MINIMAL ANNULI IN R³ BOUNDED BY NON-COMPACT COMPLETE CONVEX CURVES IN PARALLEL PLANES

YI FANG

(Received 23 November 1993; revised 15 December 1994)

Communicated by J. H. Rubinstein

Abstract

In this paper we consider the Plateau problem for surfaces of annular type bounded by a pair of convex, non-compact curves in parallel planes. We prove that for certain symmetric boundaries there are solutions to the non-compact Plateau problems (Theorem B). Except for boundaries consisting of a pair of parallel straight lines, these are the first known examples.

1991 Mathematics subject classification (Amer. Math. Soc.): 35A10.

1. Introduction

In this paper we consider the Plateau problem for surfaces of annular type bounded by a pair of convex, non-compact curves in parallel planes. We will prove that for certain symmetric boundaries there are solutions to the non-compact Plateau problems (Theorem B). Except for boundaries consisting of a pair of parallel straight lines, these are the first known examples.

We now fix some notation in this paper. Let $P_t = \{(x, y, z) \in \mathbb{R}^3 | z = t\}$ be the plane at height t parallel to the xy-plane, and let $S(t_1, t_2) = \{(x, y, z) \in \mathbb{R}^3 | t_1 \le z \le t_2\}$ be the slab with boundary equal to $P_{t_1} \cup P_{t_2}$.

We briefly review the known results for a pair of Jordan curves. Let $\Gamma \subset \mathbb{R}^3$ be a pair of rectifiable Jordan curves, $\Gamma = \Gamma_1 \cup \Gamma_2$, $\Gamma_1 \cap \Gamma_2 = \emptyset$. Douglas [2] considered the Plateau problem for Γ . He proved that if

 $\inf{\operatorname{Area}(S)} < \operatorname{Area}(S_1) + \operatorname{Area}(S_2),$

The research described in this paper was partially supported by NSF grant DMS-8806731 and Australia Research Council grant A69131962.

^{© 1996} Australian Mathematical Society 0263-6115/96 \$A2.00 + 0.00

where S denotes any continuous annulus such that $\partial S = \Gamma$, and S_1 and S_2 are area minimizing disks such that $\partial S_1 = \Gamma_1$, $\partial S_2 = \Gamma_2$, then there is an area minimizing annulus A such that $\partial A = \Gamma$.

D. Hoffman, W. Meeks, and B. White, also considered this kind of Plateau's problem. A combined result of Hoffman and Meeks, and Meeks and White, is as follows.

THEOREM A. (Theorems 1.1, 1.2 of [5], and Theorem 1.1, Lemma 2.1 of [6])

Suppose D_1 and D_2 are two open disks lying on parallel planes, and suppose their boundaries C_1 and C_2 are smooth convex Jordan curves. If A' is a connected nonplanar compact branched minimal surface such that $\partial A' \subset D_1 \cup D_2$, then there exist exactly two embedded compact minimal annuli A and B, $\partial A = \partial B = C_1 \cup C_2$. The annulus A is stable and has the property that for any disks $D' \subset D_1$ and $D'' \subset D_2$ with continuous boundaries, if there is a connected compact branched minimal surface Nsuch that $\partial N = \partial D' \cup \partial D''$, then N is contained in the solid bounded by $A \cup D_1 \cup D_2$. In particular, if $A \neq N$, then $int(A) \cap int(N) = \emptyset$. On the other hand, B is unstable and $int(B) \cap int(N) \neq \emptyset$.

If merely $\partial A' \subset \overline{D_1} \cup \overline{D_2}$, then there exists at least one embedded minimal annulus A such that $\partial A = C_1 \cup C_2$. Such an A is almost stable in the sense that the first eigenvalue of the second variation of A is larger than or equal to zero. Let N be a connected compact branched minimal surface such that $\partial N = \partial D' \cup \partial D''$, then N is contained in the solid bounded by $A \cup D_1 \cup D_2$. In particular, if $A \neq N$, then $int(A) \cap int(N) = \emptyset$.

Furthermore, the symmetry group of A and B are the same as the symmetry group of $C_1 \cup C_2$.

A very useful fact (which we will use) about minimal annulus is a result of Shiffman [11]. He proved that if C_1 and C_2 are *continuous* convex Jordan curves lying on planes parallel to the xy-plane, say on $P_{-1/2}$ and $P_{1/2}$, and A is a minimal annulus such that $\partial A = C_1 \cup C_2$, then each level set of $A \cap P_t$ is a strictly convex Jordan curve for -1/2 < t < 1/2. This is called Shiffman's first theorem.

If C_1 and C_2 are circles, Shiffman's second theorem states that each $A \cap P_t$ is a circle for $-1/2 \le t \le 1/2$.

From Shiffman's first theorem, it is clear that if A is a non-planar minimal annulus and ∂A consists of convex Jordan curves lying on planes parallel to the xy-plane, then A does not have vertical normal directions in its interior, as otherwise some level set would not be a Jordan curve.

We now state our existence theorem. Let r > 0 and $0 < b \le \infty$ be fixed. Let K be the rotation of angle π about the y-axis and R be the reflection through the xz-plane.

Define a convex curve C in $P_{-1/2}$ by

$$C = \{(x, y, -1/2) \mid x = f(y)\},\$$

where f satisfies :

- (i) $f: (-b, b) \to \mathbb{R}$ is a C^{∞} function such that f(-y) = f(y);
- (ii) $f(0) = -r, f'' \ge 0$, and $\lim_{y\to b} f(y) = \infty$.

Define the planar domain

(1)
$$X = \{(x, y, -1/2) \mid x > f(y)\}.$$

Now consider the non-compact Plateau problem with the boundary

(2)
$$\Gamma = C \cup K(C) = \partial X \cup K(\partial X)$$

We have

THEOREM B. If there exists a compact non-planar minimal annulus A' such that $\partial A' \subset X \cup K(X)$, then there are two embedded non-compact minimal annuli \mathscr{A} and \mathscr{B} in S(-1/2, 1/2), which are solutions to the non-compact Plateau problem with the boundary Γ given in (2).

For any -1/2 < t < 1/2, $\mathscr{A} \cap P_t$ and $\mathscr{B} \cap P_t$ are strictly convex Jordan curves.

Furthermore, $int(\mathscr{A}) \cap int(\mathscr{B}) = \emptyset$. Let N be any connected compact non-planar branched minimal surface such that $\partial N \subset \overline{X} \cup K(\overline{X})$. Then \mathscr{A} and \mathscr{B} have the properties

$$\operatorname{int}(\mathscr{A}) \cap \operatorname{int}(N) = \emptyset \quad and \quad \mathscr{B} \cap N \neq \emptyset.$$

REMARK 1. Let C'_R be the circle of radius R in $P_{-1/2}$, centered at (0, 0, -1/2). It is well known that there is a constant $h_2 > 0$, such that if $R \ge 1/h_2 \simeq 0.754439698$ then the coaxial circles C'_R and $K(C'_R)$ bound a piece of a catenoid. Hence by Theorem A, if $C'_R \subset X$, then there will be two non-compact minimal annuli \mathscr{A} and \mathscr{B} which solve the Plateau problem with the boundary Γ given in (2).

The only previously known example of a non-planar non-compact embedded minimal annulus in a slab $S(t_1, t_2)$ is an embedded minimal annulus \mathscr{A} such that $\partial \mathscr{A}$ consists of a pair of parallel straight lines, and $\mathscr{A} \cap P_t$ is a circle for every $t_1 < t < t_2$. Repeatedly rotating about the straight-line boundaries produces a singly-periodic complete minimal surface which is called a Riemann's example. There is a one-parameter family of Riemann's examples. It was Riemann who discovered these minimal surfaces. See [7, pp. 85–90].

A basic piece of a Riemann's example is the portion bounded by two consecutive parallel straight lines. Such a piece is an annulus, which we will denote by \mathcal{R} . In [4],

it is proved that any embedded minimal annulus bounded by a pair of parallel straight lines must be a basic piece \mathscr{R} of some Riemann's example. See also [12]. For a more general result, see [3].

Since the proof of Theorem B is quite long, we give a sketch here to give the ideas and also the difficulties encountered when one tries to simplify the proof. The basic idea is to approximate the non-compact boundary with compact ones. Then by using Theorem A, we get a sequence of approximating minimal annuli $\{A_n\}$ and $\{B_n\}$. We use the symmetry conditions of the boundary to divide the approximating annuli into two graphs, each of which is stable and simply connected. Then we estimate the boundary arc-length of compact pieces of the graphs to prove the existence of a limit surface. The trouble is to prove that the limit surface is an annulus with the claimed properties. To accomplish this, we use the properties stated in Theorem A of these approximating surfaces, and the estimates of $A_n \cap P_0$ and $B_n \cap P_0$ in Lemmas 1 – 8 to prove that the limit surface intersecting P_t in a convex Jordan curve for |t| small enough. The last difficulty is to prove that the limit surface is not only an annulus, but is also a compact annulus in any proper subslab contained in the original slab. We use the Enneper-Weierstrass representation of the approximating surfaces to establish the needed estimate. Together with a result of Osserman and Schiffer, we are able to prove the desired fact.

It turns out that the argument for the existence of A (which is the limit of sequence of stable annuli) is much easier than the argument for the existence of B (which is the limit of sequence of unstable annuli). For the former, we can give a much shorter and simpler proof, without using Lemmas 5 to 8. For the latter, we have to establish those lemmas to be able to apply Theorem A. We prove those preparatory lemmas in Section 2. Section 3 is devoted to the proof of Theorem B.

2. Preparatory lemmas

We denote the *xz*-plane by *P*. Suppose that $C' \subset \overline{X}$ is a smooth convex Jordan curve symmetric with respect to *P*. Let $A \subset S(-1/2, 1/2)$ be a minimal annulus such that $\partial A = C' \cup K(C')$.

In Lemmas 1 to 4, we study the properties of such a minimal annulus A.

LEMMA 1. The intersection $A \cap P$ consists of two curves σ_1 and σ_2 such that $K(\sigma_1) = \sigma_2$. Moreover, $\sigma_1 \subset \{(x, 0, z) \in P \mid x < 0\}$ and $\sigma_2 \subset \{(x, 0, z) \in P \mid x > 0\}$ are two convex graphs. Precisely, there are two smooth functions f_1 and f_2 , $f_1(z) < 0$, $f_2(z) > 0$, for $-1/2 \le z \le 1/2$, and $f_1''(z) < 0$, $f_2''(z) > 0$, for -1/2 < z < 1/2, such that

$$\sigma_1 = \{(x, 0, z) \mid x = f_1(z)\}, \qquad \sigma_2 = \{(x, 0, z) \mid x = f_2(z)\}.$$

PROOF. By Theorem A and Shiffman's first theorem, A is invariant under both K and R, and $A \cap P_t$ is strictly convex for -1/2 < t < 1/2. Since each $A \cap P_t$ is a strictly convex curve and symmetric with respect to P, $A \cap P$ has exactly two components and they are graphs over the z-axis. Let them be σ_1 and σ_2 . By $K(A \cap P) = A \cap P$ we have $K(\sigma_1) = \sigma_2$. If we write

$$\sigma_1 = \{(x, 0, z) \mid x = f_1(z)\}, \ \sigma_2 = \{(x, 0, z) \mid x = f_2(z)\}, \ -1/2 \le z \le 1/2,$$

then $f_2(z) = -f_1(-z)$. By the symmetry with respect to P, $(f_1(z), 0, z)$ and $(f_2(z), 0, z)$ are the extreme points of the strictly convex curve $A \cap P_z$ and we can assume that $f_1(z) < f_2(z)$ and $A \cap P_z \subset \{(x, y, z) \mid f_1(z) \le x \le f_2(z)\}$. As the fixed point sets of an isometry (the reflection R) on A, both σ_1 and σ_2 are geodesics, and their tangent directions are the principal directions on A. The tangent directions of each level set $A \cap P_z$ at y = 0 are also principal directions on A, since they are perpendicular to P by the invariance under R and hence perpendicular to the tangent direction of σ_1 or σ_2 respectively. Let $(\sin \theta, 0, \cos \theta)$ be the inward normal vector to A at the point $p \in \sigma_1$, where θ is the angle between the inward normal vector and the positive z-axis. Since A cannot have vertical normal vectors, $\sin \theta > 0$, and hence it must be the case that $0 < \theta < \pi$. Let k_1 and k_2 be the principal curvatures of A at $p \in \sigma_1 \cap P_z$ along the directions of σ_1 and $A \cap P_z$ respectively. Notice that k_1 is also the plane curvature of σ_1 with respect to the normal direction of positive x-coordinate. Letting k be the plane curvature of $A \cap P_z$ with respect to the inner normal, then k > 0and $k_2 = k \sin \theta > 0$ on $\sigma_1 \cap P_z$. Since A is minimal, $k_1 = -k_2 < 0$ at $\sigma_1 \cap P_z$. By $k_1 = f''(z)/(1 + f'_1(z)^2)^{3/2}$, we know that $f''_1(z) < 0$. Since $f_2(z) = -f_1(-z)$, we have $f_2''(z) > 0$.

We need to prove that $f_1(z) < 0$ and $f_2(z) > 0$. If $f_2(z) \le 0$ for some z, then since $f_1(z) < f_2(z)$ and $A \cap P_z \subset \{(x, y, z) \mid f_1(z) \le x \le f_2(z)\}$, the convex curve $A \cap P_z$ is contained in the half plane $\{x \le 0\}$. Thus $A \cap P_{-z} = K(A \cap P_z) \subset P_{-z} \cap \{x \ge 0\}$ and the orthogonal projections of $A \cap P_z$ and $A \cap P_{-z}$ on P_0 have at most one common point (0, 0, 0) and, in particular, $z \ne 0$. Without loss of generality we may assume that z > 0. Let C_1 and C_2 be two circles lying on P_{-z} and P_z respectively, such that $A \cap P_{-z}$ and $A \cap P_z$ are contained in the disks bounded by C_1 and C_2 . We can arrange that $R(C_i) = C_i$ for i = 1, 2 and the orthogonal projections of C_1 and C_2 on the *xy*-plane have at most one common point (0, 0, 0). This means that the horizontal distance between the centers of C_1 and C_2 is greater than or equal to the sum of their radii. By Theorem A there is a minimal annulus N in S(-z, z) bounded by C_1 and C_2 is less than the sum of their radii, see [7, pp. 88–89]. This contradiction proves that $f_1(z) < 0$ and $f_2(z) > 0$.

Let $d(z) = f_2(z) - f_1(z)$ for $-1/2 \le z \le 1/2$. The function d is the distance function between $(f_1(z), 0, z)$ and $(f_2(z), 0, z)$.

LEMMA 2. The function d satisfies

(3) d(z) > d(0) > 0 for $-1/2 \le z \le 1/2, z \ne 0$.

PROOF. We have $d(z) = f_2(z) - f_1(z)$, $d'(z) = f'_2(z) - f'_1(z) = f'_2(z) - f'_2(-z)$, and $d''(z) = f''_2(z) + f''_2(-z) > 0$. Since $d'(0) = f'_2(0) - f'_2(0) = 0$, d(0) is the unique minimum value of d, and hence d(z) > d(0) > 0 for $-1/2 \le z \le 1/2$, $z \ne 0$.

Let *H* be the half space $\{y \ge 0\}$ and $D = A \cap H$. Let *D'* be the convex disk such that $\partial D' = C'$. Let $l_1 = P \cap D'$, $l_2 = K(l_1)$. Let Ω be the domain in *P* bounded by $\sigma_1 \cup \sigma_2 \cup l_1 \cup l_2$. Since $f_1(z) < f_2(z)$ for $-1/2 \le z \le 1/2$, Ω is a domain and obviously it is simply connected.

LEMMA 3. The minimal surface $D = A \cap H$ is a minimal graph over Ω .

PROOF. By Theorem A and Shiffman's first theorem, A is invariant under both K and R and each level set $A \cap P_t$ is a strictly convex Jordan curve. Let f_1 and f_2 be the functions that define σ_1 and σ_2 in Lemma 1. By symmetry with respect to P, each $D \cap P_t$ is a convex graph over the interval $f_1(t) \le x \le f_2(t), -1/2 < t < 1/2$. Thus D is a minimal graph over the domain Ω .

Recall the convex function f that defines the boundary $C = \partial X$. We need to define its inverse for $y \ge 0$. Since f'(0) = 0 and $f''(y) \ge 0$ for any -b < y < b, so $f'(y) \ge 0$ for $b > y \ge 0$. Thus in H, f is nondecreasing. Because $\lim_{y\to b} f(y) = \infty$ for each x > -r = f(0), $f^{-1}(x)$ is not empty. Since f is nondecreasing, if $f^{-1}(x) \cap H$ contains more than one point, it must contain an interval [c, d] with d > c > 0 and hence on [c, d] we would have f'(y) = 0 = f'(0). Since $f'' \ge 0$, f' is nondecreasing, we would have f'(0) = 0 on [0, d], thus f(y) = -r on [0, d], contradicting the fact that x > -r. Therefore we have proved that $f^{-1}(x) \cap H$ is a single point for x > f(0) = -r. Thus $h = f^{-1}$ is a well defined function on $(-r, \infty)$, and h' > 0, $h'' \le 0$. If we define $h(-r) = \sup\{f^{-1}(-r)\}$ then h is a well defined function on $[-r, \infty)$ and is strictly increasing.

Since σ_2 is convex and $f_2(1/2) \leq r$, for fixed s > r, $\{x = s\} \cap \Omega$ is an interval if it is nonempty. Also remember that $f_1(z) < 0$ and $f_2(z) > 0$, $\{x = 0\} \cap \Omega = \{(0, 0, z) \mid -1/2 < z < 1/2\}.$

Let s > 0 and S(s) be the slab $\{(x, y, z) \mid -s \leq x \leq s\}$. Let $u : \Omega \to \mathbb{R}$ be the function that defines the minimal graph D in Lemma 3. We want to estimate u in $\Omega \cap S(s)$ and the boundary arc length of $D \cap S(s)$. We have the following lemma.

LEMMA 4. If s > r, then on the interval $I = \{x = s\} \cap \Omega$, $u(s, \cdot)$ is strictly decreasing and $0 \le u(s, t) \le h(s)$ for $t \in I$.

We have $u(0,0) \le u(0,z) \le h(0), -1/2 < z < 1/2$, and $u(0, \cdot)$ is strictly increasing in (0, 1/2), strictly decreasing in (-1/2, 0).

Moreover, if s > r, then the arc-length of $\partial(D \cap S(s))$ is less than or equal to l(s) := 2(2 + 4s + 3h(s)).

PROOF. We show that $u(s, \cdot)$ does not have local maxima in the interior of I. If $t_0 \in I$ is an interior critical point of $u(s, \cdot)$, then $\frac{\partial u}{\partial z(s, t_0)} = 0$, and by the minimal surface equation we have

$$\partial^2 u/\partial z^2(s, t_0) = \frac{-\partial^2 u/\partial x^2}{1+(\partial u/\partial x)^2}(s, t_0).$$

Since $D \cap P_{l_0}$ is strictly convex at $(s, u(s, t_0), t_0) \in int(D)$, $\partial^2 u/\partial^2 x(s, t_0) < 0$, we have $\partial^2 u/\partial^2 z(s, t_0) > 0$. Thus $u(s, \cdot)$ can only achieve its maximum value on the boundary of Ω . Let $x \in f_2([-1/2, 1/2])$. Since f_2 is convex and $f_2(1/2) \leq r$, if x > r, then $f_2^{-1}(x)$ is well defined. Note that $(s, t) \in \partial \Omega$ if and only if $t = f_2^{-1}(s)$. Since u is zero along σ_2 , and for s > r, by the condition $C' \subset \overline{X}$, the other boundary value of u along x = s is $u(s, -1/2) \leq h(s)$, we have $0 = u(s, f_2^{-1}(s)) \leq u(s, z) \leq u(s, -1/2) \leq h(s)$ for $z \in I$. Since $u(s, \cdot)$ cannot achieve local maxima in the interior of I, it must be strictly decreasing.

Notice that by the symmetry A = K(A), u(0, z) = u(0, -z), we have $\frac{\partial u}{\partial z(0, 0)} = 0$. Similar argument proves that $\frac{\partial^2 u}{\partial z^2(0, 0)} > 0$, u(0, 0) is a local minimum of $u(0, \cdot)$. A similar argument about local maxima proves that the statement about $u(0, \cdot)$ is true.

For each s > r, the boundary of $D \cap S(s)$ consists of $\sigma_1 \cap S(s)$, $\sigma_2 \cap S(s) = K(\sigma_1 \cap S(s))$, $C' \cap H \cap S(s)$, $K(C' \cap H \cap S(s))$, $D \cap \{x = s\}$, and $D \cap \{x = -s\} = K(D \cap \{x = s\})$. We only need to prove that the summation of the arc lengths of $\sigma_1 \cap S(s)$, $C' \cap H \cap S(s)$, and $D \cap \{x = s\}$ is less than or equal to l(s)/2.

Since $f_1''(z) < 0$ and $-s \le f_1(z) < 0$, $\sigma_1 \cap S(s)$ is a convex graph over a subinterval of $-1/2 \le z \le 1/2$. An elementary estimate for convex graphs gives that the arc length of $\sigma_1 \cap S(s)$ is less than or equal to 1 + 2s.

Note that $C' \subset \overline{X}$ and $h(t) \leq h(s)$ for $-r \leq t < s$. Then $H \cap C' \cap S(s) \subset \{0 \leq y \leq h(s)\} \cap S(s)$. Since C' is convex, an elementary estimate of convex curves gives that the arc length of $C' \cap H \cap S(s)$ is less than or equal to 2(s + h(s)).

 $D \cap \{x = s\}$ is a graph $\{(s, y, z) \mid y = u(s, z), -1/2 \le z \le f_2^{-1}(s)\}, 0 \le u(s, z) \le u(s, -1/2) \le h(s)$, and $u(s, \cdot)$ is strictly decreasing as just proved. By elementary arguments again, this time using the property of being strictly decreasing, the arc length of $D \cap \{x = s\}$ is less than or equal to 1 + h(s).

Thus the summation of the arc lengths of $\sigma_1 \cap S(s)$, $C' \cap H \cap S(s)$ and $D \cap \{x = s\}$ is less than or equal to 2 + 4s + 3h(s) = l(s)/2, the lemma is proved.

Yi Fang

Since the following lemmas are not needed in the proof of the existence of \mathscr{A} , the reader can skip them and go to the proof of Theorem B.

To prove the existence of \mathscr{B} mentioned in Theorem B, we have to clarify several facts about a basic piece \mathscr{R} of a Riemann's example.

LEMMA 5. Let L_1 and L_2 be parallel straight lines lying on $P_{-1/2}$ and $P_{1/2}$ respectively. Then there is an E > 0, such that whenever the horizontal distance between L_1 and L_2 is greater than E, there is a basic piece \mathscr{R} of a Riemann's example such that $\partial \mathscr{R} = L_1 \cup L_2$.

PROOF. It is well known that for any basic piece of Riemann's example in $S(-z_0, z_0)$, one half of the horizontal distance between the boundary straight lines $L_1 \subset P_{-z_0}$ and $L_2 \subset P_{z_0}$ is given by

$$R = \left| -b - \int_b^\infty \frac{(a^2 - b^2)t^2 - a^2b^2}{\Delta(t)(t^2 + \Delta(t))} dt \right|,$$

where $0 < b \le a$, $\Delta(t) = \sqrt{(t^2 + a^2)(t^2 - b^2)}$, and z_0 is given by

$$z_0 = ab \int_b^\infty \frac{dt}{\Delta(t)}.$$

See, [7, p. 89] and note the misprint in line 12.

Define $r := a/b \ge 1$. Substituting s = t/b, we can rewrite R and z_0 as

$$R = b \left| 1 + \int_{1}^{\infty} \frac{\left[(r^{2} - 1)s^{2} - r^{2} \right] ds}{\sqrt{(s^{2} + r^{2})(s^{2} - 1)} \left(s^{2} + \sqrt{(s^{2} + r^{2})(s^{2} - 1)} \right)} \right|,$$
$$z_{0} = rb \int_{1}^{\infty} \frac{ds}{\sqrt{(s^{2} + r^{2})(s^{2} - 1)}}.$$

Thus $R' = R/2z_0$ is independent of *a* and *b*, and is a continuous function of *r* for $r \ge 1$. After a homothety, such that the surface is contained in S(-1/2, 1/2), $L_1 \subset P_{-1/2}$ and $L_2 \subset P_{1/2}$, then *R'* is one half of the horizontal distance between L_1 and L_2 . We only need to prove that $\lim_{r\to\infty} R' = \infty$. First we claim that for $r > \sqrt{2}$,

$$r \int_{1}^{\infty} \frac{dt}{\sqrt{(t^2 + r^2)(t^2 - 1)}} \le 1 + \cosh^{-1}(r).$$

In fact, for $t \ge r > \sqrt{2}$, $(r^2 - 1)t^2 - r^2 \ge 0$, and thus

$$(t^{2} + r^{2})(t^{2} - 1) = t^{4} + (r^{2} - 1)t^{2} - r^{2} \ge t^{4}.$$

We have

$$r \int_{1}^{\infty} \frac{dt}{\sqrt{(t^{2} + r^{2})(t^{2} - 1)}} = r \int_{1}^{r} \frac{dt}{\sqrt{(t^{2} + r^{2})(t^{2} - 1)}} + r \int_{r}^{\infty} \frac{dt}{\sqrt{(t^{2} + r^{2})(t^{2} - 1)}}$$
$$\leq \int_{1}^{r} \frac{dt}{\sqrt{t^{2} - 1}} + r \int_{r}^{\infty} \frac{dt}{t^{2}} = 1 + \cosh^{-1}(r).$$

The claim is true.

Next we will prove that for r large enough,

$$\left|\int_{1}^{\infty} \frac{[(r^2-1)t^2-r^2]dt}{\sqrt{(t^2+r^2)(t^2-1)}\left(t^2+\sqrt{(t^2+r^2)(t^2-1)}\right)}\right| \ge Cr,$$

for some C > 0.

In fact, for $1 < t \le r^2/\sqrt{r^2 - 1}$,

$$\frac{|(r^2-1)t^2-r^2|}{\sqrt{(t^2+r^2)(t^2-1)}\left(t^2+\sqrt{(t^2+r^2)(t^2-1)}\right)} \le \frac{r}{\sqrt{t^2-1}}$$

For $t \geq r/\sqrt{r^2-1}$,

$$\frac{(r^2-1)t^2-r^2}{\sqrt{(t^2+r^2)(t^2-1)}\left(t^2+\sqrt{(t^2+r^2)(t^2-1)}\right)} \ge 0.$$

Since $\lim_{r\to\infty} r/\sqrt{r^2-1} = 1$, when r is large enough, $r/\sqrt{r^2-1} < 2$. We have

$$\begin{split} &\int_{1}^{\infty} \frac{\left[(r^{2}-1)t^{2}-r^{2}\right]dt}{\sqrt{(t^{2}+r^{2})(t^{2}-1)}\left(t^{2}+\sqrt{(t^{2}+r^{2})(t^{2}-1)}\right)} \\ &> \int_{r/\sqrt{r^{2}-1}}^{r} \frac{\left[(r^{2}-1)t^{2}-r^{2}\right]dt}{\sqrt{2rt}\left(t^{2}+\sqrt{2}rt\right)} - \int_{1}^{r/\sqrt{r^{2}-1}} \frac{\left[(r^{2}-1)t^{2}-r^{2}\right]dt}{\sqrt{(t^{2}+r^{2})(t^{2}-1)}\left(t^{2}+\sqrt{(t^{2}+r^{2})(t^{2}-1)}\right)} \\ &> \frac{1}{\sqrt{2}r} \int_{2}^{r} \left(\frac{1}{2t} - \frac{r}{\sqrt{2}t^{2}} + \frac{r^{2}-3/2}{\sqrt{2}r+t}\right)dt - \int_{1}^{r/\sqrt{r^{2}-1}} \frac{rdt}{\sqrt{t^{2}-1}} \\ &= \frac{1}{\sqrt{2}r} \left[\frac{1}{2}\log\frac{r}{2} + \frac{r}{\sqrt{2}}\left(\frac{1}{r} - \frac{1}{2}\right) + \left(r^{2} - \frac{3}{2}\right)\log\frac{r+\sqrt{2}r}{\sqrt{2}r+2}\right] - r\cosh^{-1}\left(\frac{r}{\sqrt{r^{2}-1}}\right) \\ &= \frac{1}{\sqrt{2}} \left[\log\frac{r+\sqrt{2}r}{\sqrt{2}r+2} + \frac{1}{2r^{2}}\log\frac{r}{2} + \frac{1}{\sqrt{2}r}\left(\frac{1}{r} - \frac{1}{2}\right) \\ &- \frac{3}{2r^{2}}\log\frac{r+\sqrt{2}r}{\sqrt{2}r+2} - \sqrt{2}\cosh^{-1}\left(\frac{r}{\sqrt{r^{2}-1}}\right)\right]r. \end{split}$$

Since

$$\lim_{r \to \infty} \left[\log \frac{r + \sqrt{2}r}{\sqrt{2}r + 2} + \frac{1}{2r^2} \log \frac{r}{2} + \frac{1}{\sqrt{2}r} \left(\frac{1}{r} - \frac{1}{2} \right) - \frac{3}{2r^2} \log \frac{r + \sqrt{2}r}{\sqrt{2}r + 2} - \sqrt{2} \cosh^{-1} \left(\frac{r}{\sqrt{r^2 - 1}} \right) \right]$$
$$= \log \frac{1 + \sqrt{2}}{\sqrt{2}},$$

for r large enough, we can take $C = \frac{1}{4} \log[(1 + \sqrt{2})/\sqrt{2}]$. Thus we have

$$\lim_{r \to \infty} R' = \lim_{r \to \infty} \frac{R}{2z_0}$$

=
$$\lim_{r \to \infty} \frac{\left|1 + \int_1^\infty ((r^2 - 1)t^2 - r^2) dt / \left(\sqrt{(t^2 + r^2)(t^2 - 1)} \left(t^2 + \sqrt{(t^2 + r^2)(t^2 - 1)}\right)\right)\right|}{2r \int_1^\infty dt / \sqrt{(t^2 + r^2)(t^2 - 1)}}$$

$$\geq \lim_{r \to \infty} \frac{Cr - 1}{2(1 + \cosh^{-1} r)} = \infty.$$

To be able to apply Theorem A, we need to know the stability of a basic piece \mathscr{R} of a Riemann's example. First note that $K(\mathscr{R}) = \mathscr{R}$, see for example, [7, p. 88, formula (55)]. In [4], the examples of Riemann are described in terms of their Enneper-Weierstrass Representation data g and η , where g is a meromorphic function and η is a meromorphic 1-form. Let N be the unit normal vector of the surface, and τ be the stereographic projection $S^2 - \{(0, 0, 1)\} \rightarrow \mathbb{C}$. It is well known that $g = \tau \circ N$. Either g or N will be called the Gauss map.

Let $\lambda \ge 1$ and *L* be the lattice in \mathbb{C} generated by $\{\lambda, i\}$. On the rectangular torus $T_{\lambda} = \mathbb{C}/L$, consider the elliptic function *P* which has a double pole at 0, a double zero at $\omega_2 = (\lambda + i)/2$ and no other zeros or poles. The Weierstrass \wp -function \wp has the property that $\wp - \wp(\omega_2)$ has exactly the same poles and zeros as *P*. To get a Riemann's example, take

$$g = P = \wp - \wp(\omega_2), \qquad \eta = i dz/P.$$

It can be easily checked that P has the property that $P(\omega_2/2) = i$, and P is real precisely on the lines

$$\text{Re}(z) = 0$$
, $\text{Re}(z) = \lambda/2$, $\text{Im}(z) = 0$ and $\text{Im}(z) = 1/2$.

By reflection, we have

$$P(x+iy) = \overline{P(\lambda - x, iy)}, \qquad P(x+iy) = \overline{P(x, i(1-y))},$$

and hence

(4)
$$P(\lambda - x, iy) = P(x, i(1 - y)).$$

A basic piece \mathscr{R} of a Riemann's example corresponds to the punctured rectangular $\{z = x + iy \mid 0 \le x < \lambda, 0 \le y \le 1/2\} - \{0, \omega_2\}$. Since deg $\wp = 2$, by (4) we know that the Gauss map N of \mathscr{R} maps onto $S^2 - \{(0, 0, 1), (0, 0, -1)\}$ and is one-to-one in int(\mathscr{R}).

LEMMA 6. Let $\mathscr{R} \subset S(-1/2, 1/2)$ be a basic piece of a Riemann's example, then for small $\epsilon > 0$, $\mathscr{R} \cap S(-1/2 + \epsilon, 1/2 - \epsilon)$ is unstable.

However, $\mathscr{R} \cap S(0, 1/2 - \epsilon)$ is stable for any $0 < \epsilon < 1/2$, and by symmetry, so is $\mathscr{R} \cap S(-1/2 + \epsilon, 0)$.

PROOF. Let g be the Gauss map of \mathscr{R} , we know that the image of N on \mathscr{R} is $D := S^2 - \{(0, 0, 1), (0, 0, -1)\}$, and N is one-to-one in $int(\mathscr{R})$. Let Δ be the Laplace operator on S^2 . Let U and V be open disks such that $(0, 0, 1) \in U$ and $(0, 0, -1) \in V$ and $U \cap V = \emptyset$. It is well known that the first eigenvalue λ_1 of Δ on $S^2 - (U \cup V)$ is near zero if U and V are sufficiently small.

For $\epsilon > 0$ small enough, $N(\mathscr{R} \cap S(-1/2 + \epsilon, 1/2 - \epsilon) \supset S^2 - (U \cup V)$ for some small disks U and V, hence

$$\lambda_1(N(\mathscr{R} \cap S(-1/2 + \epsilon, 1/2 - \epsilon)) < 2.$$

Thus by a classical result, which says that if the first eigenvalue of the one-to-one image of the Gauss map of a piece of minimal surface is less than 2, then the piece of minimal surface is unstable, see, for example, [8, p. 215, Theorem 8.2]. Hence $S(-1/2 + \epsilon, 1/2 - \epsilon) \cap \mathcal{R}$ is unstable.

On the other hand, by a theorem of Barbosa and Do Carmo [1], or [8, p. 216, Corollary 8.5], a minimal surface M is stable if $\iint_M |K| dA < 2\pi$. Since N is one-to-one in int(\mathscr{R}) and $N(\mathscr{R}) = S^2 - \{(0, 0, 1), (0, 0, -1)\}, \iint_{\mathscr{R}} |K| dA = 4\pi$. Thus for any $0 < \epsilon < 1/2$, $\iint_{\mathscr{R} \cap S(-1/2+\epsilon, 1/2-\epsilon)} |K| dA < 4\pi$. By the symmetry

$$\mathscr{R} \cap S(-1/2 + \epsilon, 1/2 - \epsilon) = \mathscr{R} \cap S(-1/2 + \epsilon, 0) \cup K(\mathscr{R} \cap S(-1/2 + \epsilon, 0)),$$

it follows that

$$\iint_{\mathscr{R}\cap S(0,1/2-\epsilon)} |K| dA = \frac{1}{2} \iint_{\mathscr{R}\cap S(-1/2+\epsilon,1/2-\epsilon)} |K| dA < 2\pi,$$

and hence $\mathscr{R} \cap S(0, 1/2 - \epsilon)$ is stable.

Let r' > r > 0, where r is the number used in the definition of X, and $X' = \{(x, y, -1/2) | x \ge -r'\} \supset X$. Let \mathscr{R} be a basic piece of a Riemann's example whose boundary $\partial \mathscr{R} = \partial X' \cup K(\partial X')$. Let $D_{\mathscr{R}}$ be the open plane disk such that $\partial D_{\mathscr{R}} = P_0 \cap \mathscr{R}$. Note that $\partial D_{\mathscr{R}}$ is a circle centered at (0, 0). Let A be the minimal annulus which has been studied through Lemmas 1-4. Let D_A be the closed plane disk such that $\partial D_A = A \cap P_0$.

LEMMA 7. $P_0 \cap A \not\subset D_{\mathscr{R}}$; in particular, $D_A \not\subset D_{\mathscr{R}}$.

PROOF. Let D_t be the disk bounded by the circle $P_t \cap \mathscr{R}$. Since $\partial A \subset \overline{X} \cup K(\overline{X}) \subset X' \cup K(X')$ is compact, there is a 0 < d < 1/2 such that whenever $0 < \epsilon < d$, $A \cap P_{1/2-\epsilon} \subset D_{1/2-\epsilon}$, and $A \cap P_{-1/2+\epsilon} \subset D_{-1/2+\epsilon}$. If $A \cap P_0 \subset D_{\mathscr{R}}$, then by Theorem A and the fact that $S(0, 1/2 - \epsilon) \cap \mathscr{R}$ is stable, $A \cap S(0, 1/2 - \epsilon) \cap \mathscr{R} = \emptyset$. Similarly, $\mathscr{R} \cap A \cap S(-1/2 + \epsilon, 0) = \emptyset$. Thus $A \cap \mathscr{R} \cap S(-1/2 + \epsilon, 1/2 - \epsilon) = \emptyset$. However, since $\mathscr{R} \cap S(-1/2 + \epsilon, 1/2 - \epsilon)$ is unstable for small ϵ , by Theorem A, $A \cap \mathscr{R} \cap S(-1/2 + \epsilon, 1/2 - \epsilon) \neq \emptyset$. This contradiction proves the lemma.

Let $B_n \subset S(-1/2, 1/2)$ be a sequence of non-planar compact minimal annuli. Suppose that $K(B_n) = B_n$, $R(B_n) = B_n$, and $\partial B_n \subset \overline{X} \cup K(\overline{X}) \subset X' \cup K(X')$ is a pair of convex Jordan curves. If B_n converges to a minimal surface, we want to know the limit behaviour of $U_n := B_n \cap P_0$. By Lemma 7, the limit cannot shrink to a point inside $D_{\mathscr{R}}$. Since each U_n is a strictly convex Jordan curve and invariant under K and R, the limit is either a convex Jordan curve or a segment on the x or y-axis.

LEMMA 8. U_n cannot converge to a segment on the y-axis.

PROOF. Let d be the radius of the circle $P_0 \cap \mathscr{R}$. If U_n converges to a segment on the y-axis, by Lemma 4 the limit is a finite segment of length $2d' < \infty$, and $d' \ge d > 0$ by Lemma 7. Let p_n be one of the two fixed points of K on B_n which lies in the half space $H = \{(x, y, z) | y \ge 0\}$. A theorem of Meeks and White says that the Gauss map of B_n is one-to-one and $\iint_{B_n} |K| dA < 4\pi$, see [6, Lemma 2.2]. Since $B_n = (B_n \cap H) \cup R(B_n \cap H)$,

(5)
$$\int\!\!\!\int_{B_n\cap H} |K| dA = \frac{1}{2} \int\!\!\!\int_{B_n} |K| dA < 2\pi.$$

Hence $B_n \cap H$ is a stable minimal disk by a theorem of Barbosa and Do Carmo.

For *n* large enough, $p_n = (0, d_n, 0)$ with $d_n \ge d/2$. Since U_n is invariant under *K* and converges to a finite line segment on the *y*-axis, the plane curvature of U_n at p_n , $k(p_n)$, would go to infinity as $n \to \infty$. In fact, let u_n be the function that defines the minimal graph $B_n \cap H$ in Lemma 4, then $d_n = u_n(0, 0)$ and by symmetry,

[12]

 $\partial u_n/\partial x(0,0) = 0$. Thus if U_n converges to a line segment on the y-axis, then $u_n(0,0) \rightarrow d' \geq d > 0$. Since U_n is strictly convex and $R(U_n) = U_n$, for n large enough, there is a unique $x_n > 0$ such that $u_n(x_n, 0) = d'/2$, and

$$\frac{d'}{2} = u_n(x_n, 0) = u_n(0, 0) + \frac{1}{2}x_n^2 \frac{\partial^2 u_n}{\partial x^2}(0, 0) + o(x_n^2).$$

Since U_n converges to a line segment, $x_n \rightarrow 0$, it follows that

$$\left|\frac{1}{2}x_n^2\frac{\partial^2 u_n}{\partial x^2}(0,0)\right| \ge \frac{d'}{3}.$$

Again $x_n \to 0$ forces that $|\partial^2 u_n / \partial x^2(0, 0)| \to \infty$ as $n \to \infty$.

Since p_n is the only fixed point of $B_n \cap H$ under K, $k(p_n)$ is a principal curvature of B_n at p_n . Thus the Gauss curvature of B_n at p_n is $K(p_n) = -k^2(p_n)$. It would be

(6)
$$\lim_{n\to\infty}|K(p_n)|=\infty.$$

We have the Euclidean distance dist $(p_n, \partial(B_n \cap H)) \ge d'' := \min\{d/2, 1/2\}$. We claim that the geodesic ball of $B_n \cap H$ centered at p_n has radius $r_n \ge d''$. If not, then $r_n < d''$. Since there are no conjugate points on a minimal surface, there is then an interior point q_n for which there are two length minimizing geodesics connecting p_n and q_n . Thus there is a loop γ_n such that $\gamma_n \cap \partial(B_n \cap H) = \emptyset$, $\gamma_n(0) = \gamma_n(1) = p_n$, $\gamma_n(1/2) = q_n$ and γ_n is a geodesic on (0, 1/2) and (1/2, 1). Let θ_1 and θ_2 be the exterior angles of γ_n at p_n and $q_n, -\pi < \theta_j < \pi$, j = 1, 2. Since $B_n \cap H$ is simply connected, γ_n bounds a disk $D_n \subset B_n \cap H$. By the Gauss-Bonnet Formula we have $\iint_{D_n} K dA + \theta_1 + \theta_2 = 2\pi$. Since $\iint_{D_n} K dA < 0$, we would have $\theta_1 + \theta_2 > 2\pi$, which is impossible. Hence we have proved that $r_n \ge d''$.

Since $B_n \cap H$ is a stable embedded minimal surface, by an estimate of Schoen, see [10], there is a constant c > 0 such that

$$|K(p_n)| \le cr_n^{-2} \le cd^{\prime\prime-2},$$

contradicting (6). This contradiction proves the lemma.

3. The proof of Theorem B

We break the proof into several steps. In the following, we will not distinguish a sequence and its subsequence in notation.

Step 1: To establish two sequences of approximate minimal annuli.

Let $D_n \subset D_{n+1} \subset \overline{X}$ be open disks bounded by smooth convex Jordan curves $C_n \subset \overline{X}$, $R(C_n) = C_n$, and $\lim_{n\to\infty} D_n = X$. We can arrange that for each positive

integer *M*, there is a positive integer N(M) such that $X \cap \{x \le M\} = D_n \cap \{x \le M\}$ whenever $n \ge N(M)$.

Since there is a nonplanar compact minimal annulus A' such that $\partial A' \subset X \cup K(X)$, we can assume that $\partial A' \subset D_n \cup K(D_n)$. By Theorem A, there are exactly two nonplanar compact minimal annuli A_n and B_n in S(-1/2, 1/2), such that $\partial A_n = \partial B_n = C_n \cup K(C_n)$. A_n is stable, B_n is unstable.

Step 2: To prove that there is a convergent subsequence of $\{A_n\}$ (resp. $\{B_n\}$).

The proof is the same for A_n and B_n .

Let $H = \{(x, y, z) \mid y \ge 0\}$, $H_n = A_n \cap H$ and let S(s) be the slab $S(s) = \{(x, y, z) \mid -s \le x \le s\}$. By Lemma 1, the intersection of A_n and the xz-plane P consists of two graphs $\sigma_{n1} = \{(x, 0, z) \mid x = f_{n1}(z), -1/2 \le z \le 1/2\}$ and $\sigma_{n2} = \{(x, 0, z) \mid x = f_{n2}(z), -1/2 \le z \le 1/2\}$. By Lemma 3, H_n is a minimal graph over a domain Ω_n contained in P, where Ω_n is defined by

$$\Omega_n = \{ (x, 0, z) \mid f_{n1}(z) < x < f_{n2}(z), \quad -1/2 < z < 1/2 \}.$$

For s > r, $H_n \cap S(s)$ is topologically a disk and $\partial(H_n \cap S(s))$ is a piecewise smooth Jordan curve. Let $D := \{z \in \mathbb{C} \mid |z| < 1\}$ and let $X_n : D \to \mathbb{R}^3$ be the conformal embedding of $H_n \cap S(s)$. Since for *n* large enough, $C_n \cap S(s) = \partial X \cap S(s)$, we can arrange that each X_n maps three fixed points on ∂D to three fixed points on the arc $\partial X \cap S(s) \cap H$.

Let $l_n(s)$ be the arc length of $\partial(H_n \cap S(s))$. By Lemma 4, $l_n(s)$ is uniformly bounded by 2(2 + 4s + 3h(s)). By the isoperimetric inequality for minimal disks, see [7, p. 280], Area $(H_n \cap S(s)) \leq (l_n(s))^2/4\pi$. Since X_n is conformal, the X_n have uniformly bounded Dirichlet's integral. By the Courant-Lebesgue Lemma, the X_n are equicontinuous on ∂D , and hence on passing to a subsequence if necessary, $H_n \cap S(s)$ uniformly converges to a minimal surface $\mathcal{D}(s) \subset S(-1/2, 1/2) \cap S(s)$ parametrized by $Y_s = \lim_{n \to \infty} X_n : D \to \mathbb{R}^3$, $\mathcal{D}(s) = Y_s(D)$.

By a diagonal argument, in any compact subset of S(-1/2, 1/2), H_n uniformly converges to a minimal surface $\mathcal{D}, \mathcal{D}(s) = \mathcal{D} \cap S(s)$. Since for each -1/2 < t < 1/2, $H_n \cap P_t$ is strictly convex, $\mathcal{D} \cap P_t$ is convex. Remember that $\sigma_{n1} \cup K(\sigma_{n1}) = H_n \cap P$ in Lemma 1.

$$\sigma_{n1} = \{ (x, 0, z) \mid x = f_{n1}(z) < 0 \}.$$

For *n* large, by our construction of C_n , $f_{n1}(-1/2) = -r$. Since σ_{n1} is convex, $|f_{n1}(z_1)| \leq \max\{r, |f_{n1}(z_2)|\}$ for $-1/2 \leq z_1 \leq z_2 \leq 1/2$. It follows that if $\lim_{n\to\infty} f_{n1}(z_2)$ exists and is finite, then $f_1(z) := \lim_{n\to\infty} f_{n1}(z)$ exists and is finite for $-1/2 \leq z \leq z_2$. Thus there is a d, $-1/2 \leq d \leq 1/2$, such that

$$\sigma_1 := \{ (x, 0, z) \mid x = f_1(z) \quad -1/2 \le z < d \}$$

is a well defined graph over I = [-1/2, d). Note that it may be the case that d = -1/2.

Now let $\Omega \subset P \cap S(-1/2, 1/2)$ be such that $\partial \Omega = \sigma_1 \cup K(\sigma_1) \cup L_1 \cup L_2$, where $L_1 = \{(x, 0, -1/2) | x \ge -r\}$ and $L_2 = K(L_1)$. If d = -1/2, then $\Omega = int(P \cap S(-1/2, 1/2))$. By Lemmas 1 and 2, if $(0, 0, 0) \notin \sigma_1$, then Ω is a domain, that is, an open connected set.

Suppose d > -1/2. Since $\lim_{\sigma_{n1}} = \sigma_1$, $\Omega = \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \Omega_n$. Since $\overline{\Omega_n}$ is the orthogonal projection of H_n , $\overline{\Omega}$ is the orthogonal projection of \mathscr{D} . Taking any $(x, y, z) \in \mathscr{D}$, we have $(x, 0, z) \in \overline{\Omega}$. Suppose that $(x, 0, z) \in \operatorname{int}(\Omega)$. Let s > $\max\{|x|, r\}$. Since $\sigma_{n1} \cap S(s)$ uniformly converges to $\sigma_1 \cap S(s)$, there is an m > 0 such that there is an open ball U such that $(x, 0, z) \in U \subset \bigcap_{n \ge m} \Omega_n$. Since H_n converges to \mathscr{D} , u_n converges to a function u on U and hence $\mathscr{D} \cap \{(x, y, z) \mid (x, 0, z) \in U\}$ is a minimal graph. In particular, (x, y, z) = (x, u(x, z), z) is an interior point of \mathscr{D} . By the maximum principle, y = u(x, z) > 0. This also proves that $\sigma_1 \cup K(\sigma_1) =$ $\mathscr{D} \cap P = \partial \mathscr{D} \cap P$.

Thus if we can prove that $(0, 0, 0) \notin \sigma_1$, then Ω is open and \mathcal{D} is a minimal graph hence is embedded.

We now consider the surface $\mathscr{D} \cup R(\mathscr{D})$. If d = -1/2, then $\mathscr{D} \cup R(\mathscr{D})$ is a minimal surface. If d > -1/2, then *I* is an interval. By continuity of \mathscr{D} , for any closed subinterval $J \subset I$ and $z_0 \in J$, there is a $\delta(z_0) > 0$ such that the orthogonal projection of the convex curve $\mathscr{D} \cap P_z$ on the *y*-axis contains an interval $[0, \delta(z_0)]$ for $z \in (z_0 - \delta(z_0), z_0 + \delta(z_0)) \subset I$. Thus the orthogonal projection of $\mathscr{D} \cap (\bigcup_{z \in J} P_z)$ on the *yz*-plane contains a domain *D'* such that $\partial D' \cap P \supset J$. Since H_n uniformly converges to \mathscr{D} , for large *n*, the orthogonal projection of H_n on the *yz*-plane contains a common domain $D'' \subset D'$ such that $\partial D'' \cap P \supset J$. Now since $A_n \cap P_z$ is strictly convex for $z \in J$, a component of A_n containing $\sigma_{n1} \cap (\bigcup_{z \in J} P_z)$ is a minimal graph over $D'' \cup R(D'')$. Let v_n be the function that defines this graph. We have $0 > v_n(y, z) \ge f_{n1}(z) = v_n(0, z)$ since $(f_{n1}, 0, z)$ is the extreme point of $A_n \cap P_z$ in $\{x < 0\}$. Thus on $D'' \cup R(D'')$, v_n converges. This proves that $\mathscr{D} \cup R(\mathscr{D})$ is a minimal surface if $\sigma_1 \cap K(\sigma_1) = \emptyset$.

Thus in the case that d = -1/2 or that d > -1/2 and $\sigma_1 \cap K(\sigma_1) = \emptyset$, $\mathcal{D} \cup R(\mathcal{D})$ is a minimal surface.

We denote $\mathscr{D} \cup R(\mathscr{D})$ by \mathscr{A} (resp. \mathscr{B}). We need to prove that σ_1 is a graph defined on $-1/2 \leq z < 1/2$. We first analyse $\mathscr{D} \cap P_0$. Note that so far we cannot say that $\mathscr{D} \cap P \cap P_0 \neq \emptyset$.

Step 3: To prove that $\mathscr{A} \cap P_0$ (resp. $\mathscr{B} \cap P_0$) is a convex Jordan curve.

First we claim that $\mathscr{D} \cap P \cap P_0 \neq \emptyset$. Let $(-a_n, 0, 0)$ and $(a_n, 0, 0)$ be the two extreme points of $A_n \cap P_0$ (resp. $B_n \cap P_0$). Let $(0, p_n, 0)$ be the middle point of $H_n \cap P_0$. By Lemma 4, $p_n \leq h(0)$, and thus $0 \leq p := \lim_{n \to \infty} p_n$ exists. In particular, $\mathscr{D} \cap P_0 \neq \emptyset$. If $\mathscr{D} \cap P \cap P_0 = \emptyset$, then p > 0 and $\lim_{n \to \infty} a_n = \infty$. By Step 2 and Lemma 2, $u_n(x, 0) \to u(x, 0)$ for $-\infty < x < \infty$. Thus $\mathscr{D} \cap P_0$ is a smooth convex graph (x, u(x, z), z). Because $K(\mathscr{D} \cap P_0) = \mathscr{D} \cap P_0$, $u(x, 0) \leq p$ and $\partial u/\partial x(0, 0) = 0$, $\partial^2 u / \partial x^2(x, 0) \ge 0$. It follows that $\mathcal{D} \cap P_0$ is the straight line $\{y = p\} \cap \{z = 0\}$. It is well known that this would imply that \mathcal{D} is invariant under a rotation of angle π about the straight line $\mathcal{D} \cap P_0$, but it is impossible since the boundary of \mathcal{D} is not symmetric with respect to this kind of rotation. Hence we have proved the claim.

We know that $H_n \cap P_0$ is strictly convex and $K(H_n \cap P_0) = H_n \cap P_0$, hence $H_n \cap P_0 \subset P_0 \cap \{0 \le y \le p_n\}$. Thus $\mathcal{D} \cap P_0 \subset P_0 \cap \{0 \le y \le p\}$. If p = 0, then by Step 2, $(0, 0, 0) \in \partial\Omega$, and thus $(0, 0, 0) \in \sigma_1 \cap K(\sigma_1)$, $\mathcal{D} \cap P_0 = \{(0, 0, 0)\}$.

Hence $\mathscr{A} \cap P_0$ (resp. $\mathscr{B} \cap P_0$) must be either a convex curve, or a line segment on the y-axis, or the point (0, 0, 0).

Let V_n be the compact solid bounded by $A_n \cup D_n \cup K(D_n)$. Since $A' \cap P_0 \subset V_n$, we know that $\mathscr{A} \cap P_0$ must be a convex Jordan curve.

By Lemma 5, 7, and 8, $\mathscr{B} \cap P_0$ can neither be a segment on the y-axis, nor be the point (0, 0, 0). Hence $\mathscr{B} \cap P_0$ must be a convex Jordan curve.

Since $\mathscr{A} \cap P_0$ (resp. \mathscr{B}) is a convex curve, by Lemma 2, $\sigma_1 \cap K(\sigma_1) = \emptyset$ and Ω is open. Thus as pointed out in Step 2, \mathscr{A} (resp. \mathscr{B}) is an embedded minimal surface. In Steps 4 to 6, the proofs for \mathscr{A} and \mathscr{B} are the same.

Step 4: To prove that there is an $\epsilon > 0$, such that $\mathscr{A} \cap P_t$ (resp. $\mathscr{B} \cap P_t$) is a convex Jordan curve for $-\epsilon \le t \le \epsilon$.

Let (-a, 0, 0) and (a, 0, 0), a > 0, be the two extreme points of $\mathscr{A} \cap P_0$. Then the number *d* defined in Step 2 must be greater than or equal to 0. Let $s > \max\{a, r\}$, where *r* is the number that defines the domain *X*. Consider the strictly convex boundary curve $\sigma_{n1}(s) \subset \partial(\Omega_n \cap S(s))$ in Lemma 1,

$$\sigma_{n1}(s) = \{(x, 0, z) \mid x = f_{n1}(z), -1/2 \le z \le 1/2, -s \le x < 0\}.$$

We denote $(f_{n1}(-1/2), 0, -1/2), (f_{n1}(0), 0, 0)$, and $(-s, 0, f_{n1}^{-1}(-s))$ by $q_n(1), q_n(2)$, and $q_n(3)$. Note that for x > r, $f_{n1}^{-1}(-x)$ is well defined. Since $s > \max\{r, a\}$ and $-1/2 < f_{n1}^{-1}(-s) < 1/2$, we may assume that $\epsilon(s) = \lim_{n \to \infty} f_{n1}^{-1}(-s)$ exists. Thus f_1 is defined at $z = \epsilon(s)$ and $f_1(\epsilon(s)) = -s < -a = f_1(0)$. Now since σ_{n1} is convex, $|f_{n1}(z)| \le \max\{r, |f_{n1}(0)|\}$ for $-1/2 \le z \le 0$. Were $\epsilon(s) \in [-1/2, 0]$, then $|f_1(\epsilon(s))| \le \max\{r, a\}$. Since $f_1(\epsilon(s)) = -s, \epsilon(s) > 0$. Thus $d \ge \epsilon(s) > 0$. Select $0 < \epsilon < d$, then it follows that $\mathscr{A} \cap P \cap \{-\epsilon \le z \le \epsilon\} = (\sigma_1 \cup K(\sigma_1)) \cap \{-\epsilon \le z \le \epsilon\}$. This implies that the convex curve $\mathscr{D} \cap P_z$ has two extreme points $(f_1(z), 0, z)$ and $(-f_1(-z), 0, z)$, for $-\epsilon(s) \le z \le \epsilon(s)$. Thus $\mathscr{A} \cap P_z$ is a convex Jordan curve for $-\epsilon(s) \le z \le \epsilon(s)$.

One way to prove that $\mathscr{A} \cap P_t$ (resp. $\mathscr{B} \cap P_t$) is a convex Jordan curve for -1/2 < t < 1/2 is to prove that d = 1/2 or $\lim_{s\to\infty} \epsilon(s) = 1/2$. It requires a detailed study of the behaviours of the functions f_{n1} . Instead of doing that, we argue in an indirect manner. The benefit of our argument is that we can get an Enneper-Weierstrass representation of \mathscr{A} and \mathscr{B} .

Step 5: To prove that the Gauss map $N : \mathscr{A} \to S^2$ (resp. $N : \mathscr{B} \to S^2$) is not vertical along $\mathscr{A} \cap S(-\epsilon/2, \epsilon/2)$ (resp. $\mathscr{B} \cap S(-\epsilon/2, \epsilon/2)$).

Since the compact minimal annulus $\mathscr{A} \cap S(-\epsilon/2, \epsilon/2)$ is contained in the interior of \mathscr{A} , N is well defined. By Shiffman's first theorem N is not vertical on $\mathscr{A} \cap S(-\epsilon/2, \epsilon/2)$.

Step 6: To prove that $\mathscr{A} \cap P_t$ (resp. $\mathscr{B} \cap P_t$) is a convex Jordan curve, for -1/2 < t < 1/2.

Each A_n (resp. B_n) is an annulus with one-dimensional boundary, hence there is a unique R_n , $1 < R_n < \infty$, such that A_n is conformally equivalent to the annulus $A(R_n) = \{z \in \mathbb{C} \mid 1/R_n < |z| < R_n\}$. Let $X_n : A(R_n) \to \mathbb{R}^3$ be the conformal embedding of A_n . The third coordinate function X_{n3} is harmonic and maps $|z| = 1/R_n$ and $|z| = R_n$ to -1/2 and 1/2 respectively. Thus it must be the case that

(7)
$$X_{n3}(z) = \frac{1}{2\log(R_n)}\log(|z|).$$

Let g_n be the Gauss map of the embedding X_n . It is a holomorphic map and $g_n = \tau \circ N_n \circ X_n$, where τ is the stereographic projection and $N_n : A_n \to S^2$ is the Gauss map of A_n .

By the Enneper-Weierstrass representation,

(8)
$$X_n(z) = \operatorname{Re} \int_1^z \left(\frac{1}{2} (1 - g_n^2) \eta_n, \ \frac{i}{2} (1 + g_n^2) \eta_n, \ g_n \eta_n \right) + V_n$$

where η_n is a holomorphic 1-form and V_n is a constant vector in P_0 . Comparing (7) with (8), we have $\eta_n = dz/(2\log(R_n)zg_n)$. The metric of A_n (resp. B_n) is given by

$$ds_n = \frac{1}{2}(1+|g_n|^2)|\eta_n| = \left(\frac{1}{|g_n|}+|g_n|\right)\frac{|dz|}{4\log(R_n)|z|},$$

see, for example, [7, p. 147].

Since $N_n \to N$ on $A_n \cap S(-\epsilon/2, \epsilon/2)$ uniformly as $n \to \infty$, by Step 5 we know that there is a B > 0, such that for *n* large enough,

(9)
$$\frac{1}{B} < |g_n(z)| < B, \qquad R_n^{-\epsilon} \le |z| \le R_n^{\epsilon}.$$

Let $L_n(t)$ be the arc length of $A_n \cap P_t$. By a theorem of Osserman and Schiffer [9], L_n satisfies $L''_n(t) > 0$, for -1/2 < t < 1/2. (Note that what Osserman and Schiffer proved in Lemma 1 of [9] is that $d^2L_n/d(\log r)^2 > 0$, r = |z|. In our case, $t = \log r/2 \log R_n$.) Since A_n is invariant under K, we have $L_n(t) = L_n(-t)$. Thus $L'_n(t) = -L'_n(-t)$, and in particular $L'_n(0) = 0$. Hence $L_n(0)$ is the only minimum value of L_n , and L_n is strictly increasing for 0 < t < 1/2 and strictly decreasing for -1/2 < t < 0. If $\mathscr{A} \cap P_t$ is not compact, then $\lim_{n\to\infty} L_n(t) = \infty$. For any |t| < |s| < 1/2, $\lim_{n\to\infty} L_n(s) \ge \lim_{n\to\infty} L_n(t) = \infty$ implies that $\mathscr{A} \cap P_s$ is not compact. Hence to prove that $\mathscr{A} \cap P_t$ is a Jordan curve for -1/2 < t < 1/2, it is enough to prove that there is a sequence $0 < t_j \uparrow 1/2$ and M(j) > 0 such that for each sequence $\{L_n(t_j)\}$ there is a subsequence $\{L_m(t_j)\} \subset \{L_n(t_j)\}$ such that $L_m(t_j) \le M(j)$.

Since $\mathscr{A} \cap P_0$ is a convex Jordan curve, we know that $\lim_{n\to\infty} L_n(0) = L(0) > 0$, where L(0) is the arc length of $\mathscr{A} \cap P_0$. Let C'' be the curve $\{|z| = 1\}$ in $A(R_n)$,

$$L_n(0) = \frac{1}{4\log(R_n)} \int_{C''} \left(\frac{1}{|g_n(z)|} + |g_n(z)| \right) |dz|.$$

Because of (9) we have

$$\frac{2\pi}{4L_n(0)}\frac{2}{B} \leq \log(R_n) = \frac{1}{4L_n(0)}\int_{C''}\left(\frac{1}{|g_n(z)|} + |g_n(z)|\right)|dz| \leq \frac{2\pi}{4L_n(0)}2B,$$

for *n* large enough. Hence there is a subsequence of $\{R_n\}$ and $1 < R < \infty$, such that $\lim_{n\to\infty} R_n = R$.

Let $A(R) = \lim_{n\to\infty} A(R_n)$ be the limit annulus in \mathbb{C} . Since the Gauss map g_n is one-to-one from $A(R_n)$ to $\mathbb{C} - \{0\}$, see [6, Lemma 2.2], $g_n(C'')$ is a Jordan curve in $\mathbb{C} - \{0\}$. By (9) and the one-to-one property of g_n , a subsequence of $\{|g_n|\}$ is uniformly bounded on either $\{1/R_n < |z| \le R_n^{\epsilon}\}$ or $\{R_n^{-\epsilon} \le |z| < R_n\}$, say on the latter. Any compact sub-annulus A'' in $\{R^{-\epsilon/2} \le |z| < R\}$ is eventually contained in $A(R_n)$. Since the g_n 's are uniformly bounded on A'', there is a subsequence of $\{g_n\}$ converging to a holomorphic function g on A''. Thus we may assume that g_n converges to g uniformly on compact sets of $\{R^{-\epsilon/2} < |z| < R\}$. Again by (9), $|g_n| > 1/B$ on $C'' \subset \{R^{-\epsilon/2} < |z| < R\}$. Hence there are sequences $r_j \uparrow R$, $\epsilon_j \downarrow 0$, $r_j + \epsilon_j < R$, such that on the compact annuli $A(j) = \{z \mid r_j - \epsilon_j \le |z| \le r_j + \epsilon_j\}$, g satisfies $0 < d_j \le |g| \le D_j$. For large n, $A(j) \cap A(R_n) = A(j)$, and g_n uniformly converges to g on A(j). Thus for large n, on A(j) we have $d_j/2 \le |g_n| \le 2D_j$, and

$$ds_n = \left(\frac{1}{|g_n|} + |g_n|\right) \frac{|dz|}{4|z|\log(R_n)} \le \left(\frac{1}{d_j} + D_j\right) \frac{|dz|}{R\log(R)} := \frac{M(j)}{R} |dz|.$$

Let $t_j = \log(r_j)/2\log(R)$, then

$$t_j = \lim_{n \to \infty} \frac{\log(r_j)}{2\log(R_n)}.$$

Choose s_n such that $\{|z| = s_n\} \subset A(j)$ and $t_j = \log(s_n)/2\log(R_n)$.

$$L_n(t_j) = \int_{|z|=s_n} ds_n \leq \int_0^{2\pi} M(j)d\theta = 2\pi M(j).$$

We have proved that $\mathscr{A} \cap P_t$ is a Jordan curve for -1/2 < t < 1/2. It follows that \mathscr{A} is an embedded minimal annulus.

By symmetry we know that g_n converges to g uniformly on compact sets of A(R), thus the Enneper-Weierstrass representation of \mathscr{A} is

$$X(z) = \frac{1}{2\log R} \operatorname{Re} \int_{1}^{z} \left(\frac{1}{2} \left(1 - g^{2} \right)(\zeta), \frac{i}{2}, \left(1 + g^{2} \right)(\zeta), g(\zeta) \right) \frac{d\zeta}{\zeta g(\zeta)} + V, \ \frac{1}{R} < |z| < R.$$

Step 7: To prove the remaining claims in Theorem B.

For any $0 < \delta < 1/2$, since $\mathscr{A} \cap P_{1/2-\delta}$ and $\mathscr{A} \cap P_{-1/2+\delta}$ (resp. $\mathscr{B} \cap P_{1/2-\delta}$ and $\mathscr{B} \cap P_{-1/2+\delta}$) are convex, by Shiffman's first theorem, $\mathscr{A} \cap P_t$ (resp. $\mathscr{B} \cap P_t$) is strictly convex for $-1/2 + \delta < t < 1/2 - \delta$. Let δ go to zero, then $\mathscr{A} \cap P_t$ (resp. $\mathscr{B} \cap P_t$) is strictly convex for $-1/2 + \delta < t < 1/2$.

Let N be any connected non-planar compact branched minimal surface such that $\partial N \subset \overline{X} \cup K(\overline{X})$. If $N \cap \mathscr{B} = \emptyset$, then since N is compact and \mathscr{B} is closed in \mathbb{R}^3 , $\operatorname{dist}(N, \mathscr{B}) > 0$, which contradicts the facts that $N \cap B_n \neq \emptyset$ and $\mathscr{B} = \lim_{n \to \infty} B_n$. Thus it must be the case that $\mathscr{B} \cap N \neq \emptyset$. In particular, if $A' \subset X \cup K(X)$, then $\operatorname{int}(\mathscr{B}) \cap \operatorname{int}(A') \neq \emptyset$ since $\partial A' \cap \partial \mathscr{B} = \emptyset$.

Let V_n be the solid bounded by $A_n \cup D_n \cup K(D_n)$ and V be the solid bounded by $\mathscr{A} \cup \overline{X} \cup K(\overline{X})$. Then $B_n \subset V_n \subset V$ and hence $\mathscr{B} = \lim B_n \subset V$. By the comparison principle, $\mathscr{A} = \mathscr{B}$ or $\operatorname{int}(\mathscr{A}) \cap \operatorname{int}(\mathscr{B}) = \emptyset$. By the same argument we see that $\operatorname{int}(N) \cap \operatorname{int}(\mathscr{A}) = \emptyset$, for any connected nonplanar compact branched minimal surface N such that $\partial N \subset \overline{X} \cup K(\overline{X})$. In particular, $\operatorname{int}(\mathscr{A}) \cap \operatorname{int}(\mathscr{A}) = \emptyset$ and hence if $A' \subset X \cup K(X)$ then $\mathscr{A} \neq \mathscr{B}$ and $\operatorname{int}(\mathscr{A}) \cap \operatorname{int}(\mathscr{B}) = \emptyset$.

The proof of Theorem B is complete.

REMARK 2. By Theorem A and the proof of Theorem B, we see that if merely $\partial A' \subset \overline{X} \cup K(\overline{X})$, then there is at least one minimal annulus \mathscr{A} such that $\partial \mathscr{A} = \Gamma$ and $\mathscr{A} \cap P_t$ is strictly convex for -1/2 < t < 1/2.

Let N be any connected compact nonplanar branched minimal surface such that $\partial N \subset \overline{X} \cup K(\overline{X})$. Then \mathscr{A} satisfies

$$\operatorname{int}(\mathscr{A}) \cap \operatorname{int}(N) = \emptyset.$$

REMARK 3. Checking the proof of Theorem B, we find that in the definition of the boundary $C \subset P_{-1/2}$, the relevant part is the existence of the inverse h(s) of the C^{∞} function f for s > -r. Hence even if for some x > -r, h(s) is a constant for s > x, the proof of Theorem B is still valid. Thus we may assume that the boundary curve C is C^{∞} convex, R(C) = C, and C contains two rays parallel to the x-axis.

Acknowlegdgement

The author would like to thank the referee for helpful suggestions and constructive criticisms to an earlier version of this paper.

References

- L. Barbosa and M. do Carmo, 'On the size of a stable minimal surface in R³', Amer. J. Math. 98 (1976), 515-528.
- [2] J. Douglas, 'The problem of Plateau for two contours', J. Math. Phys. Massachusetts Inst. of Tech. 10 (1930-1), 315-359.
- [3] Y. Fang, 'On minimal annuli in a slab', Comment. Math. Helv. (3) 69 (1994), 417-430.
- [4] D. Hoffman, H. Karcher and H. Rosenberg, 'Embedded minimal annuli in ℝ³ bounded by a pair of straight lines', Comment. Math. Helv. 66 (1991), 599–617.
- [5] D. Hoffman and W. Meeks III, 'A variational approach to the existence of complete embedded minimal surfaces', *Duke Math. J.* (3) 57 (1989), 877–893.
- [6] W. Meeks III and B. White, 'Minimal surfaces bounded by convex curves in parallel planes', Comment. Math. Helv. 66 (1991), 263–278.
- [7] J. C. C. Nitsche, Lectures on minimal surfaces, vol. 1 (Cambridge University Press, 1989).
- [8] R. Osserman, 'Minimal surfaces, Gauss maps, total curvature, eigenvalue estimates, and stability', in: *The Chern Symposium*, 1979 Proc. Internal. Sympos., Berkeley, Calif. (1979) pp. 199–227.
- [9] R. Osserman and M. Schiffer, 'Doubly-connected minimal surfaces', Arch. Rational Mech. Anal. 58 (1975), 285–307.
- [10] R. Schoen, 'Estimates for stable minimal surfaces in three dimensional manifolds', in: Seminar on minimal submanifolds, Annals of Mathematics Studies 103 (Princeton University Press, 1983).
- [11] M. Shiffman, 'On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes', *Ann. Math.* **63** (1956), 77–90.
- [12] E. Toubiana, 'On the minimal surfaces of Riemann', Comment. Math. Helv. 67 (1992), 546-570.

Centre for Mathematics and its Applications School of Mathematical Sciences The Australian National University Canberra ACT 0200 Australia e-mail: yi@maths.anu.edu.au