
CHARACTERIZATIONS OF FINITE PROJECTIVE 
AND AFFINE SPACES 
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1. Introduction. A well-known result of Dembowski and Wagner (4) 
characterizes the designs of points and hyperplanes of finite projective spaces 
among all symmetric designs. By passing to a dual situation and approaching 
this idea from a different direction, we shall obtain common characterizations 
of finite projective and affine spaces. Our principal result is the following. 

THEOREM 1. A finite incidence structure is isomorphic to the design of points 
and hyperplanes of a finite projective or affine space of dimension greater than or 
equal to 4 if and only if there are positive integers v, k, and y, with ju > 1 and 
(/A — l)(v — k) 7* (k — ju)2 such that the following assumptions hold. 

(I) Every block is on k points, and every two intersecting blocks are on p. 
common points. 

(II) Given a point and two distinct blocks, there is a block containing both the 
point and the intersection of the blocks. 

(III) Given two distinct points p and q, there is a block on p but not on q. 
(IV) There are v points, and v — 2 ^ k > /JL. 

Here, (II) is the key assumption. From the point of view of the foundations 
of geometry, Theorem 1 amounts to a "natural" system of axioms whose only 
models are the finite projective and affine spaces of dimension ^ 4 . This result 
should be compared with the Dembowski-Wagner Theorem, the dual of which 
may be stated as follows. 

DEMBOWSKI-WAGNER THEOREM (4). A finite incidence structure J is 
isomorphic to the design of points and hyperplanes of a finite projective space of 
dimension ^ 2 if and only if J satisfies (I)-(IV) together with the following 
condition. 

(0) Every two blocks meet. 

Originally, this result was stated in a weaker form, which required that ^ 
be a symmetric design (cf. 4). However, the original proof yields the above 
stronger version without much difficulty. 

In Theorem 1, the restriction to dimension ^ 4 is essential. In fact, there is 
an example due to Witt (12) of a design satisfying our axioms (I)-(IV) with 
v — Tl, k = 6, /x = 2 (cf. §4). Some further generalizations of the Dembowski-
Wagner Theorem avoiding this dimensionality restriction will be mentioned 
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as corollaries of Theorem 1. On the other hand, Theorem 3 provides a common 
characterization of finite projective and affine spaces and of Witt's design. 
This theorem may also be stated as the following purely group-theoretic 
result, providing a characterization of the Mathieu group M22-

THEOREM 2. Let Y be a 2-transitive permutation group on a finite set. Let 
A < r fix k points and be transitive on the set of points it moves. Let k > n > 1. 
If each pair of conjugates of A have in common either 0 or n fixed points, then Y is 
similar to one of the following groups, in its usual permutation representation. 

(i) M22 or A u t ( M 2 2 ) . 
(ii) A subgroup of PYL(d} q), containing PSL(d, q), for some d ^ 4 and 

some q. 
(iii) A group of collineations of a finite affine space containing all perspectivities 

with centres on the hyper plane at infinity. 

A Jordan group is a permutation group satisfying the hypotheses of the first 
two sentences of Theorem 2 (cf. Wielandt (11, pp. 32-34); Hall (5, p. 66)). 
Jordan groups were first studied geometrically by Hall (6), whose definition 
differs slightly from the above as he requires that T not be 3-transitive. Other 
results concerning both these groups and geometric generalizations of them will 
appear elsewhere. 

Theorems 4 and 5 provide other characterizations of the designs of points 
and hyperplanes of finite projective spaces. 

I am indebted to Dr. P. Dembowski for stimulating my interest in results 
of the Dembowski-Wagner type. The support of the National Aeronautics 
and Space Administration during the preparation of this paper is gratefully 
acknowledged. 

2. Definitions. An incidence structure is usually described in terms of a 
set of points, a set of blocks, and an incidence relation I. In the incidence 
structures considered here, it will be possible to distinguish blocks by means 
of the sets of points incident with them. Hence, the relation I will frequently 
be identified with set-theoretic inclusion. Points are generally denoted by 
p, q, r, and s, and blocks by B, C, and D. The dual of an incidence structure 
is the incidence structure derived by reversing the roles of points and blocks, 
while retaining the same incidence relation. 

Let J^ be any incidence structure. If p ^ q are points such that there is a 
block I p and q, the intersection of all such blocks is called the line pq. If r is a 
point not belonging to pq such that there is a block I p, q, and r, the inter
section of all such blocks is called the plane pqr. (These definitions differ 
slightly from those of (2, 3, and 4).) Note that neither lines nor planes need 
be independent of the choice of points used to define them. The most one can 
say in general is that p' G pq — {p\ implies pq Ç p'q, and an analogous 
inclusion for planes. If B and C are two intersecting blocks, then B P\ C is 
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called a flat) thus, a flat is a non-empty set of points. Flats will be denoted by 
.For G. Assumptions (I) and (II) of Theorem 1 thus deal with flats. 

A (balanced incomplete block) design is a finite incidence structure J such 
that each point (block) is on r (k) blocks (points), and every two distinct 
points are on X blocks. Here, v (the number of points), b (the number of blocks), 
k, r, and X are positive integers, the "parameters" of the design. They are 
assumed to satisfy v > k + 1 and b > r > X, in addition to bk = vr and 
\(v — 1) = r(k — 1). J is called a symmetric design if r = k; in this case, 
every two distinct blocks are on X points (cf. Ryser (9, p. 103)). There is a 
unique line joining any two distinct points of a design, and every flat of a 
symmetric design has X points. 

An isomorphism between two incidence structures is a 1-1 incidence-
preserving correspondence mapping points to points and blocks to blocks. 
An automorphism of an incidence structure J is an isomorphism of J with 
itself. 

3. Proof of Theorem 1. It is easy to prove that finite affine and projective 
spaces satisfy (I)-(IV). The proof of the principal assertion of Theorem 1 
will require several preliminary results. Throughout our argument, J will 
denote an arbitrary finite incidence structure satisfying (I)—(IV). The proof 
will eventually depend upon induction on \x. Only at the end of the proof will 
it be assumed that /JL > 1 and (/z — l)(v — k) ^ (k — n)2. The following 
obvious fact implies that the hypothesis JJL > 1 in Theorem 1 is essential. 

LEMMA 1. J satisfies (I)-(IV) with /JL = 1 if and only if J is a design 
with X = 1. 

(3.1) If two distinct blocks contain a flat, then that flat is their intersection. 
There is a unique block (p, F) containing a given flat F and a given point p (I F. 

Proof. This is clear from (I) and (II). 

(3.2) Every flat is contained in p = (v — n)/(k — /x) blocks. 

Proof. If F is a flat and x is the number of blocks containing F, then (3.1) 
implies that the total number of points is v = \F\ + x(k — \F\). (Here, \F\ 
denotes the cardinality of F.) 

(3.3) If jji > 1 and F is aflat, there is a block B jb F such that F C\ B ^ 0. 
For any such B, \F C\ B\ = \x — (k — v)2/(v — k). 

Proof. Let p and q be distinct points of F. By (III) , there is a block Bip 
such that BIq, and then p G F r\ B but q & F n B. For any such B, (I), 
(3.1), and (3.2) show that k = \B\ = \F C\ B\ + p(M - \FnB\). Since 
p > 1, this may be solved for | F Pi B\. 

Definition. If M > 1 and B is a block of J, then J (B) will denote the 
incidence structure consisting of the points of B and the distinct (as sets) 
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flats contained in B, with incidence induced by set-theoretic inclusion. Accord
ing to (3.1), each such flat may be written in the form B P C for a suitable 
block C. A "block" of J (B) is thus a flat of J. To avoid confusion, we shall 
never use the term "flat" in J (B) in the sense of §2; instead, we shall consider 
an intersection of two flats contained in B. The expressions "a block of J (B)11 

and "a flat in B" will be considered as having the same meaning. 

LEMMA 2. If n > 1 and B is a block of J, then J{B) satisfies (I)-(IV) 
with v{B) = k, k{B) = fi, and 

n(B) = / * - ( £ - nY/(v - k) < M. 

Proof. If F and G are distinct flats in B, let F = B P C and G = B P D 
for suitable blocks C and £>. If .FandGmeet, then £ Pi {C C\D) = F C\G ^ &. 
CC\D <£B (otherwise, F = B C\ C C\ D = G by (3.1)), so that by (3.3), 

\FC\G\ = \BC\ (Cr\D)\ = M - (k - M ) 7 > - *), 

proving (I). If p is a point of B, and J3' is a block containing both £ and 
C C\ D, then i3 P B' is a flat in B containing both p and F P G; this proves 
(II). /*(B) < M = *(5) since /x < ife. If »(5) - 2 were less than jfe(5), then 
^ — 1 ^ /x would imply that k — 1 = /x, and then /x(5) could not be integral. 
Hence (IV) holds, and (III) for J(B) is a consequence of (III) for J. 

Lemma 2 is the key to the proof of Theorem 1, as it permits the use of 
induction on /x. 

(3.4) There is at least one block incident with each of min(ju + 1, 3) given, 
distinct points. 

Proof. Let p and a be distinct points. There is a flat containing p; for 
otherwise, there is at most one block I p, contradicting (III) and k > 1. 
Hence, by (II), there is a block I p and q. This argument, applied to J (B), 
provides a flat containing p and q (cf. Lemma 2). Any third point r may then, 
by (II), be joined to this flat to yield a block I p, q, and r. 

(3.5) There is a unique line containing any two given distinct points. All 
lines contain the same number m ^ 2 of points. 

Proof. If /x = 1, this is trivial. Assume that /x > 1, and that (3.5) holds for 
all finite incidence structures satisfying (I)-(IV) but having smaller values 
of /x than J has. Let p, q, and r be three distinct points of J. By (3.4), there 
is a block B I p, q, r, and a flat contained in B and I p, q. Thus, pq consists of 
the same set of points when regarded as a line of </ or of </ (B). Since (3.5) 
holds for J' (B)y \pq\ = \pr\. Thus, all lines of J have the same number of 
points. Hence, if also r G pq, then pq = pr, since, certainly, pr 3 pq (cf. the 
definition of lines). 

Definition. If /x > 1 and p is a point of J, then J (p) will denote the 
incidence structure whose points are the distinct lines through p and whose 
blocks are the blocks I p, with incidence induced by set-theoretic inclusion in J. 
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L E M M A 3. If IJL > 1, then all « / ( £ ) , p a point of J, are either isomorphic 

projective spaces of dimension > 2 or projective planes of the same order. 

Proof. According to the Dembowski-Wagner Theorem, in order to prove 
t h a t J* (p) is a projective space i t is only necessary to verify t h a t */(p) 
satisfies (O)- ( IV) . (0) and ( I I ) follow from /x > 1 and ( I I ) for J, respectively. 
T o prove ( I ) , note t h a t (3.5) and (I) for J together imply t h a t the number 
of lines containing p is (v — l)/(m — 1), and the number of lines containing p 
and contained in a block or flat containing p is (k — l)/(m — 1) or 
(JLI — l ) / ( m — 1), respectively. This shows, incidentally, t h a t the parameters 
for J (p) are independent of p, and hence t h a t L e m m a 3 will be proven once 
we have shown t h a t the J' {p) are projective spaces. 

T h e first pa r t of (3.5) yields ( I I I ) , k > n implies t h a t 

(k - l)/(m - 1) > (ji - l ) / ( m - 1). 

Let B be a. block of J, no t necessarily I p, and let q, r I B (q ^ r) and s 1 B 
such t h a t s (i qr; this is possible since v ^ k + 2 and \B C\ qr\ ^ 1 < k (cf. 
(3.5)) . Considering J (s) shows t h a t 

(v - l ) / ( m - 1) ^ (k - l ) / ( m - 1) + 2. 

This proves (IV) for J(p). 

(3.6) For each block By J (B) is a design whose parameters are independent 
of the choice of B. If B contains b(B) flats, and there are r blocks on each point 
of J>', then the number of blocks incident with a point p I B and not meeting B is 
r — b(B) ; hence, this number is independent of the choices of p and B. 

Proof. Lemmas 1, 2, and 3. 

I t is now possible to complete the proof of Theorem 1. Assume t h a t /JL and 
n(B) > 1. Fix a point p of J. As ix{B) > 1, the intersection of two blocks 
containing p contains a line no t through p, so t h a t by L e m m a 3 it may be 
assumed t h a t J> (p) is the design of points and hyperplanes of P G ( d — 1, q) 
for some d ^ 4 and some q. Let Bip. J (B) m a y be isomorphically embedded 
into the projective space J (p) by mapping s —> ps and F —* (p, F) for each 
point s I B and each flat F C B. Lines of J (B) are mapped into lines of J> (p). 
By (3.6) and the Dembowski-Wagner Theorem it may be assumed t h a t 
r — b(B) > 0, otherwise, J is isomorphic to PG(d , q). T h e n the set of points 
of J (B) is embedded in AG(d — 1, q) as a set S oî k > 1 points such t h a t 
each hyperplane (line) meets S in 0 or n (0 or m) points, k/y, hyperplanes 
from each parallel class of hyperplanes meet 5 . However, 

k - 1 = (g*-i - l)(q - l ) - i ( m - 1) 

and fM — 1 = (qd~2 — l)(q — l)~l(m — 1), so t h a t n\(qn — k) = q — m. 
Since m ^ 2 and d ^ 4, 

V ^ (gd-2 - l ) ( g - l ) - 1 > q> q - m, 
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whence q = m, k = qd~l, and 5 consists of all the points of AG(d — 1, q). 
Hence, each J (B) is isomorphic to the design of points and hyperplanes of 

AG(d — 1, q). If two lines of J are called "parallel" if and only if they lie 
in a common block B and are parallel lines of J (B), then the parallel postulate 
holds for lines (by (3.4)). Also, parallelism is an equivalence relation among 
lines. For, by d ^ 4 and (3.4), two parallel lines lie in a unique plane, which 
lies in a block containing a given third line parallel to one of the first two. In 
the usual manner, adjoin ideal points to J (an ideal point is an equivalence 
class of parallel lines) each of which is incident with precisely those blocks 
of J containing a member of the equivalence class; and adjoin an ideal block 
incident with every ideal point but with no point of J. The result is another 
incidence structure «/*. J*{B*) is isomorphic to the design of points and 
hyperplanes of PG(d — 1, q) for each block 5* of «/*. Thus, since d — 1 > 2, 
the Veblen and Young axioms (10) hold for */*, whence J is an affine space. 

The following two corollaries are consequences of the preceding proof 
(cf. (3.6)). 

COROLLARY 1. A finite incidence structure J is isomorphic to the design of 
points and hyperplanes of a finite projective space if and only if J1 satisfies 
(I)-(IV) and some block meets every other block. 

COROLLARY 2. A finite incidence structure J is isomorphic to the design of 
points and hyperplanes of a finite affine space if and only if J satisfies (I)-(IV) 
and for some non-incident point-block pair there is precisely one block not meeting 
the given block and incident with the given point. 

COROLLARY 3. A finite incidence structure J is isomorphic to the design of 
points and hyperplanes of a finite projective or affine space of dimension ^ 2 if 
and only if J satisfies (I)-(IV) and some line contains at least (v — k)/(k — n) 
points. 

Proof. Since k - 1 = (qd~l - \){q - l)~l(m - 1), 

» - 1 = (g*-* - l)(g - l ) - i (m - 1), 

r = (qd - l)(q - 1)~\ and X = (qd~l - l)(q - l )" 1 , it follows that 

m ^ (v — k)/{k — ix) = q. 

Hence, m = q or q + 1- As in the proof of the last part of Theorem 1, this 
implies that J is an affine or projective space, respectively. 

4. The Witt space iV^. There is an incidence structure '#'22 satisfying 
(I)-(IV) with v = 22, k = 6, and n = 2. This was discovered by Witt (12), 
and will therefore be called the Witt space. ^ 2 2 has the Mathieu group il̂ 22 
as a 3-transitive automorphism group. The Witt space may be described in 
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terms of p = PG(2, 4) and ikf 22 as follows. The points oiW^i are the points 
of p together with a new point œ . The blocks of iV^ are (as point-sets) (i) the 
lines of p with œ adjoined to each line, and (ii) a single orbit of complete 
ovals of p under PSL(3, 4) (a complete oval of p is a set of six points, no 
three of which are collinear). '#'22 is then a design, writh full automorphism 
group Aut(ikf22), such that any three distinct points are on a unique block. If 
two distinct blocks contain 00 1 they certainly have another common point. The 
transitivity of M22 shows that two intersecting blocks will always have 
precisely two common points. Hence, (I)-(IV) hold in the Witt space. 

I t seems unlikely that there are any finite incidence structures, other than 
the projective, affine, or Witt spaces, satisfying (I)-(IV) with y, > 1 = 11(B). 
Suppose that J satisfies these conditions, but is neither a projective nor an 
affine space. If p and p' are distinct points of a flat F, then ppf C F; conversely, 
iî Bip, p', then \B H F\ ^ 2 > fx(B) shows, by (3.3), that B ^ F, yielding 
the reverse inclusion pp' 3 F. Thus, flats are lines, and hence blocks are 
planes by (II). There is a unique plane containing three given non-collinear 
points. Distinct planes either do not meet or meet in a line. Every line contains 
m = fx points. The lines and planes through a point p form a projective plane 
J (p) whose order q is independent of the choice of p. J is a design with 
X = q + 1. By Theorem 1, Corollary 1, there are non-intersecting planes. If 
B is a plane and / a line not meeting B, then the number of planes containing / 
and meeting B is k/m (by (I) and (3.1)). Hence, the parameters of J* satisfy 
the following conditions. 

(4.1) v - 1 = (q2 + q + l)(m - 1), k - 1 = (q + l)(m - 1), m\k, and 
m\q. 

(4.2) If q is a prime power, then q = m2. 

Proof. The number of planes is v(q2 + q + l)/k. Since (q + l)k — v = qm, 
k/m = q + 1 — q/m divides q(q2 + q + 1). q> m by Theorem 1, Corollary 3; 
thus (k/m, q) = 1. Therefore k/m divides q2 + q + 1. As 

(q2 + q + 1) - (q + I) {k/m) = (q/m)(q + 1 - m), 

it follows similarly that (q + 1 — q/m)\(q + 1 — m). If m 9^ q/m, then 
2(q + 1 — q/m) ^ q-\- \ — m, whence q + 1 ^ 2(q/m) — m < q, which is 
impossible. 

(4.3) If m = 2, or q is even and m — q/2, then J> is isomorphic to TV 11. 

Proof. A simple computation following the lines of the proof of (4.2) shows 
that q = 4. Then v = 22 and k = 6. That J and ^ 2 2 are isomorphic now 
follows from (13, Satz 4). 

(4.4) If p and B are a non-incident point and plane, projection from p of 
J (B) into J (p) embeds J'(B) into the projective plane J (p) as a non-empty 
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set S of points such that each line of J (p) either does not meet S or meets S in 
precisely m ^ 2 points. 

This is clear from the properties of J (cf. §3). It seems likely that the only 
possible sets of points of a projective plane of order q satisfying the condition 
stated in (4.4) are (i) the whole plane, (ii) the set of points not on a line, 
(iii) the set of points of a complete oval in a plane of even order, or (iv) the 
dual of the set of lines not meeting such a complete oval. In case (iii), m =2 , 
while in case (iv), m = q/2. That cases (i) and (ii) correspond to projective 
(affine) spaces is essentially the content of Theorem 1, Corollary 3. 

THEOREM 3. Let J be a design satisfying (I), (III), and (IV), with fj, > 1. 
Let r be an automorphism group of </ such that the pointwise stabilizer T(B) 
of each block B is transitive on the points off B. Then either J is isomorphic to 
the design of points and hyper planes of a finite projective or affine space of dimen
sion ^ 3 and T contains the little projective group or the group of all perspectivities 
with centres on the hyper plane at infinity, respectively; or J is isomorphic to 
W21 and r « M22 or Aut(Af22). 

Proof. Let B and C be distinct blocks and p G B C\ C = F. Let q 6 C - F, 
and qf I B, C. Then T(B) contains an element moving q to qf, hence moving 
C to a block containing q' and F. Thus, (II) holds. Hence, by Theorem 1, in 
the proof that J is one of the desired designs, it may be assumed that J 
satisfies the conditions stated at the beginning of this section. 

Let D b e a plane, p Ç D} and B a plane meeting D in a line not containing p. 
T(D) induces a collineation group of J' {p) which contains the full translation 
group A with respect to D (André (1); Pickert (8, pp. 313-314)). Hence, 
J (p) is a translation plane with respect to D, and therefore has prime power 
order q (5, Chapter 20; 8). T(D)B is transitive onB - B (~\D. Using (4.1) 
and (4.4), |Az>| = k — m = q(m — 1). As |A| = g2, (4.2) and (4.3) show that 
m = 2, q = 4, and J is isomorphic to# /

22-
The description of T in the case of affine spaces is trivial, while for projective 

spaces the description given follows from a theorem of Liineburg (7, Satz 8). 
If J is #"22, then Aut(M22) is the automorphism group of J (Witt (12, 
Satz 7)). As B varies over the blocks of J, Y (B) varies over a class of conjugate 
subgroups of M22. The group generated by these groups is contained in F and 
normal in M22. Since .M22 is simple, T is M22 or Aut(M22). 

Theorem 2 follows from Theorem 3 by letting B be the set of points fixed 
by A. 

5. Another characterization of projective spaces. In (7), Liineburg 
considered symmetric designs J* with the property that some block is met by 
all lines. In order to prove that J is a projective space, he assumed the 
existence of a large number of automorphisms of a very special type (cf. 
Theorem 5). This latter assumption is not, however, needed. 
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THEOREM 4. Let J be a design satisfying the dual of (III) . J is isomorphic 
to the design of points and hyper planes of a finite projective space if and only if 
some block of J is met by every line of J>. 

Proof. If X = 1, this is trivial. Hence, assume that X > 1. Since J is a 
design, there is a unique line joining any two given, distinct points. Let B be a 
block met by every line. 

(5.1) Every line not contained in B meets every block. 

Proof (Luneburg (7)). Let D ^ B be a block. Lines not contained in B but 
contained in B U D certainly meet D. Suppose that pi By D. Since a line 
through p meets B and D at most once, projection of the points of D into B 
from p is 1-1, hence onto. Thus, every line through p meets D, since the line 
meets B. 

(5.2) Every line not contained in B contains m = (b — X)/(r — X) > 2 
points. Every plane not contained in B is contained in X — (r — X)2/(b — r) 
blocks. There is a unique plane containing any three given non-collinear points 
not all on B. 

Proof. Since v — 2 ^ k} some such line must, by hypothesis, contain at 
least three points. The remaining assertions are proved as in (3.2) and (3.3). 

(5.3) Let q±q2 and r\r2 be distinct lines contained in a plane E, neither of which 
is contained in B. If B C\ E is a line, then q\q2 and r±r2 meet. 

Proof (Dembowski and Wagner (4)). Let r± d q\q2. If D is a block con
taining qiq2 and I ri, then D P E P B = qxq2 P B implies that D P E = qxq2. 
By (5.1), qiq2 P f\r2 = D P rtr2 ^ 0. 

Let p be a point not on B. J (p), as defined in § 3, is a design by (5.2) ; for 
example, k(p) = (k - \)/{m - 1) and \(p) = X - (r - X)2/(6 - r). By 
(5.1) and m > 2, each plane on p contains a line not on p and not contained 
in B which meets all blocks I p. The Dembowski-Wagner Theorem then 
implies that J (p) is a projective space. As the number of lines on p is both 
k and v(p) = b(p) = r, J is symmetric. Moreover, the incidence structure 
JB of points IB and blocks other than B satisfies (I)-(IV). 

If X(p) > 1, then JB is an affine space. If X(p) = 1 then a block C ^ B 
meets B in a line. For otherwise, there are non-collinear points x, y, z in B P C 
and a block D I x, y; DI z. As B C\ C ^ B C\D and J is symmetric, there is 
a point p' £ C C\D — B C\ C r\D. Then p'x and p'y are points of J (pf) on 
both C and D, contradicting \{p') = 1. By (5.3), planes oi JB are affine 
planes. As in § 4, JB is again an affine space. 

Since J is symmetric, blocks of J which are parallel m J? B meet B in the 
same flat. As J (p) is a projective space, (II) thus holds for J. The result 
now follows from the Dembowski-Wagner Theorem. 
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6. Transitive groups of special automorphisms. Theorem 2 requires the 
existence of a large number of automorphisms of a special type. The results of 
Luneburg (7) mentioned in §5 involve a smaller number of automorphisms 
of an even more restricted variety. Since Theorem 3 shows that Luneburg's 
assumptions are unnecessarily stringent, it is natural to try to find substitutes 
for his principal result involving much weaker hypotheses. As in §5, we shall 
work with planes instead of with groups. 

THEOREM 5. Let J be a finite incidence structure, B a block of J, and A a 
group of automorphisms of J>, subject to the following conditions. 

(i) A fixes B pointwise, and is transitive on the points X B. 
(ii) If q and r are distinct points X B, there is a point pi B such that the 

lines pq and qr are defined and equal. 
(iii) There is a unique line joining any two points of B. 
(iv) B contains three non-collinear points. 
(v) Every block has k points. No two blocks are incident with the same set of 

k points. 
(vi) If pi B X q, there is a block X p, q. 
(vii) There are at least as many blocks as points. 

Then J> is isomorphic to the design of points and hyperplanes of a finite projective 
space of dimension ^ 3 , and A contains the group of dations with axis B. 

Let us note what is not being assumed. The elements of A are not assumed 
to fix all the blocks on some point of */. A non-trivial element of A could even 
conceivably fix several points off B or no blocks other than B. Moreover, 
J is assumed to have only a few of the properties of a design. 

To prove Theorem 5, it is only necessary to verify the Veblen and Young 
axioms (10) for the points and lines of J^. For then, (ii) shows that blocks 
must be hyperplanes, and (vii) implies that every hyperplane occurs in J, 
while the result of Lùneburg (7, Satz 8) referred to in §5 implies that all 
dations with axis B are in A. 

(6.1) There is a unique line containing any two given distinct points p and q. 

Proof. If p, q I B, this is (iii). Let pi B and ql B. There is a block Dip, 
D ^ B, and a point r I D but ri B (by (v)). If rd = q, ô £ A, then D81 p, q. 
Thus, pq is defined. If B X q* £ pq, then the existence of an element of A 
moving pq to pq* shows that \pq\ = \pq*\} hence pq = pq*. If p* ^ p were 
another point of B lying on pq, the transitivity of A would imply that p* 6 px 
for every point xXB. Then every block containing p contains p*. If p' (? pp*, 
pf I B, then p* (? pp' (cf. (iii) and (iv)), a contradiction. Hence, pqC\ B = p. 

Now suppose that p and q are distinct points off B. If p5 = q, ô G A, then 
by (ii) there is a point qf IB such that pqf = pq. As there is a unique line 
containing p and q', the same must be true for p and q. This proves (6.1). 
Note that we have also shown that every line not contained in B meets B. 
The proof of (5.1) applies, thus (5.1) holds. 
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(6.2) If qu g2, ?i, Vi, and s are distinct points such that qxq2 H rxr2 = s, then 
qiq2 and rxr2 meet. 

Proof. Suppose first that not all five points are on B. The proof of (5.3) 
will apply once it is shown that (a) three non-collinear points, not all on B, 
are contained in a unique plane, and (b) such a plane meets B in a line. 

Let p, g, and r be three non-collinear points with p,ql B\r I B. (iii) and (iv) 
imply that every two distinct points of B are contained in some block not 
equal to B. Hence, we may use the same argument as in the proof of (6.1) to 
show that p = pqr is defined and is independent of the point r £ p — p C\ B 
used to define it. If p* is a point of pqr H B not on pq, we again find that every 
block containing pq also contains p*, a contradiction. 

Next, suppose that p, g, and r are any non-collinear points with, say, 
rIB. If x = rp C\B and y = rqf~\ B, then (6.1) shows that pqr = xyr; 
thus pqr Pi B = xy, proving (b). Given any other non-collinear points p', qf, 
and r' £ pqr with r' X B, p'q'r' 2 pqr implies that p'q'r' C\ B is a line con
taining, and hence equal to, xy. Thus, pqr = xyr = xyr' = p'q'r''. This 
proves (a). 

(6.2) holds if not all the points qu g2, rï} r2, s are on B. Suppose now that 
they all lie on B. Let pIB. By (vi) and (5.1), there is a point s' £ ps — {p, s\. 
Since ps' Pi q^q2 = 5, the part of (6.2) already proved implies that pqx P s'q2 

is a point g/, and similarly, prx P s'r2 is a point r / . Then q\'q2 P r^r2 = s', 
thus qi'ri P q2r2 is a point; similarly, g / r / P giri is a point, and these both 
equal q\t\ P 12. 

(6.3) Every line contains at least three points. 

Proof. This is already known for lines not contained in B (cf. the proof of 
(6.2)). If qr C B and pXB, let q' Ç pq - {p,q}, and r' £ pr - {p,r}. Then 
gr P gV is a third point of qr. 

This completes the proof of Theorem 5. 
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