PROBLEMS FOR SOLUTION

P43. (Corrected.) Let G be a group generated by P and Q, and let H be the cyclic subgroup generated by P. If P and Q satisfy the relations $P^{2} Q P=Q^{2}$ and $Q^{2} P Q^{-4}=P k$ for some k, then the index of H in G is 1 or 7 .

N. S. Mendelsohn

P44. Show that

$$
\pi^{2}=10-\sum_{n=1}^{\infty} \frac{1}{n^{3}(n+1)^{3}}
$$

E. L. Whitney

P45. Show that

$$
\sum_{i=0}^{n}\binom{n+1}{i} \int_{0}^{1}\binom{t}{i+2} d t=0
$$

for $n=1,3,5, \ldots$, where $\binom{t}{k}=t(t-1)(t-2) \ldots(t-k+1) / k!$.
B. Wolk

P 46. Given infinitely many points in the plane such that
(a) the distance between any two of them is greater than 1 ,
(b) for infinitely many n, there are more than cn^{2} points in the circle $|z|<n$.

Show that for any $\varepsilon>0$ there is a line which comes closer than ε to infinitely many of the points.
P. Erdös

SOLUTIONS

P10. (a) Prove that every set of six points in the plane can be colored in three colors in such a way that no two points unit distance apart have the same color.
(b) Show that in (a) six cannot be replaced by seven.

L. Moser and W. Moser

