MINIMAL ANNULI IN R^{3} BOUNDED BY NON-COMPACT COMPLETE CONVEX CURVES IN PARALLEL PLANES

YI FANG

(Received 23 November 1993; revised 15 December 1994)

Communicated by J. H. Rubinstein

Abstract

In this paper we consider the Plateau problem for surfaces of annular type bounded by a pair of convex, non-compact curves in parallel planes. We prove that for certain symmetric boundaries there are solutions to the non-compact Plateau problems (Theorem B). Except for boundaries consisting of a pair of parallel straight lines, these are the first known examples.

1991 Mathematics subject classification (Amer. Math. Soc.): 35A10.

1. Introduction

In this paper we consider the Plateau problem for surfaces of annular type bounded by a pair of convex, non-compact curves in parallel planes. We will prove that for certain symmetric boundaries there are solutions to the non-compact Plateau problems (Theorem B). Except for boundaries consisting of a pair of parallel straight lines, these are the first known examples.

We now fix some notation in this paper. Let $P_{t}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=t\right\}$ be the plane at height t parallel to the $x y$-plane, and let $S\left(t_{1}, t_{2}\right)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid t_{1} \leq z \leq t_{2}\right\}$ be the slab with boundary equal to $P_{t_{1}} \cup P_{t_{2}}$.

We briefly review the known results for a pair of Jordan curves. Let $\Gamma \subset \mathbb{R}^{3}$ be a pair of rectifiable Jordan curves, $\Gamma=\Gamma_{1} \cup \Gamma_{2}, \Gamma_{1} \cap \Gamma_{2}=\emptyset$. Douglas [2] considered the Plateau problem for Γ. He proved that if

$$
\inf \{\operatorname{Area}(S)\}<\operatorname{Area}\left(S_{1}\right)+\operatorname{Area}\left(S_{2}\right)
$$

The research described in this paper was partially supported by NSF grant DMS-8806731 and Australia Research Council grant A69131962.
(C) 1996 Australian Mathematical Society $0263-6115 / 96 \$ A 2.00+0.00$
where S denotes any continuous annulus such that $\partial S=\Gamma$, and S_{1} and S_{2} are area minimizing disks such that $\partial S_{1}=\Gamma_{1}, \partial S_{2}=\Gamma_{2}$, then there is an area minimizing annulus A such that $\partial A=\Gamma$.
D. Hoffman, W. Meeks, and B. White, also considered this kind of Plateau's problem. A combined result of Hoffman and Meeks, and Meeks and White, is as follows.

Theorem A. (Theorems 1.1, 1.2 of [5], and Theorem 1.1, Lemma 2.1 of [6]) Suppose D_{1} and D_{2} are two open disks lying on parallel planes, and suppose their boundaries C_{1} and C_{2} are smooth convex Jordan curves. If A^{\prime} is a connected nonplanar compact branched minimal surface such that $\partial A^{\prime} \subset D_{1} \cup D_{2}$, then there exist exactly two embedded compact minimal annuli A and $B, \partial A=\partial B=C_{1} \cup C_{2}$. The annulus A is stable and has the property that for any disks $D^{\prime} \subset D_{1}$ and $D^{\prime \prime} \subset D_{2}$ with continuous boundaries, if there is a connected compact branched minimal surface N such that $\partial N=\partial D^{\prime} \cup \partial D^{\prime \prime}$, then N is contained in the solid bounded by $A \cup D_{1} \cup D_{2}$. In particular, if $A \neq N$, then $\operatorname{int}(A) \cap \operatorname{int}(N)=\emptyset$. On the other hand, B is unstable and $\operatorname{int}(B) \cap \operatorname{int}(N) \neq \emptyset$.

If merely $\partial A^{\prime} \subset \overline{D_{1}} \cup \overline{D_{2}}$, then there exists at least one embedded minimal annulus A such that $\partial A=C_{1} \cup C_{2}$. Such an A is almost stable in the sense that the first eigenvalue of the second variation of A is larger than or equal to zero. Let N be a connected compact branched minimal surface such that $\partial N=\partial D^{\prime} \cup \partial D^{\prime \prime}$, then N is contained in the solid bounded by $A \cup D_{1} \cup D_{2}$. In particular, if $A \neq N$, then $\operatorname{int}(A) \cap \operatorname{int}(N)=\emptyset$.

Furthermore, the symmetry group of A and B are the same as the symmetry group of $C_{1} \cup C_{2}$.

A very useful fact (which we will use) about minimal annulus is a result of Shiffman [11]. He proved that if C_{1} and C_{2} are continuous convex Jordan curves lying on planes parallel to the $x y$-plane, say on $P_{-1 / 2}$ and $P_{1 / 2}$, and A is a minimal annulus such that $\partial A=C_{1} \cup C_{2}$, then each level set of $A \cap P_{t}$ is a strictly convex Jordan curve for $-1 / 2<t<1 / 2$. This is called Shiffman's first theorem.

If C_{1} and C_{2} are circles, Shiffman's second theorem states that each $A \cap P_{t}$ is a circle for $-1 / 2 \leq t \leq 1 / 2$.

From Shiffman's first theorem, it is clear that if A is a non-planar minimal annulus and ∂A consists of convex Jordan curves lying on planes parallel to the $x y$-plane, then A does not have vertical normal directions in its interior, as otherwise some level set would not be a Jordan curve.

We now state our existence theorem. Let $r>0$ and $0<b \leq \infty$ be fixed. Let K be the rotation of angle π about the y-axis and R be the reflection through the $x z$-plane.

Define a convex curve C in $P_{-1 / 2}$ by

$$
C=\{(x, y,-1 / 2) \mid x=f(y)\}
$$

where f satisfies :
(i) $f:(-b, b) \rightarrow \mathbb{R}$ is a C^{∞} function such that $f(-y)=f(y)$;
(ii) $f(0)=-r, f^{\prime \prime} \geq 0$, and $\lim _{y \rightarrow b} f(y)=\infty$.

Define the planar domain

$$
\begin{equation*}
X=\{(x, y,-1 / 2) \mid x>f(y)\} \tag{1}
\end{equation*}
$$

Now consider the non-compact Plateau problem with the boundary

$$
\begin{equation*}
\Gamma=C \cup K(C)=\partial X \cup K(\partial X) \tag{2}
\end{equation*}
$$

We have

THEOREM B. If there exists a compact non-planar minimal annulus A^{\prime} such that $\partial A^{\prime} \subset X \cup K(X)$, then there are two embedded non-compact minimal annuli \mathscr{A} and \mathscr{B} in $S(-1 / 2,1 / 2)$, which are solutions to the non-compact Plateau problem with the boundary Γ given in (2).

For any $-1 / 2<t<1 / 2, \mathscr{A} \cap P_{t}$ and $\mathscr{B} \cap P_{t}$ are strictly convex Jordan curves.
Furthermore, $\operatorname{int}(\mathscr{A}) \cap \operatorname{int}(\mathscr{B})=\emptyset$. Let N be any connected compact non-planar branched minimal surface such that $\partial N \subset \bar{X} \cup K(\bar{X})$. Then \mathscr{A} and \mathscr{B} have the properties

$$
\operatorname{int}(\mathscr{A}) \cap \operatorname{int}(N)=\emptyset \quad \text { and } \quad \mathscr{B} \cap N \neq \emptyset
$$

REMARK 1. Let C_{R}^{\prime} be the circle of radius R in $P_{-1 / 2}$, centered at ($0,0,-1 / 2$). It is well known that there is a constant $h_{2}>0$, such that if $R \geq 1 / h_{2} \simeq 0.754439698$ then the coaxial circles C_{R}^{\prime} and $K\left(C_{R}^{\prime}\right)$ bound a piece of a catenoid. Hence by Theorem A, if $C_{R}^{\prime} \subset X$, then there will be two non-compact minimal annuli \mathscr{A} and \mathscr{B} which solve the Plateau problem with the boundary Γ given in (2).

The only previously known example of a non-planar non-compact embedded minimal annulus in a slab $S\left(t_{1}, t_{2}\right)$ is an embedded minimal annulus \mathscr{A} such that $\partial \mathscr{A}$ consists of a pair of parallel straight lines, and $\mathscr{A} \cap P_{t}$ is a circle for every $t_{1}<t<t_{2}$. Repeatedly rotating about the straight-line boundaries produces a singly-periodic complete minimal surface which is called a Riemann's example. There is a one-parameter family of Riemann's examples. It was Riemann who discovered these minimal surfaces. See [7, pp. 85-90].

A basic piece of a Riemann's example is the portion bounded by two consecutive parallel straight lines. Such a piece is an annulus, which we will denote by \mathscr{R}. In [4],
it is proved that any embedded minimal annulus bounded by a pair of parallel straight lines must be a basic piece \mathscr{R} of some Riemann's example. See also [12]. For a more general result, see [3].

Since the proof of Theorem B is quite long, we give a sketch here to give the ideas and also the difficulties encountered when one tries to simplify the proof. The basic idea is to approximate the non-compact boundary with compact ones. Then by using Theorem A , we get a sequence of approximating minimal annuli $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$. We use the symmetry conditions of the boundary to divide the approximating annuli into two graphs, each of which is stable and simply connected. Then we estimate the boundary arc-length of compact pieces of the graphs to prove the existence of a limit surface. The trouble is to prove that the limit surface is an annulus with the claimed properties. To accomplish this, we use the properties stated in Theorem A of these approximating surfaces, and the estimates of $A_{n} \cap P_{0}$ and $B_{n} \cap P_{0}$ in Lemmas $1-8$ to prove that the limit surface intersecting P_{t} in a convex Jordan curve for $|t|$ small enough. The last difficulty is to prove that the limit surface is not only an annulus, but is also a compact annulus in any proper subslab contained in the original slab. We use the Enneper-Weierstrass representation of the approximating surfaces to establish the needed estimate. Together with a result of Osserman and Schiffer, we are able to prove the desired fact.

It turns out that the argument for the existence of A (which is the limit of sequence of stable annuli) is much easier than the argument for the existence of B (which is the limit of sequence of unstable annuli). For the former, we can give a much shorter and simpler proof, without using Lemmas 5 to 8 . For the latter, we have to establish those lemmas to be able to apply Theorem A. We prove those preparatory lemmas in Section 2. Section 3 is devoted to the proof of Theorem B.

2. Preparatory lemmas

We denote the $x z$-plane by P. Suppose that $C^{\prime} \subset \bar{X}$ is a smooth convex Jordan curve symmetric with respect to P. Let $A \subset S(-1 / 2,1 / 2)$ be a minimal annulus such that $\partial A=C^{\prime} \cup K\left(C^{\prime}\right)$.

In Lemmas 1 to 4, we study the properties of such a minimal annulus A.
LEMmA 1. The intersection $A \cap P$ consists of two curves σ_{1} and σ_{2} such that $K\left(\sigma_{1}\right)=\sigma_{2}$. Moreover, $\sigma_{1} \subset\{(x, 0, z) \in P \mid x<0\}$ and $\sigma_{2} \subset\{(x, 0, z) \in P \mid x>0\}$ are two convex graphs. Precisely, there are two smooth functions f_{1} and $f_{2}, f_{1}(z)<0$, $f_{2}(z)>0$, for $-1 / 2 \leq z \leq 1 / 2$, and $f_{1}^{\prime \prime}(z)<0, f_{2}^{\prime \prime}(z)>0$, for $-1 / 2<z<1 / 2$, such that

$$
\sigma_{1}=\left\{(x, 0, z) \mid x=f_{1}(z)\right\}, \quad \sigma_{2}=\left\{(x, 0, z) \mid x=f_{2}(z)\right\}
$$

Proof. By Theorem A and Shiffman's first theorem, A is invariant under both K and R, and $A \cap P_{t}$ is strictly convex for $-1 / 2<t<1 / 2$. Since each $A \cap P_{t}$ is a strictly convex curve and symmetric with respect to $P, A \cap P$ has exactly two components and they are graphs over the z-axis. Let them be σ_{1} and σ_{2}. By $K(A \cap P)=A \cap P$ we have $K\left(\sigma_{1}\right)=\sigma_{2}$. If we write

$$
\sigma_{1}=\left\{(x, 0, z) \mid x=f_{1}(z)\right\}, \sigma_{2}=\left\{(x, 0, z) \mid x=f_{2}(z)\right\},-1 / 2 \leq z \leq 1 / 2
$$

then $f_{2}(z)=-f_{1}(-z)$. By the symmetry with respect to $P,\left(f_{1}(z), 0, z\right)$ and ($\left.f_{2}(z), 0, z\right)$ are the extreme points of the strictly convex curve $A \cap P_{z}$ and we can assume that $f_{1}(z)<f_{2}(z)$ and $A \cap P_{z} \subset\left\{(x, y, z) \mid f_{1}(z) \leq x \leq f_{2}(z)\right\}$. As the fixed point sets of an isometry (the reflection R) on A, both σ_{1} and σ_{2} are geodesics, and their tangent directions are the principal directions on A. The tangent directions of each level set $A \cap P_{z}$ at $y=0$ are also principal directions on A, since they are perpendicular to P by the invariance under R and hence perpendicular to the tangent direction of σ_{1} or σ_{2} respectively. Let $(\sin \theta, 0, \cos \theta)$ be the inward normal vector to A at the point $p \in \sigma_{1}$, where θ is the angle between the inward normal vector and the positive z-axis. Since A cannot have vertical normal vectors, $\sin \theta>0$, and hence it must be the case that $0<\theta<\pi$. Let k_{1} and k_{2} be the principal curvatures of A at $p \in \sigma_{1} \cap P_{z}$ along the directions of σ_{1} and $A \cap P_{z}$ respectively. Notice that k_{1} is also the plane curvature of σ_{1} with respect to the normal direction of positive x-coordinate. Letting k be the plane curvature of $A \cap P_{z}$ with respect to the inner normal, then $k>0$ and $k_{2}=k \sin \theta>0$ on $\sigma_{1} \cap P_{z}$. Since A is minimal, $k_{1}=-k_{2}<0$ at $\sigma_{1} \cap P_{z}$. By $k_{1}=f^{\prime \prime}(z) /\left(1+f_{1}^{\prime}(z)^{2}\right)^{3 / 2}$, we know that $f_{1}^{\prime \prime}(z)<0$. Since $f_{2}(z)=-f_{1}(-z)$, we have $f_{2}^{\prime \prime}(z)>0$.

We need to prove that $f_{1}(z)<0$ and $f_{2}(z)>0$. If $f_{2}(z) \leq 0$ for some z, then since $f_{1}(z)<f_{2}(z)$ and $A \cap P_{z} \subset\left\{(x, y, z) \mid f_{1}(z) \leq x \leq f_{2}(z)\right\}$, the convex curve $A \cap P_{z}$ is contained in the half plane $\{x \leq 0\}$. Thus $A \cap P_{-z}=K\left(A \cap P_{z}\right) \subset P_{-z} \cap\{x \geq 0\}$ and the orthogonal projections of $A \cap P_{z}$ and $A \cap P_{-z}$ on P_{0} have at most one common point $(0,0,0)$ and, in particular, $z \neq 0$. Without loss of generality we may assume that $z>0$. Let C_{1} and C_{2} be two circles lying on P_{-z} and P_{z} respectively, such that $A \cap P_{-z}$ and $A \cap P_{z}$ are contained in the disks bounded by C_{1} and C_{2}. We can arrange that $R\left(C_{i}\right)=C_{i}$ for $i=1,2$ and the orthogonal projections of C_{1} and C_{2} on the $x y$-plane have at most one common point $(0,0,0)$. This means that the horizontal distance between the centers of C_{1} and C_{2} is greater than or equal to the sum of their radii. By Theorem A there is a minimal annulus N in $S(-z, z)$ bounded by C_{1} and C_{2}. By Shiffman's second theorem $N \cap P_{t}$ is a circle for $-z<t<z$. By a theorem of Nitsche, the horizontal distance between the two centres of C_{1} and C_{2} is less than the sum of their radii, see [7, pp. 88-89]. This contradiction proves that $f_{1}(z)<0$ and $f_{2}(z)>0$.

Let $d(z)=f_{2}(z)-f_{1}(z)$ for $-1 / 2 \leq z \leq 1 / 2$. The function d is the distance function between $\left(f_{1}(z), 0, z\right)$ and $\left(f_{2}(z), 0, z\right)$.

Lemma 2. The function d satisfies

$$
\begin{equation*}
d(z)>d(0)>0 \quad \text { for } \quad-1 / 2 \leq z \leq 1 / 2, z \neq 0 . \tag{3}
\end{equation*}
$$

PROOF. We have $d(z)=f_{2}(z)-f_{1}(z), d^{\prime}(z)=f_{2}^{\prime}(z)-f_{1}^{\prime}(z)=f_{2}^{\prime}(z)-f_{2}^{\prime}(-z)$, and $d^{\prime \prime}(z)=f_{2}^{\prime \prime}(z)+f_{2}^{\prime \prime}(-z)>0$. Since $d^{\prime}(0)=f_{2}^{\prime}(0)-f_{2}^{\prime}(0)=0, d(0)$ is the unique minimum value of d, and hence $d(z)>d(0)>0$ for $-1 / 2 \leq z \leq 1 / 2, z \neq 0$.

Let H be the half space $\{y \geq 0\}$ and $D=A \cap H$. Let D^{\prime} be the convex disk such that $\partial D^{\prime}=C^{\prime}$. Let $l_{1}=P \cap D^{\prime}, l_{2}=K\left(l_{1}\right)$. Let Ω be the domain in P bounded by $\sigma_{1} \cup \sigma_{2} \cup l_{1} \cup l_{2}$. Since $f_{1}(z)<f_{2}(z)$ for $-1 / 2 \leq z \leq 1 / 2, \Omega$ is a domain and obviously it is simply connected.

Lemma 3. The minimal surface $D=A \cap H$ is a minimal graph over Ω.

Proof. By Theorem A and Shiffman's first theorem, A is invariant under both K and R and each level set $A \cap P_{t}$ is a strictly convex Jordan curve. Let f_{1} and f_{2} be the functions that define σ_{1} and σ_{2} in Lemma 1. By symmetry with respect to P, each $D \cap P_{t}$ is a convex graph over the interval $f_{1}(t) \leq x \leq f_{2}(t),-1 / 2<t<1 / 2$. Thus D is a minimal graph over the domain Ω.

Recall the convex function f that defines the boundary $C=\partial X$. We need to define its inverse for $y \geq 0$. Since $f^{\prime}(0)=0$ and $f^{\prime \prime}(y) \geq 0$ for any $-b<y<b$, so $f^{\prime}(y) \geq 0$ for $b>y \geq 0$. Thus in H, f is nondecreasing. Because $\lim _{y \rightarrow b} f(y)=\infty$ for each $x>-r=f(0), f^{-1}(x)$ is not empty. Since f is nondecreasing, if $f^{-1}(x) \cap H$ contains more than one point, it must contain an interval $[c, d]$ with $d>c>0$ and hence on $[c, d]$ we would have $f^{\prime}(y)=0=f^{\prime}(0)$. Since $f^{\prime \prime} \geq 0$, f^{\prime} is nondecreasing, we would have $f^{\prime}(0)=0$ on [0,d], thus $f(y)=-r$ on $[0, d]$, contradicting the fact that $x>-r$. Therefore we have proved that $f^{-1}(x) \cap H$ is a single point for $x>f(0)=-r$. Thus $h=f^{-1}$ is a well defined function on $(-r, \infty)$, and $h^{\prime}>0, h^{\prime \prime} \leq 0$. If we define $h(-r)=\sup \left\{f^{-1}(-r)\right\}$ then h is a well defined function on $[-r, \infty)$ and is strictly increasing.

Since σ_{2} is convex and $f_{2}(1 / 2) \leq r$, for fixed $s>r,\{x=s\} \cap \Omega$ is an interval if it is nonempty. Also remember that $f_{1}(z)<0$ and $f_{2}(z)>0,\{x=0\} \cap \Omega=$ $\{(0,0, z) \mid-1 / 2<z<1 / 2\}$.

Let $s>0$ and $S(s)$ be the slab $\{(x, y, z) \mid-s \leq x \leq s\}$. Let $u: \Omega \rightarrow \mathbb{R}$ be the function that defines the minimal graph D in Lemma 3. We want to estimate u in $\Omega \cap S(s)$ and the boundary arc length of $D \cap S(s)$. We have the following lemma.

Lemma 4. If $s>r$, then on the interval $I=\{x=s\} \cap \Omega, u(s, \cdot)$ is strictly decreasing and $0 \leq u(s, t) \leq h(s)$ for $t \in I$.

We have $u(0,0) \leq u(0, z) \leq h(0),-1 / 2<z<1 / 2$, and $u(0, \cdot)$ is strictly increasing in $(0,1 / 2)$, strictly decreasing in $(-1 / 2,0)$.

Moreover, if $s>r$, then the arc-length of $\partial(D \cap S(s))$ is less than or equal to $l(s):=2(2+4 s+3 h(s))$.

Proof. We show that $u(s, \cdot)$ does not have local maxima in the interior of I. If $t_{0} \in I$ is an interior critical point of $u(s, \cdot)$, then $\partial u / \partial z\left(s, t_{0}\right)=0$, and by the minimal surface equation we have

$$
\partial^{2} u / \partial z^{2}\left(s, t_{0}\right)=\frac{-\partial^{2} u / \partial x^{2}}{1+(\partial u / \partial x)^{2}}\left(s, t_{0}\right) .
$$

Since $D \cap P_{t_{0}}$ is strictly convex at $\left(s, u\left(s, t_{0}\right), t_{0}\right) \in \operatorname{int}(D), \partial^{2} u / \partial^{2} x\left(s, t_{0}\right)<0$, we have $\partial^{2} u / \partial^{2} z\left(s, t_{0}\right)>0$. Thus $u(s, \cdot)$ can only achieve its maximum value on the boundary of Ω. Let $x \in f_{2}([-1 / 2,1 / 2])$. Since f_{2} is convex and $f_{2}(1 / 2) \leq r$, if $x>r$, then $f_{2}^{-1}(x)$ is well defined. Note that $(s, t) \in \partial \Omega$ if and only if $t=f_{2}^{-1}(s)$. Since u is zero along σ_{2}, and for $s>r$, by the condition $C^{\prime} \subset \bar{X}$, the other boundary value of u along $x=s$ is $u(s,-1 / 2) \leq h(s)$, we have $0=u\left(s, f_{2}^{-1}(s)\right) \leq u(s, z) \leq$ $u(s,-1 / 2) \leq h(s)$ for $z \in I$. Since $u(s, \cdot)$ cannot achieve local maxima in the interior of I, it must be strictly decreasing.

Notice that by the symmetry $A=K(A), u(0, z)=u(0,-z)$, we have $\partial u / \partial z(0,0)$ $=0$. Similar argument proves that $\partial^{2} u / \partial z^{2}(0,0)>0, u(0,0)$ is a local minimum of $u(0, \cdot)$. A similar argument about local maxima proves that the statement about $u(0, \cdot)$ is true.

For each $s>r$, the boundary of $D \cap S(s)$ consists of $\sigma_{1} \cap S(s), \sigma_{2} \cap S(s)=$ $K\left(\sigma_{1} \cap S(s)\right), C^{\prime} \cap H \cap S(s), K\left(C^{\prime} \cap H \cap S(s)\right), D \cap\{x=s\}$, and $D \cap\{x=-s\}=$ $K(D \cap\{x=s\})$. We only need to prove that the summation of the arc lengths of $\sigma_{1} \cap S(s), C^{\prime} \cap H \cap S(s)$, and $D \cap\{x=s\}$ is less than or equal to $l(s) / 2$.

Since $f_{1}^{\prime \prime}(z)<0$ and $-s \leq f_{1}(z)<0, \sigma_{1} \cap S(s)$ is a convex graph over a subinterval of $-1 / 2 \leq z \leq 1 / 2$. An elementary estimate for convex graphs gives that the arc length of $\sigma_{1} \cap S(s)$ is less than or equal to $1+2 s$.

Note that $C^{\prime} \subset \bar{X}$ and $h(t) \leq h(s)$ for $-r \leq t<s$. Then $H \cap C^{\prime} \cap S(s) \subset\{0 \leq$ $y \leq h(s)\} \cap S(s)$. Since C^{\prime} is convex, an elementary estimate of convex curves gives that the arc length of $C^{\prime} \cap H \cap S(s)$ is less than or equal to $2(s+h(s))$.
$D \cap\{x=s\}$ is a graph $\left\{(s, y, z) \mid y=u(s, z),-1 / 2 \leq z \leq f_{2}^{-1}(s)\right\}, 0 \leq$ $u(s, z) \leq u(s,-1 / 2) \leq h(s)$, and $u(s, \cdot)$ is strictly decreasing as just proved. By elementary arguments again, this time using the property of being strictly decreasing, the arc length of $D \cap\{x=s\}$ is less than or equal to $1+h(s)$.

Thus the summation of the arc lengths of $\sigma_{1} \cap S(s), C^{\prime} \cap H \cap S(s)$ and $D \cap\{x=s\}$ is less than or equal to $2+4 s+3 h(s)=l(s) / 2$, the lemma is proved.

Since the following lemmas are not needed in the proof of the existence of \mathscr{A}, the reader can skip them and go to the proof of Theorem B.

To prove the existence of \mathscr{B} mentioned in Theorem B, we have to clarify several facts about a basic piece \mathscr{R} of a Riemann's example.

Lemma 5. Let L_{1} and L_{2} be parallel straight lines lying on $P_{-1 / 2}$ and $P_{1 / 2}$ respectively. Then there is an $E>0$, such that whenever the horizontal distance between L_{1} and L_{2} is greater than E, there is a basic piece \mathscr{R} of a Riemann's example such that $\partial \mathscr{R}=L_{1} \cup L_{2}$.

PROOF. It is well known that for any basic piece of Riemann's example in $S\left(-z_{0}, z_{0}\right)$, one half of the horizontal distance between the boundary straight lines $L_{1} \subset P_{-z_{0}}$ and $L_{2} \subset P_{z_{0}}$ is given by

$$
R=\left|-b-\int_{b}^{\infty} \frac{\left(a^{2}-b^{2}\right) t^{2}-a^{2} b^{2}}{\Delta(t)\left(t^{2}+\Delta(t)\right)} d t\right|
$$

where $0<b \leq a, \Delta(t)=\sqrt{\left(t^{2}+a^{2}\right)\left(t^{2}-b^{2}\right)}$, and z_{0} is given by

$$
z_{0}=a b \int_{b}^{\infty} \frac{d t}{\Delta(t)}
$$

See, [7, p. 89] and note the misprint in line 12.
Define $r:=a / b \geq 1$. Substituting $s=t / b$, we can rewrite R and z_{0} as

$$
\begin{gathered}
R=b\left|1+\int_{1}^{\infty} \frac{\left[\left(r^{2}-1\right) s^{2}-r^{2}\right] d s}{\sqrt{\left(s^{2}+r^{2}\right)\left(s^{2}-1\right)}\left(s^{2}+\sqrt{\left(s^{2}+r^{2}\right)\left(s^{2}-1\right)}\right)}\right| \\
z_{0}=r b \int_{1}^{\infty} \frac{d s}{\sqrt{\left(s^{2}+r^{2}\right)\left(s^{2}-1\right)}}
\end{gathered}
$$

Thus $R^{\prime}=R / 2 z_{0}$ is independent of a and b, and is a continuous function of r for $r \geq 1$. After a homothety, such that the surface is contained in $S(-1 / 2,1 / 2), L_{1} \subset P_{-1 / 2}$ and $L_{2} \subset P_{1 / 2}$, then R^{\prime} is one half of the horizontal distance between L_{1} and L_{2}. We only need to prove that $\lim _{r \rightarrow \infty} R^{\prime}=\infty$. First we claim that for $r>\sqrt{2}$,

$$
r \int_{1}^{\infty} \frac{d t}{\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}} \leq 1+\cosh ^{-1}(r)
$$

In fact, for $t \geq r>\sqrt{2},\left(r^{2}-1\right) t^{2}-r^{2} \geq 0$, and thus

$$
\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)=t^{4}+\left(r^{2}-1\right) t^{2}-r^{2} \geq t^{4}
$$

We have

$$
\begin{aligned}
r \int_{1}^{\infty} \frac{d t}{\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}} & =r \int_{1}^{r} \frac{d t}{\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}}+r \int_{r}^{\infty} \frac{d t}{\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}} \\
& \leq \int_{1}^{r} \frac{d t}{\sqrt{t^{2}-1}}+r \int_{r}^{\infty} \frac{d t}{t^{2}}=1+\cosh ^{-1}(r)
\end{aligned}
$$

The claim is true.
Next we will prove that for r large enough,

$$
\left|\int_{1}^{\infty} \frac{\left[\left(r^{2}-1\right) t^{2}-r^{2}\right] d t}{\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}\left(t^{2}+\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}\right)}\right| \geq C r
$$

for some $C>0$.
In fact, for $1<t \leq r^{2} / \sqrt{r^{2}-1}$,

$$
\frac{\left|\left(r^{2}-1\right) t^{2}-r^{2}\right|}{\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}\left(t^{2}+\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}\right)} \leq \frac{r}{\sqrt{t^{2}-1}}
$$

For $t \geq r / \sqrt{r^{2}-1}$,

$$
\frac{\left(r^{2}-1\right) t^{2}-r^{2}}{\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}\left(t^{2}+\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}\right)} \geq 0
$$

Since $\lim _{r \rightarrow \infty} r / \sqrt{r^{2}-1}=1$, when r is large enough, $r / \sqrt{r^{2}-1}<2$. We have

$$
\begin{aligned}
\int_{1}^{\infty} & \frac{\left[\left(r^{2}-1\right) t^{2}-r^{2}\right] d t}{\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}\left(t^{2}+\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}\right)} \\
> & \int_{r / \sqrt{r^{2}-1}}^{r} \frac{\left[\left(r^{2}-1\right) t^{2}-r^{2}\right] d t}{\sqrt{2} r t\left(t^{2}+\sqrt{2} r t\right)}-\int_{1}^{r / \sqrt{r^{2}-1}} \frac{\left|\left(r^{2}-1\right) t^{2}-r^{2}\right| d t}{\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}\left(t^{2}+\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}\right)} \\
> & \frac{1}{\sqrt{2} r} \int_{2}^{r}\left(\frac{1}{2 t}-\frac{r}{\sqrt{2} t^{2}}+\frac{r^{2}-3 / 2}{\sqrt{2} r+t}\right) d t-\int_{1}^{r / \sqrt{r^{2}-1}} \frac{r d t}{\sqrt{t^{2}-1}} \\
= & \frac{1}{\sqrt{2} r}\left[\frac{1}{2} \log \frac{r}{2}+\frac{r}{\sqrt{2}}\left(\frac{1}{r}-\frac{1}{2}\right)+\left(r^{2}-\frac{3}{2}\right) \log \frac{r+\sqrt{2} r}{\sqrt{2} r+2}\right]-r \cosh ^{-1}\left(\frac{r}{\sqrt{r^{2}-1}}\right) \\
= & \frac{1}{\sqrt{2}}\left[\log \frac{r+\sqrt{2} r}{\sqrt{2} r+2}+\frac{1}{2 r^{2}} \log \frac{r}{2}+\frac{1}{\sqrt{2} r}\left(\frac{1}{r}-\frac{1}{2}\right)\right. \\
& \left.-\frac{3}{2 r^{2}} \log \frac{r+\sqrt{2} r}{\sqrt{2} r+2}-\sqrt{2} \cosh ^{-1}\left(\frac{r}{\sqrt{r^{2}-1}}\right)\right] r .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \lim _{r \rightarrow \infty}\left[\log \frac{r+\sqrt{2} r}{\sqrt{2} r+2}+\frac{1}{2 r^{2}} \log \frac{r}{2}+\frac{1}{\sqrt{2} r}\left(\frac{1}{r}-\frac{1}{2}\right)\right. \\
& \left.\quad-\frac{3}{2 r^{2}} \log \frac{r+\sqrt{2} r}{\sqrt{2} r+2}-\sqrt{2} \cosh ^{-1}\left(\frac{r}{\sqrt{r^{2}-1}}\right)\right] \\
& =\log \frac{1+\sqrt{2}}{\sqrt{2}},
\end{aligned}
$$

for r large enough, we can take $C=\frac{1}{4} \log [(1+\sqrt{2}) / \sqrt{2}]$. Thus we have

$$
\begin{aligned}
\lim _{r \rightarrow \infty} R^{\prime} & =\lim _{r \rightarrow \infty} \frac{R}{2 z_{0}} \\
& =\lim _{r \rightarrow \infty} \frac{\left|1+\int_{1}^{\infty}\left(\left(r^{2}-1\right) t^{2}-r^{2}\right) d t /\left(\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}\left(t^{2}+\sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}\right)\right)\right|}{2 r \int_{1}^{\infty} d t / \sqrt{\left(t^{2}+r^{2}\right)\left(t^{2}-1\right)}} \\
& \geq \lim _{r \rightarrow \infty} \frac{C r-1}{2\left(1+\cosh ^{-1} r\right)}=\infty .
\end{aligned}
$$

To be able to apply Theorem A, we need to know the stability of a basic piece \mathscr{R} of a Riemann's example. First note that $K(\mathscr{R})=\mathscr{R}$, see for example, [7, p. 88, formula (55)]. In [4], the examples of Riemann are described in terms of their Enneper-Weierstrass Representation data g and η, where g is a meromorphic function and η is a meromorphic 1 -form. Let N be the unit normal vector of the surface, and τ be the stereographic projection $S^{2}-\{(0,0,1)\} \rightarrow \mathbb{C}$. It is well known that $g=\tau \circ N$. Either g or N will be called the Gauss map.

Let $\lambda \geq 1$ and L be the lattice in \mathbb{C} generated by $\{\lambda, i\}$. On the rectangular torus $T_{\lambda}=\mathbb{C} / L$, consider the elliptic function P which has a double pole at 0 , a double zero at $\omega_{2}=(\lambda+i) / 2$ and no other zeros or poles. The Weierstrass \wp-function \wp has the property that $\wp-\wp\left(\omega_{2}\right)$ has exactly the same poles and zeros as P. To get a Riemann's example, take

$$
g=P=\wp-\wp\left(\omega_{2}\right), \quad \eta=i d z / P .
$$

It can be easily checked that P has the property that $P\left(\omega_{2} / 2\right)=i$, and P is real precisely on the lines

$$
\operatorname{Re}(z)=0, \operatorname{Re}(z)=\lambda / 2, \operatorname{Im}(z)=0 \text { and } \operatorname{Im}(z)=1 / 2
$$

By reflection, we have

$$
P(x+i y)=\overline{P(\lambda-x, i y)}, \quad P(x+i y)=\overline{P(x, i(1-y))}
$$

and hence

$$
\begin{equation*}
P(\lambda-x, i y)=P(x, i(1-y)) \tag{4}
\end{equation*}
$$

A basic piece \mathscr{R} of a Riemann's example corresponds to the punctured rectangular $\{z=x+i y \mid 0 \leq x<\lambda, 0 \leq y \leq 1 / 2\}-\left\{0, \omega_{2}\right\}$. Since deg $\wp=2$, by (4) we know that the Gauss map N of \mathscr{R} maps onto $S^{2}-\{(0,0,1),(0,0,-1)\}$ and is one-to-one in $\operatorname{int}(\mathscr{R})$.

Lemma 6. Let $\mathscr{R} \subset S(-1 / 2,1 / 2)$ be a basic piece of a Riemann's example, then for small $\epsilon>0, \mathscr{R} \cap S(-1 / 2+\epsilon, 1 / 2-\epsilon)$ is unstable.

However, $\mathscr{R} \cap S(0,1 / 2-\epsilon)$ is stable for any $0<\epsilon<1 / 2$, and by symmetry, so is $\mathscr{R} \cap S(-1 / 2+\epsilon, 0)$.

Proof. Let g be the Gauss map of \mathscr{R}, we know that the image of N on \mathscr{R} is $D:=S^{2}-\{(0,0,1),(0,0,-1)\}$, and N is one-to-one in int (\mathscr{R}). Let Δ be the Laplace operator on S^{2}. Let U and V be open disks such that $(0,0,1) \in U$ and $(0,0,-1) \in V$ and $U \cap V=\emptyset$. It is well known that the first eigenvalue λ_{1} of Δ on $S^{2}-(U \cup V)$ is near zero if U and V are sufficiently small.

For $\epsilon>0$ small enough, $N\left(\mathscr{R} \cap S(-1 / 2+\epsilon, 1 / 2-\epsilon) \supset S^{2}-(U \cup V)\right.$ for some small disks U and V, hence

$$
\lambda_{1}(N(\mathscr{R} \cap S(-1 / 2+\epsilon, 1 / 2-\epsilon))<2
$$

Thus by a classical result, which says that if the first eigenvalue of the one-to-one image of the Gauss map of a piece of minimal surface is less than 2 , then the piece of minimal surface is unstable, see, for example, [8, p. 215, Theorem 8.2]. Hence $S(-1 / 2+\epsilon, 1 / 2-\epsilon) \cap \mathscr{R}$ is unstable.

On the other hand, by a theorem of Barbosa and Do Carmo [1], or [8, p. 216, Corollary 8.5], a minimal surface M is stable if $\iint_{M}|K| d A<2 \pi$. Since N is one-toone in $\operatorname{int}(\mathscr{R})$ and $N(\mathscr{R})=S^{2}-\{(0,0,1),(0,0,-1)\}, \iint_{\mathscr{R}}|K| d A=4 \pi$. Thus for any $0<\epsilon<1 / 2, \iint_{\mathscr{R} \cap S(-1 / 2+\epsilon, 1 / 2-\epsilon)}|K| d A<4 \pi$. By the symmetry

$$
\mathscr{R} \cap S(-1 / 2+\epsilon, 1 / 2-\epsilon)=\mathscr{R} \cap S(-1 / 2+\epsilon, 0) \cup K(\mathscr{R} \cap S(-1 / 2+\epsilon, 0))
$$

it follows that

$$
\iint_{\mathscr{R} \cap S(0,1 / 2-\epsilon)}|K| d A=\frac{1}{2} \iint_{\mathscr{R} \cap S(-1 / 2+\epsilon, 1 / 2-\epsilon)}|K| d A<2 \pi,
$$

and hence $\mathscr{R} \cap S(0,1 / 2-\epsilon)$ is stable.

Let $r^{\prime}>r>0$, where r is the number used in the definition of X, and $X^{\prime}=$ $\left\{(x, y,-1 / 2) \mid x \geq-r^{\prime}\right\} \supset X$. Let \mathscr{R} be a basic piece of a Riemann's example whose boundary $\partial \mathscr{R}=\partial X^{\prime} \cup K\left(\partial X^{\prime}\right)$. Let $D_{\mathscr{R}}$ be the open plane disk such that $\partial D_{\mathscr{R}}=P_{0} \cap \mathscr{R}$. Note that $\partial D_{\mathscr{R}}$ is a circle centered at $(0,0)$. Let A be the minimal annulus which has been studied through Lemmas $1-4$. Let D_{A} be the closed plane disk such that $\partial D_{A}=A \cap P_{0}$.

Lemma 7. $P_{0} \cap A \not \subset D_{\mathscr{R}}$; in particular, $D_{A} \not \subset D_{\mathscr{R}}$.
Proof. Let D_{t} be the disk bounded by the circle $P_{t} \cap \mathscr{R}$. Since $\partial A \subset \bar{X} \cup K(\bar{X}) \subset$ $X^{\prime} \cup K\left(X^{\prime}\right)$ is compact, there is a $0<d<1 / 2$ such that whenever $0<\epsilon<d$, $A \cap P_{1 / 2-\epsilon} \subset D_{1 / 2-\epsilon}$, and $A \cap P_{-1 / 2+\epsilon} \subset D_{-1 / 2+\epsilon}$. If $A \cap P_{0} \subset D_{\mathscr{R}}$, then by Theorem A and the fact that $S(0,1 / 2-\epsilon) \cap \mathscr{R}$ is stable, $A \cap S(0,1 / 2-\epsilon) \cap \mathscr{R}=\emptyset$. Similarly, $\mathscr{R} \cap A \cap S(-1 / 2+\epsilon, 0)=\emptyset$. Thus $A \cap \mathscr{R} \cap S(-1 / 2+\epsilon, 1 / 2-\epsilon)=\emptyset$. However, since $\mathscr{R} \cap S(-1 / 2+\epsilon, 1 / 2-\epsilon)$ is unstable for small ϵ, by Theorem A, $A \cap \mathscr{R} \cap S(-1 / 2+\epsilon, 1 / 2-\epsilon) \neq \emptyset$. This contradiction proves the lemma.

Let $B_{n} \subset S(-1 / 2,1 / 2)$ be a sequence of non-planar compact minimal annuli. Suppose that $K\left(B_{n}\right)=B_{n}, R\left(B_{n}\right)=B_{n}$, and $\partial B_{n} \subset \bar{X} \cup K(\bar{X}) \subset X^{\prime} \cup K\left(X^{\prime}\right)$ is a pair of convex Jordan curves. If B_{n} converges to a minimal surface, we want to know the limit behaviour of $U_{n}:=B_{n} \cap P_{0}$. By Lemma 7, the limit cannot shrink to a point inside $D_{\mathscr{R}}$. Since each U_{n} is a strictly convex Jordan curve and invariant under K and R, the limit is either a convex Jordan curve or a segment on the x or y-axis.

LEMMA 8. U_{n} cannot converge to a segment on the y-axis.
PROOF. Let d be the radius of the circle $P_{0} \cap \mathscr{R}$. If U_{n} converges to a segment on the y-axis, by Lemma 4 the limit is a finite segment of length $2 d^{\prime}<\infty$, and $d^{\prime} \geq d>0$ by Lemma 7. Let p_{n} be one of the two fixed points of K on B_{n} which lies in the half space $H=\{(x, y, z) \mid y \geq 0\}$. A theorem of Meeks and White says that the Gauss map of B_{n} is one-to-one and $\iint_{B_{n}}|K| d A<4 \pi$, see [6, Lemma 2.2]. Since $B_{n}=\left(B_{n} \cap H\right) \cup R\left(B_{n} \cap H\right)$,

$$
\begin{equation*}
\iint_{B_{n} \cap H}|K| d A=\frac{1}{2} \iint_{B_{n}}|K| d A<2 \pi \tag{5}
\end{equation*}
$$

Hence $B_{n} \cap H$ is a stable minimal disk by a theorem of Barbosa and Do Carmo.
For n large enough, $p_{n}=\left(0, d_{n}, 0\right)$ with $d_{n} \geq d / 2$. Since U_{n} is invariant under K and converges to a finite line segment on the y-axis, the plane curvature of U_{n} at $p_{n}, k\left(p_{n}\right)$, would go to infinity as $n \rightarrow \infty$. In fact, let u_{n} be the function that defines the minimal graph $B_{n} \cap H$ in Lemma 4 , then $d_{n}=u_{n}(0,0)$ and by symmetry,
$\partial u_{n} / \partial x(0,0)=0$. Thus if U_{n} converges to a line segment on the y-axis, then $u_{n}(0,0) \rightarrow d^{\prime} \geq d>0$. Since U_{n} is strictly convex and $R\left(U_{n}\right)=U_{n}$, for n large enough, there is a unique $x_{n}>0$ such that $u_{n}\left(x_{n}, 0\right)=d^{\prime} / 2$, and

$$
\frac{d^{\prime}}{2}=u_{n}\left(x_{n}, 0\right)=u_{n}(0,0)+\frac{1}{2} x_{n}^{2} \frac{\partial^{2} u_{n}}{\partial x^{2}}(0,0)+o\left(x_{n}^{2}\right)
$$

Since U_{n} converges to a line segment, $x_{n} \rightarrow 0$, it follows that

$$
\left|\frac{1}{2} x_{n}^{2} \frac{\partial^{2} u_{n}}{\partial x^{2}}(0,0)\right| \geq \frac{d^{\prime}}{3}
$$

Again $x_{n} \rightarrow 0$ forces that $\left|\partial^{2} u_{n} / \partial x^{2}(0,0)\right| \rightarrow \infty$ as $n \rightarrow \infty$.
Since p_{n} is the only fixed point of $B_{n} \cap H$ under $K, k\left(p_{n}\right)$ is a principal curvature of B_{n} at p_{n}. Thus the Gauss curvature of B_{n} at p_{n} is $K\left(p_{n}\right)=-k^{2}\left(p_{n}\right)$. It would be

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|K\left(p_{n}\right)\right|=\infty \tag{6}
\end{equation*}
$$

We have the Euclidean distance $\operatorname{dist}\left(p_{n}, \partial\left(B_{n} \cap H\right)\right) \geq d^{\prime \prime}:=\min \{d / 2,1 / 2\}$. We claim that the geodesic ball of $B_{n} \cap H$ centered at p_{n} has radius $r_{n} \geq d^{\prime \prime}$. If not, then $r_{n}<d^{\prime \prime}$. Since there are no conjugate points on a minimal surface, there is then an interior point q_{n} for which there are two length minimizing geodesics connecting p_{n} and q_{n}. Thus there is a loop γ_{n} such that $\gamma_{n} \cap \partial\left(B_{n} \cap H\right)=\emptyset, \gamma_{n}(0)=\gamma_{n}(1)=p_{n}$, $\gamma_{n}(1 / 2)=q_{n}$ and γ_{n} is a geodesic on $(0,1 / 2)$ and $(1 / 2,1)$. Let θ_{1} and θ_{2} be the exterior angles of γ_{n} at p_{n} and $q_{n},-\pi<\theta_{j}<\pi, j=1,2$. Since $B_{n} \cap H$ is simply connected, γ_{n} bounds a disk $D_{n} \subset B_{n} \cap H$. By the Gauss-Bonnet Formula we have $\iint_{D_{n}} K d A+\theta_{1}+\theta_{2}=2 \pi$. Since $\iint_{D_{n}} K d A<0$, we would have $\theta_{1}+\theta_{2}>2 \pi$, which is impossible. Hence we have proved that $r_{n} \geq d^{\prime \prime}$.

Since $B_{n} \cap H$ is a stable embedded minimal surface, by an estimate of Schoen, see [10], there is a constant $c>0$ such that

$$
\left|K\left(p_{n}\right)\right| \leq c r_{n}^{-2} \leq c d^{\prime \prime-2}
$$

contradicting (6). This contradiction proves the lemma.

3. The proof of Theorem B

We break the proof into several steps. In the following, we will not distinguish a sequence and its subsequence in notation.

Step 1: To establish two sequences of approximate minimal annuli.
Let $D_{n} \subset D_{n+1} \subset \bar{X}$ be open disks bounded by smooth convex Jordan curves $C_{n} \subset \bar{X}, R\left(C_{n}\right)=C_{n}$, and $\lim _{n \rightarrow \infty} D_{n}=X$. We can arrange that for each positive
integer M, there is a positive integer $N(M)$ such that $X \cap\{x \leq M\}=D_{n} \cap\{x \leq M\}$ whenever $n \geq N(M)$.

Since there is a nonplanar compact minimal annulus A^{\prime} such that $\partial A^{\prime} \subset X \cup K(X)$, we can assume that $\partial A^{\prime} \subset D_{n} \cup K\left(D_{n}\right)$. By Theorem A, there are exactly two nonplanar compact minimal annuli A_{n} and B_{n} in $S(-1 / 2,1 / 2)$, such that $\partial A_{n}=$ $\partial B_{n}=C_{n} \cup K\left(C_{n}\right) . A_{n}$ is stable, B_{n} is unstable.

Step 2: To prove that there is a convergent subsequence of $\left\{A_{n}\right\}$ (resp. $\left\{B_{n}\right\}$).
The proof is the same for A_{n} and B_{n}.
Let $H=\{(x, y, z) \mid y \geq 0\}, H_{n}=A_{n} \cap H$ and let $S(s)$ be the slab $S(s)=$ $\{(x, y, z) \mid-s \leq x \leq s\}$. By Lemma 1, the intersection of A_{n} and the $x z$-plane P consists of two graphs $\sigma_{n 1}=\left\{(x, 0, z) \mid x=f_{n 1}(z),-1 / 2 \leq z \leq 1 / 2\right\}$ and $\sigma_{n 2}=\left\{(x, 0, z) \mid x=f_{n 2}(z),-1 / 2 \leq z \leq 1 / 2\right\}$. By Lemma $3, H_{n}$ is a minimal graph over a domain Ω_{n} contained in P, where Ω_{n} is defined by

$$
\Omega_{n}=\left\{(x, 0, z) \mid f_{n 1}(z)<x<f_{n 2}(z), \quad-1 / 2<z<1 / 2\right\}
$$

For $s>r, H_{n} \cap S(s)$ is topologically a disk and $\partial\left(H_{n} \cap S(s)\right)$ is a piecewise smooth Jordan curve. Let $D:=\{z \in \mathbb{C}| | z \mid<1\}$ and let $X_{n}: D \rightarrow \mathbb{R}^{3}$ be the conformal embedding of $H_{n} \cap S(s)$. Since for n large enough, $C_{n} \cap S(s)=\partial X \cap S(s)$, we can arrange that each X_{n} maps three fixed points on ∂D to three fixed points on the arc $\partial X \cap S(s) \cap H$.

Let $l_{n}(s)$ be the arc length of $\partial\left(H_{n} \cap S(s)\right)$. By Lemma $4, l_{n}(s)$ is uniformly bounded by $2(2+4 s+3 h(s))$. By the isoperimetric inequality for minimal disks, see [7, p. 280], $\operatorname{Area}\left(H_{n} \cap S(s)\right) \leq\left(l_{n}(s)\right)^{2} / 4 \pi$. Since X_{n} is conformal, the X_{n} have uniformly bounded Dirichlet's integral. By the Courant-Lebesgue Lemma, the X_{n} are equicontinuous on ∂D, and hence on passing to a subsequence if necessary, $H_{n} \cap S(s)$ uniformly converges to a minimal surface $\mathscr{D}(s) \subset S(-1 / 2,1 / 2) \cap S(s)$ parametrized by $Y_{s}=\lim _{n \rightarrow \infty} X_{n}: D \rightarrow \mathbb{R}^{3}, \mathscr{D}(s)=Y_{s}(D)$.

By a diagonal argument, in any compact subset of $S(-1 / 2,1 / 2), H_{n}$ uniformly converges to a minimal surface $\mathscr{D}, \mathscr{D}(s)=\mathscr{D} \cap S(s)$. Since for each $-1 / 2<t<1 / 2$, $H_{n} \cap P_{t}$ is strictly convex, $\mathscr{D} \cap P_{t}$ is convex. Remember that $\sigma_{n 1} \cup K\left(\sigma_{n 1}\right)=H_{n} \cap P$ in Lemma 1.

$$
\sigma_{n 1}=\left\{(x, 0, z) \mid x=f_{n 1}(z)<0\right\}
$$

For n large, by our construction of $C_{n}, f_{n 1}(-1 / 2)=-r$. Since $\sigma_{n 1}$ is convex, $\left|f_{n 1}\left(z_{1}\right)\right| \leq \max \left\{r,\left|f_{n 1}\left(z_{2}\right)\right|\right\}$ for $-1 / 2 \leq z_{1} \leq z_{2} \leq 1 / 2$. It follows that if $\lim _{n \rightarrow \infty} f_{n 1}\left(z_{2}\right)$ exists and is finite, then $f_{1}(z):=\lim _{n \rightarrow \infty} f_{n 1}(z)$ exists and is finite for $-1 / 2 \leq z \leq z_{2}$. Thus there is a $d,-1 / 2 \leq d \leq 1 / 2$, such that

$$
\sigma_{1}:=\left\{(x, 0, z) \mid x=f_{1}(z) \quad-1 / 2 \leq z<d\right\}
$$

is a well defined graph over $I=[-1 / 2, d)$. Note that it may be the case that $d=-1 / 2$.

Now let $\Omega \subset P \cap S(-1 / 2,1 / 2)$ be such that $\partial \Omega=\sigma_{1} \cup K\left(\sigma_{1}\right) \cup L_{1} \cup L_{2}$, where $L_{1}=\{(x, 0,-1 / 2) \mid x \geq-r\}$ and $L_{2}=K\left(L_{1}\right)$. If $d=-1 / 2$, then $\Omega=$ $\operatorname{int}(P \cap S(-1 / 2,1 / 2))$. By Lemmas 1 and 2 , if $(0,0,0) \notin \sigma_{1}$, then Ω is a domain, that is, an open connected set.

Suppose $d>-1 / 2$. Since $\lim _{\sigma_{n 1}}=\sigma_{1}, \Omega=\bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \Omega_{n}$. Since $\overline{\Omega_{n}}$ is the orthogonal projection of $H_{n}, \bar{\Omega}$ is the orthogonal projection of \mathscr{D}. Taking any $(x, y, z) \in \mathscr{D}$, we have $(x, 0, z) \in \bar{\Omega}$. Suppose that $(x, 0, z) \in \operatorname{int}(\Omega)$. Let $s>$ $\max \{|x|, r\}$. Since $\sigma_{n 1} \cap S(s)$ uniformly converges to $\sigma_{1} \cap S(s)$, there is an $m>0$ such that there is an open ball U such that $(x, 0, z) \in U \subset \bigcap_{n \geq m} \Omega_{n}$. Since H_{n} converges to \mathscr{D}, u_{n} converges to a function u on U and hence $\mathscr{D} \cap\{(x, y, z) \mid(x, 0, z) \in U\}$ is a minimal graph. In particular, $(x, y, z)=(x, u(x, z), z)$ is an interior point of \mathscr{D}. By the maximum principle, $y=u(x, z)>0$. This also proves that $\sigma_{1} \cup K\left(\sigma_{1}\right)=$ $\mathscr{D} \cap P=\partial \mathscr{D} \cap P$.

Thus if we can prove that $(0,0,0) \notin \sigma_{1}$, then Ω is open and \mathscr{D} is a minimal graph hence is embedded.

We now consider the surface $\mathscr{D} \cup R(\mathscr{D})$. If $d=-1 / 2$, then $\mathscr{D} \cup R(\mathscr{D})$ is a minimal surface. If $d>-1 / 2$, then I is an interval. By continuity of \mathscr{D}, for any closed subinterval $J \subset I$ and $z_{0} \in J$, there is a $\delta\left(z_{0}\right)>0$ such that the orthogonal projection of the convex curve $\mathscr{D} \cap P_{z}$ on the y-axis contains an interval $\left[0, \delta\left(z_{0}\right)\right]$ for $z \in\left(z_{0}-\delta\left(z_{0}\right), z_{0}+\delta\left(z_{0}\right)\right) \subset I$. Thus the orthogonal projection of $\mathscr{D} \cap\left(\cup_{z \in J} P_{z}\right)$ on the $y z$-plane contains a domain D^{\prime} such that $\partial D^{\prime} \cap P \supset J$. Since H_{n} uniformly converges to \mathscr{D}, for large n, the orthogonal projection of H_{n} on the $y z$-plane contains a common domain $D^{\prime \prime} \subset D^{\prime}$ such that $\partial D^{\prime \prime} \cap P \supset J$. Now since $A_{n} \cap P_{z}$ is strictly convex for $z \in J$, a component of A_{n} containing $\sigma_{n 1} \cap\left(\cup_{z \in J} P_{z}\right)$ is a minimal graph over $D^{\prime \prime} \cup R\left(D^{\prime \prime}\right)$. Let v_{n} be the function that defines this graph. We have $0>v_{n}(y, z) \geq f_{n 1}(z)=v_{n}(0, z)$ since $\left(f_{n 1}, 0, z\right)$ is the extreme point of $A_{n} \cap P_{z}$ in $\{x<0\}$. Thus on $D^{\prime \prime} \cup R\left(D^{\prime \prime}\right), v_{n}$ converges. This proves that $\mathscr{D} \cup R(\mathscr{D})$ is a minimal surface if $\sigma_{1} \cap K\left(\sigma_{1}\right)=\emptyset$.

Thus in the case that $d=-1 / 2$ or that $d>-1 / 2$ and $\sigma_{1} \cap K\left(\sigma_{1}\right)=\emptyset, \mathscr{D} \cup R(\mathscr{D})$ is a minimal surface.

We denote $\mathscr{D} \cup R(\mathscr{D})$ by \mathscr{A} (resp. $\mathscr{B})$. We need to prove that σ_{1} is a graph defined on $-1 / 2 \leq z<1 / 2$. We first analyse $\mathscr{D} \cap P_{0}$. Note that so far we cannot say that $\mathscr{D} \cap P \cap P_{0} \neq \emptyset$.

Step 3: To prove that $\mathscr{A} \cap P_{0}$ (resp. $\mathscr{B} \cap P_{0}$) is a convex Jordan curve.
First we claim that $\mathscr{D} \cap P \cap P_{0} \neq \emptyset$. Let $\left(-a_{n}, 0,0\right)$ and $\left(a_{n}, 0,0\right)$ be the two extreme points of $A_{n} \cap P_{0}$ (resp. $B_{n} \cap P_{0}$). Let ($0, p_{n}, 0$) be the middle point of $H_{n} \cap P_{0}$. By Lemma $4, p_{n} \leq h(0)$, and thus $0 \leq p:=\lim _{n \rightarrow \infty} p_{n}$ exists. In particular, $\mathscr{D} \cap P_{0} \neq \emptyset$. If $\mathscr{D} \cap P \cap P_{0}=\emptyset$, then $p>0$ and $\lim _{n \rightarrow \infty} a_{n}=\infty$. By Step 2 and Lemma 2, $u_{n}(x, 0) \rightarrow u(x, 0)$ for $-\infty<x<\infty$. Thus $\mathscr{D} \cap P_{0}$ is a smooth convex graph $(x, u(x, z), z)$. Because $K\left(\mathscr{D} \cap P_{0}\right)=\mathscr{D} \cap P_{0}, u(x, 0) \leq p$ and $\partial u / \partial x(0,0)=0$,
$\partial^{2} u / \partial x^{2}(x, 0) \geq 0$. It follows that $\mathscr{D} \cap P_{0}$ is the straight line $\{y=p\} \cap\{z=0\}$. It is well known that this would imply that \mathscr{D} is invariant under a rotation of angle π about the straight line $\mathscr{D} \cap P_{0}$, but it is impossible since the boundary of \mathscr{D} is not symmetric with respect to this kind of rotation. Hence we have proved the claim.

We know that $H_{n} \cap P_{0}$ is strictly convex and $K\left(H_{n} \cap P_{0}\right)=H_{n} \cap P_{0}$, hence $H_{n} \cap P_{0} \subset P_{0} \cap\left\{0 \leq y \leq p_{n}\right\}$. Thus $\mathscr{D} \cap P_{0} \subset P_{0} \cap\{0 \leq y \leq p\}$. If $p=0$, then by Step $2,(0,0,0) \in \partial \Omega$, and thus $(0,0,0) \in \sigma_{1} \cap K\left(\sigma_{1}\right), \mathscr{D} \cap P_{0}=\{(0,0,0)\}$.

Hence $\mathscr{A} \cap P_{0}$ (resp. $\mathscr{B} \cap P_{0}$) must be either a convex curve, or a line segment on the y-axis, or the point $(0,0,0)$.

Let V_{n} be the compact solid bounded by $A_{n} \cup D_{n} \cup K\left(D_{n}\right)$. Since $A^{\prime} \cap P_{0} \subset V_{n}$, we know that $\mathscr{A} \cap P_{0}$ must be a convex Jordan curve.

By Lemma 5, 7, and $8, \mathscr{B} \cap P_{0}$ can neither be a segment on the y-axis, nor be the point $(0,0,0)$. Hence $\mathscr{B} \cap P_{0}$ must be a convex Jordan curve.

Since $\mathscr{A} \cap P_{0}$ (resp. \mathscr{B}) is a convex curve, by Lemma $2, \sigma_{1} \cap K\left(\sigma_{1}\right)=\emptyset$ and Ω is open. Thus as pointed out in Step 2, \mathscr{A} (resp. \mathscr{B}) is an embedded minimal surface. In Steps 4 to 6 , the proofs for \mathscr{A} and \mathscr{B} are the same.

Step 4: To prove that there is an $\epsilon>0$, such that $\mathscr{A} \cap P_{t}\left(\right.$ resp. $\left.\mathscr{B} \cap P_{t}\right)$ is a convex Jordan curve for $-\epsilon \leq t \leq \epsilon$.

Let $(-a, 0,0)$ and $(a, 0,0), a>0$, be the two extreme points of $\mathscr{A} \cap P_{0}$. Then the number d defined in Step 2 must be greater than or equal to 0 . Let $s>\max \{a, r\}$, where r is the number that defines the domain X. Consider the strictly convex boundary curve $\sigma_{n 1}(s) \subset \partial\left(\Omega_{n} \cap S(s)\right)$ in Lemma 1,

$$
\sigma_{n 1}(s)=\left\{(x, 0, z) \mid x=f_{n 1}(z),-1 / 2 \leq z \leq 1 / 2,-s \leq x<0\right\}
$$

We denote $\left(f_{n 1}(-1 / 2), 0,-1 / 2\right),\left(f_{n 1}(0), 0,0\right)$, and $\left(-s, 0, f_{n 1}^{-1}(-s)\right)$ by $q_{n}(1), q_{n}(2)$, and q_{n} (3). Note that for $x>r, f_{n 1}^{-1}(-x)$ is well defined. Since $s>\max \{r, a\}$ and $-1 / 2<f_{n 1}^{-1}(-s)<1 / 2$, we may assume that $\epsilon(s)=\lim _{n \rightarrow \infty} f_{n 1}^{-1}(-s)$ exists. Thus f_{1} is defined at $z=\epsilon(s)$ and $f_{1}(\epsilon(s))=-s<-a=f_{1}(0)$. Now since $\sigma_{n 1}$ is convex, $\left|f_{n 1}(z)\right| \leq \max \left\{r,\left|f_{n 1}(0)\right|\right\}$ for $-1 / 2 \leq z \leq 0$. Were $\epsilon(s) \in[-1 / 2,0]$, then $\left|f_{1}(\epsilon(s))\right| \leq \max \{r, a\}$. Since $f_{1}(\epsilon(s))=-s, \epsilon(s)>0$. Thus $d \geq \epsilon(s)>0$. Select $0<\epsilon<d$, then it follows that $\mathscr{A} \cap P \cap\{-\epsilon \leq z \leq \epsilon\}=\left(\sigma_{1} \cup K\left(\sigma_{1}\right)\right) \cap\{-\epsilon \leq z \leq \epsilon\}$. This implies that the convex curve $\mathscr{D} \cap P_{z}$ has two extreme points $\left(f_{1}(z), 0, z\right)$ and $\left(-f_{1}(-z), 0, z\right)$, for $-\epsilon(s) \leq z \leq \epsilon(s)$. Thus $\mathscr{A} \cap P_{z}$ is a convex Jordan curve for $-\epsilon(s) \leq z \leq \epsilon(s)$.

One way to prove that $\mathscr{A} \cap P_{t}$ (resp. $\mathscr{B} \cap P_{t}$) is a convex Jordan curve for $-1 / 2<t<1 / 2$ is to prove that $d=1 / 2$ or $\lim _{s \rightarrow \infty} \epsilon(s)=1 / 2$. It requires a detailed study of the behaviours of the functions $f_{n 1}$. Instead of doing that, we argue in an indirect manner. The benefit of our argument is that we can get an Enneper-Weierstrass representation of \mathscr{A} and \mathscr{B}.

Step 5: To prove that the Gauss map $N: \mathscr{A} \rightarrow S^{2}$ (resp. $N: \mathscr{B} \rightarrow S^{2}$) is not vertical along $\mathscr{A} \cap S(-\epsilon / 2, \epsilon / 2)$ (resp. $\mathscr{B} \cap S(-\epsilon / 2, \epsilon / 2)$).

Since the compact minimal annulus $\mathscr{A} \cap S(-\epsilon / 2, \epsilon / 2)$ is contained in the interior of \mathscr{A}, N is well defined. By Shiffman's first theorem N is not vertical on $\mathscr{A} \cap$ $S(-\epsilon / 2, \epsilon / 2)$.

Step 6: To prove that $\mathscr{A} \cap P_{t}$ (resp. $\mathscr{B} \cap P_{t}$) is a convex Jordan curve, for $-1 / 2<t<1 / 2$.

Each A_{n} (resp. B_{n}) is an annulus with one-dimensional boundary, hence there is a unique $R_{n}, 1<R_{n}<\infty$, such that A_{n} is conformally equivalent to the annulus $A\left(R_{n}\right)=\left\{z \in \mathbb{C}\left|1 / R_{n}<|z|<R_{n}\right\}\right.$. Let $X_{n}: A\left(R_{n}\right) \rightarrow \mathbb{R}^{3}$ be the conformal embedding of A_{n}. The third coordinate function $X_{n 3}$ is harmonic and maps $|z|=1 / R_{n}$ and $|z|=R_{n}$ to $-1 / 2$ and $1 / 2$ respectively. Thus it must be the case that

$$
\begin{equation*}
X_{n 3}(z)=\frac{1}{2 \log \left(R_{n}\right)} \log (|z|) \tag{7}
\end{equation*}
$$

Let g_{n} be the Gauss map of the embedding X_{n}. It is a holomorphic map and $g_{n}=$ $\tau \circ N_{n} \circ X_{n}$, where τ is the stereographic projection and $N_{n}: A_{n} \rightarrow S^{2}$ is the Gauss map of A_{n}.

By the Enneper-Weierstrass representation,

$$
\begin{equation*}
X_{n}(z)=\operatorname{Re} \int_{1}^{z}\left(\frac{1}{2}\left(1-g_{n}^{2}\right) \eta_{n}, \frac{i}{2}\left(1+g_{n}^{2}\right) \eta_{n}, g_{n} \eta_{n}\right)+V_{n} \tag{8}
\end{equation*}
$$

where η_{n} is a holomorphic 1-form and V_{n} is a constant vector in P_{0}. Comparing (7) with (8), we have $\eta_{n}=d z /\left(2 \log \left(R_{n}\right) z g_{n}\right)$. The metric of A_{n} (resp. B_{n}) is given by

$$
d s_{n}=\frac{1}{2}\left(1+\left|g_{n}\right|^{2}\right)\left|\eta_{n}\right|=\left(\frac{1}{\left|g_{n}\right|}+\left|g_{n}\right|\right) \frac{|d z|}{4 \log \left(R_{n}\right)|z|},
$$

see, for example, [7, p. 147].
Since $N_{n} \rightarrow N$ on $A_{n} \cap S(-\epsilon / 2, \epsilon / 2)$ uniformly as $n \rightarrow \infty$, by Step 5 we know that there is a $B>0$, such that for n large enough,

$$
\begin{equation*}
\frac{1}{B}<\left|g_{n}(z)\right|<B, \quad R_{n}^{-\epsilon} \leq|z| \leq R_{n}^{\epsilon} \tag{9}
\end{equation*}
$$

Let $L_{n}(t)$ be the arc length of $A_{n} \cap P_{t}$. By a theorem of Osserman and Schiffer [9], L_{n} satisfies $L_{n}^{\prime \prime}(t)>0$, for $-1 / 2<t<1 / 2$. (Note that what Osserman and Schiffer proved in Lemma 1 of [9] is that $d^{2} L_{n} / d(\log r)^{2}>0, r=|z|$. In our case, $t=\log r / 2 \log R_{n}$.) Since A_{n} is invariant under K, we have $L_{n}(t)=L_{n}(-t)$. Thus $L_{n}^{\prime}(t)=-L_{n}^{\prime}(-t)$, and in particular $L_{n}^{\prime}(0)=0$. Hence $L_{n}(0)$ is the only minimum value of L_{n}, and L_{n} is strictly increasing for $0<t<1 / 2$ and strictly decreasing
for $-1 / 2<t<0$. If $\mathscr{A} \cap P_{t}$ is not compact, then $\lim _{n \rightarrow \infty} L_{n}(t)=\infty$. For any $|t|<|s|<1 / 2, \lim _{n \rightarrow \infty} L_{n}(s) \geq \lim _{n \rightarrow \infty} L_{n}(t)=\infty$ implies that $\mathscr{A} \cap P_{s}$ is not compact. Hence to prove that $\mathscr{A} \cap P_{t}$ is a Jordan curve for $-1 / 2<t<1 / 2$, it is enough to prove that there is a sequence $0<t_{j} \uparrow 1 / 2$ and $M(j)>0$ such that for each sequence $\left\{L_{n}\left(t_{j}\right)\right\}$ there is a subsequence $\left\{L_{m}\left(t_{j}\right)\right\} \subset\left\{L_{n}\left(t_{j}\right)\right\}$ such that $L_{m}\left(t_{j}\right) \leq M(j)$.

Since $\mathscr{A} \cap P_{0}$ is a convex Jordan curve, we know that $\lim _{n \rightarrow \infty} L_{n}(0)=L(0)>0$, where $L(0)$ is the arc length of $\mathscr{A} \cap P_{0}$. Let $C^{\prime \prime}$ be the curve $\{|z|=1\}$ in $A\left(R_{n}\right)$,

$$
L_{n}(0)=\frac{1}{4 \log \left(R_{n}\right)} \int_{C^{\prime \prime}}\left(\frac{1}{\left|g_{n}(z)\right|}+\left|g_{n}(z)\right|\right)|d z| .
$$

Because of (9) we have

$$
\frac{2 \pi}{4 L_{n}(0)} \frac{2}{B} \leq \log \left(R_{n}\right)=\frac{1}{4 L_{n}(0)} \int_{C^{\prime \prime}}\left(\frac{1}{\left|g_{n}(z)\right|}+\left|g_{n}(z)\right|\right)|d z| \leq \frac{2 \pi}{4 L_{n}(0)} 2 B,
$$

for n large enough. Hence there is a subsequence of $\left\{R_{n}\right\}$ and $1<R<\infty$, such that $\lim _{n \rightarrow \infty} R_{n}=R$.

Let $A(R)=\lim _{n \rightarrow \infty} A\left(R_{n}\right)$ be the limit annulus in \mathbb{C}. Since the Gauss map g_{n} is one-to-one from $A\left(R_{n}\right)$ to $\mathbb{C}-\{0\}$, see [6, Lemma 2.2], $g_{n}\left(C^{\prime \prime}\right)$ is a Jordan curve in $\mathbb{C}-\{0\}$. By (9) and the one-to-one property of g_{n}, a subsequence of $\left\{\left|g_{n}\right|\right\}$ is uniformly bounded on either $\left\{1 / R_{n}<|z| \leq R_{n}^{\epsilon}\right\}$ or $\left\{R_{n}^{-\epsilon} \leq|z|<R_{n}\right\}$, say on the latter. Any compact sub-annulus $A^{\prime \prime}$ in $\left\{R^{-\epsilon / 2} \leq|z|<R\right\}$ is eventually contained in $A\left(R_{n}\right)$. Since the g_{n} 's are uniformly bounded on $A^{\prime \prime}$, there is a subsequence of $\left\{g_{n}\right\}$ converging to a holomorphic function g on $A^{\prime \prime}$. Thus we may assume that g_{n} converges to g uniformly on compact sets of $\left\{R^{-\epsilon / 2}<|z|<R\right\}$. Again by (9), $\left|g_{n}\right|>1 / B$ on $C^{\prime \prime} \subset\left\{R^{-\epsilon / 2}<|z|<R\right\}, g \not \equiv 0$. Since $g_{n} \neq 0$ in $A\left(R_{n}\right)$, by Rouché's theorem, $g \neq 0$ in $\left\{R^{-\epsilon / 2}<|z|<R\right\}$. Hence there are sequences $r_{j} \uparrow R, \epsilon_{j} \downarrow 0$, $r_{j}+\epsilon_{j}<R$, such that on the compact annuli $A(j)=\left\{z\left|r_{j}-\epsilon_{j} \leq|z| \leq r_{j}+\epsilon_{j}\right\}, g\right.$ satisfies $0<d_{j} \leq|g| \leq D_{j}$. For large $n, A(j) \cap A\left(R_{n}\right)=A(j)$, and g_{n} uniformly converges to g on $A(j)$. Thus for large n, on $A(j)$ we have $d_{j} / 2 \leq\left|g_{n}\right| \leq 2 D_{j}$, and

$$
d s_{n}=\left(\frac{1}{\left|g_{n}\right|}+\left|g_{n}\right|\right) \frac{|d z|}{4|z| \log \left(R_{n}\right)} \leq\left(\frac{1}{d_{j}}+D_{j}\right) \frac{|d z|}{R \log (R)}:=\frac{M(j)}{R}|d z| .
$$

Let $t_{j}=\log \left(r_{j}\right) / 2 \log (R)$, then

$$
t_{j}=\lim _{n \rightarrow \infty} \frac{\log \left(r_{j}\right)}{2 \log \left(R_{n}\right)}
$$

Choose s_{n} such that $\left\{|z|=s_{n}\right\} \subset A(j)$ and $t_{j}=\log \left(s_{n}\right) / 2 \log \left(R_{n}\right)$.

$$
L_{n}\left(t_{j}\right)=\int_{|z|=s_{n}} d s_{n} \leq \int_{0}^{2 \pi} M(j) d \theta=2 \pi M(j)
$$

We have proved that $\mathscr{A} \cap P_{t}$ is a Jordan curve for $-1 / 2<t<1 / 2$. It follows that \mathscr{A} is an embedded minimal annulus.

By symmetry we know that g_{n} converges to g uniformly on compact sets of $A(R)$, thus the Enneper-Weierstrass representation of \mathscr{A} is

$$
X(z)=\frac{1}{2 \log R} \operatorname{Re} \int_{1}^{z}\left(\frac{1}{2}\left(1-g^{2}\right)(\zeta), \frac{i}{2},\left(1+g^{2}\right)(\zeta), g(\zeta)\right) \frac{d \zeta}{\zeta g(\zeta)}+V, \frac{1}{R}<|z|<R
$$

Step 7: To prove the remaining claims in Theorem B.
For any $0<\delta<1 / 2$, since $\mathscr{A} \cap P_{1 / 2-\delta}$ and $\mathscr{A} \cap P_{-1 / 2+\delta}$ (resp. $\mathscr{B} \cap P_{1 / 2-\delta}$ and $\mathscr{B} \cap P_{-1 / 2+\delta}$) are convex, by Shiffman's first theorem, $\mathscr{A} \cap P_{t}$ (resp. $\mathscr{B} \cap P_{t}$) is strictly convex for $-1 / 2+\delta<t<1 / 2-\delta$. Let δ go to zero, then $\mathscr{A} \cap P_{t}\left(\right.$ resp. $\left.\mathscr{B} \cap P_{t}\right)$ is strictly convex for $-1 / 2<t<1 / 2$.

Let N be any connected non-planar compact branched minimal surface such that $\partial N \subset \bar{X} \cup K(\bar{X})$. If $N \cap \mathscr{B}=\emptyset$, then since N is compact and \mathscr{B} is closed in \mathbb{R}^{3}, $\operatorname{dist}(N, \mathscr{B})>0$, which contradicts the facts that $N \cap B_{n} \neq \emptyset$ and $\mathscr{B}=\lim _{n \rightarrow \infty} B_{n}$. Thus it must be the case that $\mathscr{B} \cap N \neq \emptyset$. In particular, if $A^{\prime} \subset X \cup K(X)$, then $\operatorname{int}(\mathscr{B}) \cap \operatorname{int}\left(A^{\prime}\right) \neq \emptyset$ since $\partial A^{\prime} \cap \partial \mathscr{B}=\emptyset$.

Let V_{n} be the solid bounded by $A_{n} \cup D_{n} \cup K\left(D_{n}\right)$ and V be the solid bounded by $\mathscr{A} \cup \bar{X} \cup K(\bar{X})$. Then $B_{n} \subset V_{n} \subset V$ and hence $\mathscr{B}=\lim B_{n} \subset V$. By the comparison principle, $\mathscr{A}=\mathscr{B}$ or $\operatorname{int}(\mathscr{A}) \cap \operatorname{int}(\mathscr{B})=\emptyset$. By the same argument we see that $\operatorname{int}(N) \cap \operatorname{int}(\mathscr{A})=\emptyset$, for any connected nonplanar compact branched minimal surface N such that $\partial N \subset \bar{X} \cup K(\bar{X})$. In particular, $\operatorname{int}\left(A^{\prime}\right) \cap \operatorname{int}(\mathscr{A})=\emptyset$ and hence if $A^{\prime} \subset X \cup K(X)$ then $\mathscr{A} \neq \mathscr{B}$ and $\operatorname{int}(\mathscr{A}) \cap \operatorname{int}(\mathscr{B})=\emptyset$.

The proof of Theorem B is complete.

REMARK 2. By Theorem A and the proof of Theorem B, we see that if merely $\partial A^{\prime} \subset \bar{X} \cup K(\bar{X})$, then there is at least one minimal annulus \mathscr{A} such that $\partial \mathscr{A}=\Gamma$ and $\mathscr{A} \cap P_{t}$ is strictly convex for $-1 / 2<t<1 / 2$.

Let N be any connected compact nonplanar branched minimal surface such that $\partial N \subset \bar{X} \cup K(\bar{X})$. Then \mathscr{A} satisfies

$$
\operatorname{int}(\mathscr{A}) \cap \operatorname{int}(N)=\emptyset
$$

Remark 3. Checking the proof of Theorem B, we find that in the definition of the boundary $C \subset P_{-1 / 2}$, the relevant part is the existence of the inverse $h(s)$ of the C^{∞} function f for $s>-r$. Hence even if for some $x>-r, h(s)$ is a constant for $s>x$, the proof of Theorem B is still valid. Thus we may assume that the boundary curve C is C^{∞} convex, $R(C)=C$, and C contains two rays parallel to the x-axis.

Acknowlegdgement

The author would like to thank the referee for helpful suggestions and constructive criticisms to an earlier version of this paper.

References

[1] L. Barbosa and M. do Carmo, 'On the size of a stable minimal surface in \mathbb{R}^{3} ', Amer. J. Math. 98 (1976), 515-528.
[2] J. Douglas, 'The problem of Plateau for two contours', J. Math. Phys. Massachusetts Inst. of Tech. 10 (1930-1), 315-359.
[3] Y. Fang, 'On minimal annuli in a slab', Comment. Math. Helv. (3) 69 (1994), 417-430.
[4] D. Hoffman, H. Karcher and H. Rosenberg, 'Embedded minimal annuli in \mathbb{R}^{3} bounded by a pair of straight lines', Comment. Math. Helv. 66 (1991), 599-617.
[5] D. Hoffman and W. Meeks III, 'A variational approach to the existence of complete embedded minimal surfaces', Duke Math. J. (3) 57 (1989), 877-893.
[6] W. Meeks III and B. White, 'Minimal surfaces bounded by convex curves in parallel planes', Comment. Math. Helv. 66 (1991), 263-278.
[7] J. C. C. Nitsche, Lectures on minimal surfaces, vol. 1 (Cambridge University Press, 1989).
[8] R. Osserman, 'Minimal surfaces, Gauss maps, total curvature, eigenvalue estimates, and stability', in: The Chern Symposium, 1979 Proc. Internal. Sympos., Berkeley, Calif. (1979) pp. 199-227.
[9] R. Osserman and M. Schiffer, 'Doubly-connected minimal surfaces', Arch. Rational Mech. Anal. 58 (1975), 285-307.
[10] R. Schoen, 'Estimates for stable minimal surfaces in three dimensional manifolds', in: Seminar on minimal submanifolds, Annals of Mathematics Studies 103 (Princeton University Press, 1983).
[11] M. Shiffman, 'On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes', Ann. Math. 63 (1956), 77-90.
[12] E. Toubiana, 'On the minimal surfaces of Riemann', Comment. Math. Helv. 67 (1992), 546-570.

Centre for Mathematics and its Applications

School of Mathematical Sciences
The Australian National University
Canberra ACT 0200
Australia
e-mail: yi@maths.anu.edu.au

