' be the convex disk such
that 3D' = C. Let /, = P n £>', l2 = K{lx). Let fi be the domain in P bounded
by CT, U CT2 U /, U l2. Since /,(z) < /2(z) for - 1 / 2 < z < 1/2, fi is a domain and
obviously it is simply connected.

LEMMA 3. The minimal surface D = A C\ H is a minimal graph over Q.

PROOF. By Theorem A and Shiffman's first theorem, A is invariant under both K
and R and each level set A D P, is a strictly convex Jordan curve. Let /j and f2 be
the functions that define O\ and <r2 in Lemma 1. By symmetry with respect to P, each
DPI P, is a convex graph over the interval fx(t) < x < f2{t),—\/2 < f < 1/2. Thus
D is a minimal graph over the domain fi.

Recall the convex function / that defines the boundary C = dX. We need to
define its inverse for y > 0. Since / '(0) = 0 and f"{y) > 0 for any —b < y < b, so
f'iy) > 0 for b > y > 0. Thus in H, f is nondecreasing. Because lim>,_).i / (y) = oo
for each JC > —r = /(0) , f~\x) is not empty. Since / is nondecreasing, if
f~l(x) n // contains more than one point, it must contain an interval [c, d] with
d > c > 0 and hence on [c, d] we would have / '(y) = 0 = / '(0). Since / " > 0,
/ ' is nondecreasing, we would have / '(0) = 0 on [0, d], thus / (y) = — r on [0, rf],
contradicting the fact that x > —r. Therefore we have proved that /" ' (*) H // is
a single point for x > / (0) = — r. Thus ft = f~x is a well defined function on
(-r, oo), and h! > 0, A" < 0. If we define h{-r) = sup{/~'(-r)} then ft is a well
defined function on [—r, oo) and is strictly increasing.

Since a2 is convex and /2(l/2) < r, for fixed s > r, {;c = .s}nfiisan interval
if it is nonempty. Also remember that /i(z) < 0 and /2(z) > 0, {JC = 0} (1 £2 =
{(0,0,z)| - l / 2 < z < 1/2}.

Let s > 0 and S(s) be the slab {(x, y, z) | -s < x < s}. Let u : Q. ->• R be the
function that defines the minimal graph D in Lemma 3. We want to estimate u in
Q. n S(s) and the boundary arc length of D f) S(s). We have the following lemma.
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LEMMA 4. If s > r, then on the interval I = {x = s} PI Q, u(s, •) is strictly
decreasing andO < u(s,t) < h{s)for t e I.

We have u(0,0) < «(0, z) < h(0), - 1 /2 < z < 1/2, and u(0, •) is strictly
increasing in (0, 1/2), strictly decreasing in (—1/2, 0).

Moreover, if s > r, then the arc-length of d(D n S(s)) is less than or equal to

PROOF. We show that u(s, •) does not have local maxima in the interior of /. If
t0 € / is an interior critical point of u(s, •), then du/dz(s, t0) = 0, and by the minimal
surface equation we have

Since D n P,o is strictly convex at (s, u(s, t0), tQ) e int(D), d2u/d2x(s, t0) < 0, we
have d2u/d2z(s, t0) > 0. Thus u(s, •) can only achieve its maximum vilue on the
boundary of Q. Let x e / 2 ( [ - l / 2 , 1/2]). Since f2 is convex and /2(l/2) < r, if
x > r, then f2~

l(x) is well defined. Note that (s, t) € dQ if and only if? = /^"'O).
Since u is zero along a2, and for s > r,by the condition C" C X, the other boundary
value of u along x — s is u(s, —1/2) < h(s), we have 0 = u(s, f2~

1(s)) < u(s, i) <
u(s, —1/2) < h(s)forz e / . Since«(s, •) cannot achieve local maxima in the interior
of /, it must be strictly decreasing.

Notice that by the symmetry A = K(A), u(0, z) = «(0, -z ) , we have du/dz(0, 0)
= 0. Similar argument proves that 92«/3z2(0, 0) > 0, M(0, 0) is a local minimum
of M(0, •). A similar argument about local maxima proves that the statement about
M(0, •) is true.

For each s > r, the boundary of D D S(s) consists of ax n S(s), a2 n S(s) =
K(ai n S(s)), C n H n S(s), K(C n H n S(s)), Dn[x = s},andDn{x = -s} =
K(D fl {x = s}). We only need to prove that the summation of the arc lengths of
CTi n S(s), C ' n / / ( 1 S(s), and D PI {x = s] is less than or equal to l(s)/2.

Since/,"(z) < Oand— 5 < /i(z) < 0,0]CiS(s) is a convex graph over a subinterval
of —1/2 < z < 1/2. An elementary estimate for convex graphs gives that the arc
length of (T\ fl S(s) is less than or equal to 1 + 2s,

Note that C C X and h(t) < h(s) for -r < t < s. Then / / n C f l S(s) C {0 <
y S h(s)} n 5(5). Since C" is convex, an elementary estimate of convex curves gives
that the arc length of C n H n S(s) is less than or equal to2(s + h(s)).

D n {x = s) is a graph {(5, v, z) | y = u(s,z), - 1 /2 < z < /z"1^)}, 0 <
u(s,z) < u(s, -1/2) < h(s), and M(5, •) is strictly decreasing as just proved. By
elementary arguments again, this time using the property of being strictly decreasing,
the arc length of D n {x = s] is less than or equal to 1 + h(s).

Thus the summation of the arc lengths of a, n S(s), C" n H n S(s) and D n [x = s]
is less than or equal to 2 + 4s + 3h(s) = l(s)/2, the lemma is proved.
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Since the following lemmas are not needed in the proof of the existence of si', the
reader can skip them and go to the proof of Theorem B.

To prove the existence of 8$ mentioned in Theorem B, we have to clarify several
facts about a basic piece &£ of a Riemann's example.

LEMMA 5. Let Lx and L2 be parallel straight lines lying on P-\/2 and PX/2 respect-
ively. Then there is an E > 0, such that whenever the horizontal distance between L\
and L2 is greater than E, there is a basic piece M of a Riemann's example such that

@= Li DL2.

PROOF. It is well known that for any basic piece of Riemann's example in S(—z0, z0),
one half of the horizontal distance between the boundary straight lines L \ c P~:o and
L2 C P2B is given by

R =
r

-b-
Jb

(a2 - b2)t2 - a2b7

A(t)(t2 + A(0)
dt

where 0 < b < a, A(t) = y/(t2 + a2)(t2 - b2), and z0 is given by

dtr
z0 = ab I

Jb
A(0"

See, [7, p. 89] and note the misprint in line 12.
Define r := a/b > 1. Substituting 5 = t/b, we can rewrite R and z0 as

R = b 1 +
[(r2 - l)s2 - r2]ds

s2-l) (s

ds
2)(s2 -2 + r2)(s

Thus/?' = /?/2z0 is independent ofa and 6, and is a continuous function of r for r > 1.
After a homothety, such that the surface is contained in 5(—1/2, 1/2), L\ c P-\/2

and L2 c P1/2, then /?' is one half of the horizontal distance between Lx and L2. We
only need to prove that Hindoo /?' = 00. First we claim that for r > «/2,

r < 1 +rr)sh"'(r)
J\ yf(t2 +r2)(t2 - 1)

In fact, for t > r > *J2, (r2 - X)t2 - r2 > 0, and thus

(t2 + r2)(t2 - 1) = t4 + (r2 - \)t2 - r2 > t4.
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dt

377

r
Jr

dt

dt

The claim is true.
Next we will prove that for r large enough,

[(r2 - l)t2 - r2]dt
2)(t2 -r2)(t

for some C > 0.
In fact, for I < t < r2/Jr2 - I,

- I))

| ( r 2 - l ) f 2 - r 2 |

/2 + r2)(r2 - I) (t2 + V(?2 + r2)(r2 - I))

For t > r/Vr2 - 1,

(r2 - I)?2 - r2

Since lim,..,^ r/^Jr2 — 1 = 1, when r is large enough, r/^Jr2 — 1 < 2. We have

f°° [(r2 - \)t2 - r2]dt

ii y/{t2 + r2){t2 - 1) (t2 + y/{t2 + r2){t2 - 1))
r r [(r2 - I)?2 - r2]df f r/V^T | ( r2 _ 1)?2 _ r 2 | d r

2rr(t2 + •s/lrt)^rO !\ VU2

>V2r
r2-3/2

_ 1 M r r n \\

~V2> 2 °82 + 71 v " 2J'
, 3

r2)(r2-l)(r2 + V(^2+^2)(^2-:

-rcosh"
- 1

r 1

-TT l o 8
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Since

for r large enough, we can take C = | log[(l + A/2 ) /V2] . Thus we have

lim 7?' = lim —

= lim-

C r - l
> lim ;— = oo.

<--oo2(l + cosher)

To be able to apply Theorem A, we need to know the stability of a basic piece
0ft of a Riemann's example. First note that K(M) = Si, see for example, [7, p. 88,
formula (55)]. In [4], the examples of Riemann are described in terms of their
Enneper-Weierstrass Representation data g and r\, where g is a meromorphic function
and t] is a meromorphic 1-form. Let N be the unit normal vector of the surface, and x
be the stereographic projection S2 — {(0, 0, 1)} —> C. It is well known that g = x o N.
Either g or N will be called the Gauss map.

Let X > 1 and L be the lattice in C generated by {X, /}. On the rectangular torus
TA — <C/L, consider the elliptic function P which has a double pole at 0, a double
zero at co2 — (X + i)/2 and no other zeros or poles. The Weierstrass p-function p
has the property that p — p ((02) has exactly the same poles and zeros as P. To get a
Riemann's example, take

g = P = p-p(co2), rj = idz/P.

It can be easily checked that P has the property that P (0^/2) = /, and P is real
precisely on the lines

Re(z) = 0, Re(z) = X/2, Im(z) = 0 and Im(z) = 1/2.

By reflection, we have

P(x + iy) = P(X - x, iy), P(x + iy) = P(x, i ( l - y)),
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and hence

(4) P(X-x,iy) = P(x,i(l-y)).

A basic piece & of a Riemann's example corresponds to the punctured rectangular
{z = x + iy | 0 < x < X, 0 < y < 1/2} - {0, a^}. Since deg p = 2, by (4) we know
that the Gauss map N of & maps onto 52 — {(0,0, 1), (0, 0, -1)} and is one-to-one
in int(^).

LEMMA 6. Let ffl C 5(—1/2, 1/2) be a basic piece of a Riemann's example, then
for small e > 0, @ n S(-l/2 + e, 1/2 - e) is unstable.

However, 8% n S(0, 1/2 — e) « stable for any 0 < e < 1/2, and fry symmetry, so is

PROOF. Let g be the Gauss map of £%, we know that the image of iV on J is
D := S2 - {(0,0, 1), (0,0, -1)}, and N is one-to-one in int(^). Let A be the
Laplace operator on S2. Let U and V be open disks such that (0, 0, 1) € U and
(0,0, —1) e V and U n V = 0. It is well known that the first eigenvalue A i of A on
S2 — (U U V) is near zero if U and V are sufficiently small.

For € > 0 small enough, N{0£ n S ( - l / 2 + e, 1/2 - e) D 52 - (U U V) for some
small disks U and V, hence

X,(W(^ n S ( - l / 2 + €, 1/2 - e)) < 2.

Thus by a classical result, which says that if the first eigenvalue of the one-to-one
image of the Gauss map of a piece of minimal surface is less than 2, then the piece
of minimal surface is unstable, see, for example, [8, p. 215, Theorem 8.2]. Hence
5 ( - l / 2 + e, 1 / 2 - e ) n ^ is unstable.

On the other hand, by a theorem of Barbosa and Do Carmo [1], or [8, p. 216,
Corollary 8.5], a minimal surface M is stable if ffM \K\dA < 2n. Since N is one-to-
one in int(^) and N(&) = S2 - {(0, 0, 1), (0, 0, -1)}, ffa \K\dA = 4n. Thus for
any 0 < e < 1/2, //^ns(-i/2+f, 1/2-0 \K\dA < An- By t h e symmetry

M n 5 ( - l / 2 -I- e, 1/2 - e) = @, n S ( - l / 2 + e, 0) U K{@ n S ( - l / 2 + e, 0)),

it follows that

fff \K\dA = \ t \ \K\dA<2n,
senS(0,[/2-e) * J J&nS(-l/2+e,\/2-e)

and hence Sf, D 5(0, 1/2 - e) is stable.
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Let /•' > r > 0, where r is the number used in the definition of X, and X' =

{(x, y, —1/2) x > — r'} D X. Let & be a basic piece of a Riemann's example
whose boundary d& = 3X' U K"(3X'). Let D& be the open plane disk such that
dDM = Po n gg. Note that dD& is a circle centered at (0, 0). Let A be the minimal
annulus which has been studied through Lemmas 1-4. Let DA be the closed plane
disk such that dDA = An Po.

L E M M A 7. Po n A <£ D@; in particular, DA <£_ D®.

PROOF. Let D, be the disk bounded by the circle P, D&. Since 8 A c X U A"(X) c
X' U K(X') is compact, there is a 0 < J < 1/2 such that whenever 0 < e < d,
A n Pl/2_e c £>1/2_o and A n P-i/2+c C D_i/2+€. If A n Fo C £>^, then by
Theorem A and the fact that 5(0, 1/2 - e) D 0Z is stable, A n 5(0, 1/2 - e) n @. = 0.
Similarly, ^ T l /I n 5 ( - 1 / 2 + e,0) = 0. Thus A n ^ ? n S ( - l / 2 + e, 1 / 2 - e ) = 0.
However, since <^Tl 5(—1/2 + e, 1/2 — e) is unstable for small e, by Theorem A,
A n ^ n 5 ( - l / 2 + e, 1/2 - e) ^ 0. This contradiction proves the lemma.

Let Bn c S(—1/2, 1/2) be a sequence of non-planar compact minimal annuli.
Suppose that K(Bn) = Bn, R(Bn) = Bn, and dBn C X U K(X) C X' U AT(X') is a
pair of convex Jordan curves. If Bn converges to a minimal surface, we want to know
the limit behaviour of Un := Bn n Po. By Lemma 7, the limit cannot shrink to a point
inside D@. Since each Un is a strictly convex Jordan curve and invariant under K and
R, the limit is either a convex Jordan curve or a segment on the x or v-axis.

LEMMA 8. Un cannot converge to a segment on the y-axis.

PROOF. Let d be the radius of the circle Po n ^?. If Un converges to a segment
on the j-axis, by Lemma 4 the limit is a finite segment of length Id' < oo, and
d' > d > 0 by Lemma 7. Let pn be one of the two fixed points of K on Bn which lies
in the half space H = {(x, y, z)\y > 0}. A theorem of Meeks and White says that
the Gauss map of Bn is one-to-one and ffB \K\dA < 4K, see [6, Lemma 2.2]. Since
Bn = (Bn n H) U R{Bn n H),

(5) It \K\dA = \ f[ \K\dA <2n.

Hence Bn n H is a stable minimal disk by a theorem of Barbosa and Do Carmo.
For n large enough, pn = (0, dn, 0) with dn > d/2. Since £/„ is invariant under

K and converges to a finite line segment on the y-axis, the plane curvature of Un

at pn, k(pn), would go to infinity as n —»• oo. In fact, let un be the function that
defines the minimal graph Bn n / / in Lemma 4, then Jn = wn(0, 0) and by symmetry,
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dun/dx(O, 0) = 0. Thus if Un converges to a line segment on the >>-axis, then
un(0, 0) -> d' > d > 0. Since Un is strictly convex and R(Un) = Un, for n large
enough, there is a unique Jcn > 0 such that un(xn, 0) = d'/2, and

| = «„(*„, 0) = MB(0, 0) + ^ ' ^ ( 0 . 0) + o(xn
2).

Since £/„ converges to a line segment, xn —»• 0, it follows that

Again xn -> 0 forces that |32Mn/3x2(0, 0)| ->• oo as n -> oo.
Since /?„ is the only fixed point of Bn Pi H under A", k(pn) is a principal curvature

of Bn at /?„. Thus the Gauss curvature of Bn at pn is /£(/?„) = — k2(pn). It would be

(6) lim |A-(pB)| = cx>.

We have the Euclidean distance dist(pn, d(Bn P\ H)) > d" := min{d/2, 1/2}. We
claim that the geodesic ball of Bn n H centered at pn has radius rn > d". If not, then
rn < d". Since there are no conjugate points on a minimal surface, there is then an
interior point qn for which there are two length minimizing geodesies connecting pn

and qn. Thus there is a loop yn such that yn Pi d(Bn n H) = 0, yn(0) = yn(l) = pn,
yn(l/2) = qn and yn is a geodesic on (0, 1/2) and (1/2, 1). Let 9\ and 02 be the
exterior angles of /„ at pn and qn, —n < 9j < n, j — 1, 2. Since fin fl / / is simply
connected, yn bounds a disk Dn c Bn P\ H. By the Gauss-Bonnet Formula we have
JfD KdA + di + 02 = 27r. Since / / D /iTJ/l < 0, we would have 6X + G2 > 2n,
which is impossible. Hence we have proved that rn > d".

Since Bn P\ H is a stable embedded minimal surface, by an estimate of Schoen, see
[10], there is a constant c > 0 such that

\K(pn)\<cr;2<cd"-\

contradicting (6). This contradiction proves the lemma.

3. The proof of Theorem B

We break the proof into several steps. In the following, we will not distinguish a
sequence and its subsequence in notation.

Step 1: To establish two sequences of approximate minimal annuli.
Let Dn c Ai+i C X be open disks bounded by smooth convex Jordan curves

Cn C X, R(Cn) = Cn, and lim^oo Dn = X. We can arrange that for each positive
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integer M, there is a positive integer N(M) such that X C\{x < M] = DnC\{x < M}
whenever n > N(M).

Since there is a nonplanar compact minimal annulus A' such that 3 A' C X UK(X),
we can assume that 3A' c Dn U K{Dn). By Theorem A, there are exactly two
nonplanar compact minimal annuli An and Bn in 5(—1/2, 1/2), such that dAn =
dBn = Cn U K(Cn). An is stable, Bn is unstable.

Step 2: To prove that there is a convergent subsequence of {An} (resp. {Bn}).
The proof is the same for An and Bn.
Let // = {(x, v, z) | y > 0}, //„ = AB n // and let S(s) be the slab S(s) =

{(x, y, z) | — s < x < ^}. By Lemma 1, the intersection of An and the xz-plane
P consists of two graphs ani = [(x, 0, z) | x = fn\(z), —1/2 < z < 1/2} and
an2 = {(x, 0, z) I * = /n2(z), —1/2 < z < 1/2}. By Lemma 3, //„ is a minimal graph
over a domain £2n contained in f, where Qn is defined by

£2, = {(JC,O,Z) I /Bl(z) < x < fn2(z), - 1 /2 < z < 1/2}.

For s > /-,//„ n 5(5) is topologically a disk and 3 (//„ D S(s)) is a piece wise smooth
Jordan curve. Let D := {z e C | |z| < 1} and let Xn : D -*• R3 be the conformal
embedding of Hn D S(s). Since for « large enough, Cn D 5(5) = 3X D 5 ( J ) , we can
arrange that each Xn maps three fixed points on 3D to three fixed points on the arc
dxns(s)nH.

Let ln(s) be the arc length of d(Hn D S(s)). By Lemma 4, ln(s) is uniformly
bounded by 2(2 + 4s + 3h(s)). By the isoperimetric inequality for minimal disks,
see [7, p. 280], Area(//n n S(s)) < (ln(s))2/4n. Since Xn is conformal, the Xn have
uniformly bounded Dirichlet's integral. By the Courant-Lebesgue Lemma, the Xn are
equicontinuous on 3D, and hence on passing to a subsequence if necessary, HnC\S{s)
uniformly converges to aminimal surface @{s) C S(—1/2, 1/2) D S(s) parametrized
by Ys = l i m ^ ^ Xn : D - • R\ 2>(s) = YS(D).

By a diagonal argument, in any compact subset of 5 (—1/2, 1/2), //„ uniformly
converges to a minimal surfaced, 3>{s) = ^nS(s ) . Since for each-1/2 < t < 1/2,
Hn D P, is strictly convex, 2i (1 P, is convex. Remember that crnl U K(onl) = HnC\ P
in Lemma 1.

anl = {(x,0 ,z)U = / n l ( z )<0} .

For « large, by our construction of Cn, /nl(—1/2) = —r. Since <7nl is convex,
l/«i(zi)l < max{r, |/nl(z2)|} for -1 /2 < zx < z2 < 1/2. It follows that if
limn_̂ oo fn\(z2) exists and is finite, then /i(z) := limn^oo /ni(z) exists and is finite for
-1 /2 < z < z2. Thus there is a d, - 1 /2 < d < 1/2, such that

is a well defined graph over / = [—1/2, d). Note that it may be the case that
d = -1 /2 .
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Now let Q c P n S ( - l / 2 , 1/2) be such that d£l = oY U AT^) U L , U L2,
where Li = {(x,O, —1/2) | JC > - r } and L2 = AT(L,). If d = - 1 / 2 , then S2 =
int(P n 5 ( - l / 2 , 1/2)). By Lemmas 1 and 2, if (0, 0, 0) # au then Q is a domain,
that is, an open connected set.

Suppose d > - 1 / 2 . Since limffnl = ou Q = \J^=i fXLm
Qn- S i n c e ^ i s

the orthogonal projection of Hn, Q is the orthogonal projection of 9. Taking any
(x,y,z) e 9, we have (x, 0, z) € £2. Suppose that O , 0 , z) e int(£2). Let s >
max{|x|, r}. Since ani n S(.s) uniformly converges to ax D 5(5), there is an m > 0 such
that there is an open ball U such that (x, 0, z) € U C P|«>m ^V Since //„ converges
to ^ , «„ converges to a function u on U and hence ^ n {(x, y, z) | (x, 0, z) e £/} is
a minimal graph. In particular, (x, y, z) = (x, u(x, z), z) is an interior point of $i.
By the maximum principle, y = M(X, z) > 0. This also proves that ox\J K{o\) =

Thus if we can prove that (0, 0, 0) ^ ox, then £2 is open and Q) is a minimal graph
hence is embedded.

We now consider the surface Si U R(9). If d = - 1 / 2 , then 9 U fl(^) is a
minimal surface. If <i > —1/2, then / is an interval. By continuity of 9, for any
closed subinterval J C / and z0 € / , there is a <5(z0) > 0 such that the orthogonal
projection of the convex curve & fl Pz on the y-axis contains an interval [0, <5(z0)]
for z € (z0 — 8(z0), zQ + S(z0)) c / . Thus the orthogonal projection of 9 n (U^y/7,)
on the yz-plane contains a domain D' such that dD' D P D J. Since //„ uniformly
converges to 9, for large n, the orthogonal projection of Hn on the yz-plane contains
a common domain £>" c D' such that dD" C\ P D J. Now since An n P. is
strictly convex for z e 7, a component of An containing anX n ( U ^ y ^ ) is a minimal
graph over D" U R(D"). Let t>« be the function that defines this graph. We have
0 > vn(y, z) > fn\{z) = vn(0, z) since (/Bl, 0, z) is the extreme point of An n P, in
{x < 0}. Thus on D" U ^(D") , uB converges. This proves that 9 U R(9) is a minimal
surface if O\ n ^ (CTI ) = 0.

Thus in the case that d =-1/2 or that J > - 1 / 2 and ^ n A"(or,) = 0, 0 U /?(^)
is a minimal surface.

We denote 9 U /?(0) by ^ / (resp. 3§). We need to prove that <r, is a graph defined
on —1/2 < z < 1/2. We first analyse 2> n Po- Note that so far we cannot say that
3> n p n p0 y£ 0.

Step 3: To prove that si n Po (resp. ^ D Po) is a convex Jordan curve.
First we claim that 9(1 P n Fo T̂  0. Let (-aB, 0, 0) and (an, 0, 0) be the two extreme

points of An n Po (resp. Bn D Fo). Let (0, pn, 0) be the middle point of Hn D Po. By
Lemma4, pn < h(0), and thus 0 < p := limn_>oo pB exists. In particular, 3>C\ Po ^ 0.
If ^ n P n Po = 0, then p > 0 and lim^oo an = oo. By Step 2 and Lemma 2,
«n(x, 0) —>• u(x, 0) for — oo < x < oo. Thus 9 ("I Po is a smooth convex graph
(x, M(X, Z), Z). Because K{9 C\ PQ) = 9 P> Po, «(x, 0) < p and 3 M / 3 X ( 0 , 0) = 0,

https://doi.org/10.1017/S1446788700037885 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037885


384 Yi Fang [16]

d2u/dx2(x, 0) > 0. It follows that ® n Po is the straight line {y = p] n {z = 0}. It is
well known that this would imply that @ is invariant under a rotation of angle n about
the straight line *2> n Po, but it is impossible since the boundary of *2i is not symmetric
with respect to this kind of rotation. Hence we have proved the claim.

We know that Hn n Po is strictly convex and K{Hn n Po) = Hn n Po, hence
Hn n Po c Po n {0 < v < />„}. Thus ^ n Fo C Po n {0 < v < p}. If p = 0, then by
Step 2, (0, 0,0) e 3J2, and thus (0, 0,0) e a, n AT(CTI), 0 n Po = {(0, 0,0)}.

Hence s/ C\ Po (resp. ^ n Po) must be either a convex curve, or a line segment on
the y-axis, or the point (0, 0, 0).

Let Vn be the compact solid bounded by An U Dn U K{Dn). Since A' n Po C Vn,
we know that s/ f) Po must be a convex Jordan curve.

By Lemma 5, 7, and 8, 38 C\ Po can neither be a segment on the y-axis, nor be the
point (0, 0, 0). Hence 88 D Po must be a convex Jordan curve.

Since s/ D Po (resp. ^ ) is a convex curve, by Lemma 2, CTJ D # (at) = 0 and £2 is
open. Thus as pointed out in Step 2, s/ (resp. ^ ) is an embedded minimal surface.
In Steps 4 to 6, the proofs for si and 9S are the same.

Step 4: To prove that there is an e > 0, such that JS/HP, (resp. 3S D /*,) is a convex
Jordan curve for —e < / < €.

Let (—a, 0, 0) and (a, 0, 0), a > 0, be the two extreme points of si D /V Then the
number d defined in Step 2 must be greater than or equal to 0. Let 5 > max{a, r},
where r is the number that defines the domain X. Consider the strictly convex
boundary curve anl(s) c d(Qn D S{s)) in Lemma 1,

anl(s) = {(x, 0, z) | x = fn](z), - 1 / 2 < z < 1/2, -s < x < 0}.

We denote (/„, (-1/2), 0, - l /2) ,( /Bi(0) ,0,0) ,and(-s ,0, /n71(-5
and qn(3). Note that for x > r, f'^i—x) is well defined. Since 5 > max{r, a} and
-1 /2 < f~il(-s) < 1/2, we may assume that €(s) = lim,,^^ f^l(s) exists. Thus
/i is defined at z = e(s) and /j(e(5)) = — s < — a = /i(0). Now since uni is
convex, |/n,(z)| < max{r, |/n,(0)|} for -1 /2 < z < 0. Were e(s) € [-1/2, 0], then
l/i(e(j))l < max{r, a}. Since /i(e(s)) = -s, e(s) > 0. Thus J > e(s) > 0. Select
0 < e < d, then it follows that s/r\Pn{-€ < z < e} = (<r1UA'(o-1))n{-e < z < e}.
This implies that the convex curve @ F\ Pz has two extreme points (/i(z), 0, z) and
(—/,(—z), 0, z), for —e(s) < z < e(i). Thus J ^ D P2 is a convex Jordan curve for
-e(s) < z < €(s).

One way to prove that s/ C\ P, (resp. ^ (1 f,) is a convex Jordan curve for
—1/2 < t < 1 /2 is to prove that d — l/2orlimJ_>0Oe(^) = 1/2. It requires a detailed
study of the behaviours of the functions fnl. Instead of doing that, we argue in an
indirect manner. The benefit of our argument is that we can get an Enneper-Weierstrass
representation of s/ and &.
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Step 5: To prove that the Gauss map N : s/ ->• S2 (resp. N : SB —>• S2) is not
vertical along si n S ( -e /2 , e/2) (resp. ^ D S( -e /2 , e/2)).

Since the compact minimal annulus ^ / D S(—e/2, e/2) is contained in the interior
of .e/, N is well defined. By Shiffman's first theorem N is not vertical on si n
5( -e /2 ,e /2) .

Step 6: To prove that si C\ P, (resp. ^ n P,) is a convex Jordan curve, for
- 1 / 2 < t < 1/2.

Each An (resp. Bn) is an annulus with one-dimensional boundary, hence there is
a unique Rn, 1 < Rn < oo, such that An is conformally equivalent to the annulus
A(Rn) = {z 6 C | \/Rn < \z\ < Rn}. Let Xn : A(/?n) -* I 3 be the conformal
embedding of An. The third coordinate function Xn3 is harmonic and maps \z\ = 1//?,,
and \z\ — Rn to - 1 / 2 and 1/2 respectively. Thus it must be the case that

(7) x,]( Ix,] (z )

Let gn be the Gauss map of the embedding Xn. It is a holomorphic map and gn =
r o Nn o Xn, where x is the stereographic projection and Nn : An —*• S2 is the Gauss
map of An.

By the Enneper-Weierstrass representation,

n{z) =ReJ Q ( l - g
2
H)nn, l-(8) Xn(z) = Re / - ( 1 - g2
n)r)n, - ( 1 + gl)r}n, gnr,n + Vn,

where rjn is a holomorphic 1-form and Vn is a constant vector in Po- Comparing (7)
with (8), we have r]n = dz/(2 \og(Rn)zgn). The metric of An (resp. Bn) is given by

see, for example, [7, p. 147].
Since iVn —> N on An n 5(—e/2, e/2) uniformly as n —> oo, by Step 5 we know

that there is a B > 0, such that for n large enough,

(9) ^ < 1^(2)1 < B, R-( < \z\ < Rf
H.

Let Ln(t) be the arc length of AnC\ P,. By a theorem of Osserman and Schiffer
[9], Ln satisfies L'^(t) > 0, for - 1 / 2 < t < 1/2. (Note that what Osserman and
Schiffer proved in Lemma 1 of [9] is that d2Ln/d(logr)2 > 0, r = \z\. In our case,
t = logr/21og/?n.) Since An is invariant under K, we have Ln{t) = Ln{—t). Thus
L'n(t) = —L'n(—t), and in particular L'n(0) = 0. Hence Ln(0) is the only minimum
value of Ln, and Ln is strictly increasing for 0 < t < 1/2 and strictly decreasing
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for —1/2 < t < 0. If si fl P, is not compact, then lim,,^,^ Ln(t) = oo. For any
\t\ < \s\ < 1/2, lim^oo Ln(s) > limn^ooLnC?) = oo implies that si n Ps is not
compact. Hence to prove that si n P, is a Jordan curve for —1/2 < ? < 1/2,
it is enough to prove that there is a sequence 0 < tj t 1/2 and M{j) > 0 such
that for each sequence [Ln(tj)} there is a subsequence {Lm (?,•)} c [Ln(tj)} such that

Since £/ n Po is a convex Jordan curve, we know that lim^oo Ln(0) = L(0) > 0,
where L(0) is the arc length of s/ D />0- Let C" be the curve {|z| = 1} in

Because of (9) we have

— <4Ln(0)

for n large enough. Hence there is a subsequence of {/?„} and 1 < R < oo, such that
lim^oo Rn = R.

Let A(R) = lim^oo A(Rn) be the limit annulus in C. Since the Gauss map gn

is one-to-one from A{Rn) to C — {0}, see [6, Lemma 2.2], gn{C") is a Jordan curve
in C — {0}. By (9) and the one-to-one property of gn, a subsequence of {\gn\} is
uniformly bounded on either [\/Rn < \z\ < Re

n] or {R~e < \z\ < /?„}, say on the
latter. Any compact sub-annulus A" in {R~e/1 < \z\ < R] is eventually contained
in A(Rn). Since the gn's are uniformly bounded on A", there is a subsequence of
{gn} converging to a holomorphic function g on A". Thus we may assume that gn

converges to g uniformly on compact sets of {R~f/2 < \z\ < /?}. Again by (9),
\gn\ > \/B o n C" C {R~e/2 < \z\ < R},g^ 0 . S i n c e gn ^ 0 in A(Rn), b y R o u c h e ' s

theorem, g ^ 0 in [R~€'2 < \z\ < R}. Hence there are sequences rs f R, e; 4- 0,

Tj + €j < R, such that on the compact annuli A(j) = {z \ rt — e, < \z\ < rj + €j], g

satisfies 0 < dj < \g\ < Dj. For large n, A(j) D A(Rn) = A(j), and gn uniformly
converges to g on A(j). Thus for large n, on A(j) we have rf,/2 < \gn\ < 2D7, and

Let tj = log(r;)/21og(/?), then

Choose sn such that {\z\ = sn] C A(j) and r,- = log(5n)/21og(/?n).

Ln{tj) = f dsn< [ M(j)d9 = 2nM(j).
J\z\=s, Jo
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We have proved that si D P, is a Jordan curve for —1/2 < t < 1/2. It follows that
si is an embedded minimal annulus.

By symmetry we know that gn converges to g uniformly on compact sets of A(R),
thus the Enneper-Weierstrass representation of si is

Step 7: To prove the remaining claims in Theorem B.
For any 0 < 8 < 1/2, since si n Pl/2-S and si n P_i/2+a (resp. 98 n Pi/2_s and

'_i/2+j) are convex, by Shiffman's first theorem, siC\ P, (resp. 98 V\ Pt) is strictly
convex for -1 /2 + 5 < ? < 1/2 - 8. Let 5 go to zero, then si r\ P, (resp. 98 n P,) is
strictly convex for —1/2 < t < 1/2.

Let N be any connected non-planar compact branched minimal surface such that
3JVCXU K(X). If N n 98 = 0, then since N is compact and 98 is closed in K3,
dist(/V, ^ ) > 0, which contradicts the facts that N n Bn 7̂  0 and 98 = l im, ,^ Bn.
Thus it must be the case that 98 C\ N ^ $. In particular, if A' c X U ^T(X), then
int(^) n int(A') / 0 since 3A' n 3 ^ = 0.

Let Vn be the solid bounded by An U Dn U K(Dn) and V be the solid bounded
b y ^ U X U K(X). Then Bn C Vn C V and hence ^ = lim Bn c V. By the
comparison principle, si = 98 or int(.ciO n \nt(98) = 0. By the same argument we
see that int(N) D mt{si) = 0, for any connected nonplanar compact branched minimal
surface N such that 3JVcXU K(X). In particular, int(A') n int(s/) = 0 and hence
if A' c X U A:(X) then si =£ 98 and int(^) D int(^) = 0.

The proof of Theorem B is complete.

REMARK 2. By Theorem A and the proof of Theorem B, we see that if merely
3A' C X U K(X), then there is at least one minimal annulus si such that dsi = F
and si n P, is strictly convex for -1 /2 < t < 1/2.

Let N be any connected compact nonplanar branched minimal surface such that
8N c X U K(X). Then si satisfies

int(.0O n int(N) = 0.

REMARK 3. Checking the proof of Theorem B, we find that in the definition of the
boundary C C P-1/2, the relevant part is the existence of the inverse h(s) of the C°°
function / for s > —r. Hence even if for some x > —r,h{s) is a constant for s > x,
the proof of Theorem B is still valid. Thus we may assume that the boundary curve C
is C°° convex, R(C) = C, and C contains two rays parallel to the x-axis.
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