A CANONICAL FORM FOR FULLY INDECOMPOSABLE (0,1)-MATRICES

By
D. J. HARTFIEL

This paper develops another canonical form for $(0,1)$-matrices which may be used in the same spirit as the nearly decomposable matrix [5] or the k-nearly decomposable matrix [1]. This form is intrinsic in each fully indecomposable matrix and does not require the replacement of any of its non-zero entries by 0 's. In particular

Form. If A is a fully indecomposable $n \times n(0,1)$-matrix, with $n>1$, there are permutations matrices P and Q so that

$$
P A Q=\left[\begin{array}{ccccc}
A_{1} & 0 & \cdots & 0 & F_{1} \\
F_{2} & A_{2} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & F_{s} & A_{s}
\end{array}\right] \text { where } s>1 \text {, each } A_{i}(i=1, \ldots, s)
$$

is fully indecomposable and each $F_{i}(i=1, \ldots, s)$ has at least one non-zero entry.
Proof. (The proof has some similarity to that in [5]). As A is fully indecomposable each non-zero entry is on a positive diagonal. Consider $B=\left(a_{i j}\right.$ (per $\left.A_{i j}\right)$ per A)) where $A_{i j}$ is obtained from A by deleting its i row and j column. It is easily seen that B is doubly stochastic and $b_{i j}>0$ if and only if $a_{i j}>0$. Therefore we argue that B has the specified form.

Consider $\gamma(B)=\min _{R, C} \sum_{\substack{i \in R \\ j \in C}} b_{i j},|R|+|C|=n$ where $|K|$ denotes the number of elements in a set K. Suppose $\gamma(B)=\sum_{\substack{i \in R_{0} \\ j \in C_{0}^{0}}} b_{i j}$. Pick permutation matrices P_{1} and Q_{1} so that

$$
P_{1} B Q_{1}=\left[\begin{array}{ll}
B_{1} & E_{1} \\
E_{2} & B_{2}
\end{array}\right]
$$

where E_{1} is in the R_{0} rows of B and in the C_{0} columns of B. If B_{1} is not fully indecomposable there are permutation matrices P_{2} and Q_{2} so that

$$
P_{2} P_{1} B Q_{1} Q_{2}=\left[\begin{array}{cc|c}
\bar{B}_{1} & 0 & E_{1}^{\prime} \\
E & \bar{B}_{2} & \\
\hline E_{2}^{\prime} & B_{2}
\end{array}\right]
$$

[^0]By the minimality of $\gamma(B)$ and the doubly stochasticity of B it follows by rowcolumn sum arguments involving $\gamma(B)=\sigma\left(E_{1}\right)=\sigma\left(E_{2}\right)$ that

$$
P_{2} P_{1} B Q_{1} Q_{2}=\left[\begin{array}{ccc}
\bar{B}_{1} & 0 & \bar{E}_{1} \\
E & \bar{B}_{2} & 0 \\
0 & \bar{E}_{2} & B_{2}
\end{array}\right]
$$

Here $\sigma(X)=\sum_{i, j} x_{i j}$ where X is a matrix. Hence by relabeling we have

$$
P_{2} P_{1} B Q_{1} Q_{2}=\left[\begin{array}{ccc}
B_{1} & 0 & E_{1} \\
E_{2} & B_{2} & 0 \\
0 & E_{3} & B_{3}
\end{array}\right] .
$$

By continuing this argument on main diagonal blocks we may find permutation matrices P and Q so that

$$
P B Q=\left[\begin{array}{ccccc}
B_{1} & 0 & \cdots & 0 & E_{1} \\
E_{2} & B_{2} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & E_{s} & B_{s}
\end{array}\right] \text { where } s>1 \text {, each } E_{i}(i=1, \ldots, s)
$$

has at least one non-zero entry and $B_{i}(i=1, \ldots, s)$ is fully indecomposable or $B_{i}=(0)$.

Of course if any $B_{i}=(0)$ then $\gamma(B)=\sigma\left(E_{i}\right)=1$ which is impossible since B is doubly stochastic and hence $\gamma(B)<1$. Therefore each $B_{i}(i=1, \ldots, s)$ is fully indecomposable. Now

$$
P A Q=\left[\begin{array}{ccccc}
A_{1} & 0 & \cdots & 0 & F_{1} \\
F_{2} & A_{2} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & F_{s} & A_{s}
\end{array}\right] \text { and the form is developed. }
$$

We now address ourselves to showing the utility of this new form. For this we list the the following tools.

Lemma 1. If $k_{i} \geq 3$ is an integer for $i=1, \ldots, t$ and $t \geq 2$, then

Proof.

$$
\begin{gathered}
\prod_{i=1}^{t} k_{i} \geq 3\left(\sum_{i=1}^{t} k_{i}-3\right) \\
\prod_{i=1}^{t} k_{i} \geq k_{1} \prod_{i=2}^{t} k_{i} \geq k_{1}\left(\sum_{i=2}^{t} k_{i}\right) \geq 3\left(\sum_{i=1}^{t} k_{i}-3\right)
\end{gathered}
$$

Lemma 2. If A is an $n \times n$ fully indecomposable (0,1)-matrix then

$$
\text { per } A \geq \sigma(A)-2 n+2[4]
$$

Lemma 2 may be deduced by the use of our form however this inequality has already been easily established in other works. The inequality we choose to argue is given in [2]. The result there is obtained by some rather exhaustive techniques which may be greatly simplified.

Theorem. Let $\Lambda_{n}(3)=\{n \times n(0,1)$-matrix with precisely three 1 's in each row and column $\}$. Then $\min _{\boldsymbol{A}_{\epsilon \Lambda_{n}(3)}}(\operatorname{per} A) \geq 3(n-1)$.
Proof. The proof is by induction on n. For $n=3$, per $A=6$ and the inequality holds. Therefore suppose the inequality holds for $A \in \Lambda_{k}(3)$ where $k=3, \ldots, n-1$. Let $A \in \Lambda_{n}(3)$. It is well known that $\min _{A_{\epsilon} \Lambda_{n}(3)}(\operatorname{per} A)$ is achieved on a fully indecomposable matrix. (The argument is that of Lemma $2[3,63]$.) Hence we may assume A is fully indecomposable. We now argue cases.

Case I. $\gamma(A)=1$. Without loss of generality we may assume

$$
A=\left[\begin{array}{ccccc}
A_{1} & 0 & \cdots & 0 & F_{1} \\
F_{2} & A_{2} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & F_{s} & A_{s}
\end{array}\right] \text { as specified in the form. }
$$

Suppose for $i=1, \ldots, s$ we have that A_{i} is $n_{i} \times n_{i}$. Then as $\gamma(A)=\sigma\left(F_{1}\right)=\cdots=$ $\sigma\left(F_{s}\right)$ it follows that $n_{i} \geq 3$ for $i=1, \ldots, s$. Hence

$$
\begin{aligned}
\text { per } A & \geq \prod_{i=1}^{s} \operatorname{per} A_{i} \\
& \geq \prod_{i=1}^{s}\left(\sigma\left(A_{i}\right)-2 n_{i}+2\right) \\
& \geq \prod_{i=1}^{s}\left(3 n_{i}-1-2 n_{i}+2\right) \\
& \geq \prod_{i=1}^{s}\left(n_{i}+1\right) \quad \text { and as a consequence of Lemma } 1 \\
& \geq 3(n-3+s) \geq 3(n-1) .
\end{aligned}
$$

Case II. $\gamma(A)=2$. Suppose each 1 in A lies on at least $n-1$ positive diagonals of A. Then by expanding the permanent along any row we have that per $A \geq 3(n-1)$. If A has some 1 , we may assume as a_{11}, on less than $n-1$ positive diagonals we argue as follows.

Consider A_{11}. If A_{11} is fully indecomposable, then by Lemma 2 , per $A_{11} \geq$ $[3(n-1)-2]-2(n-1)+2=n-1$ which implies that a_{11} is on at least $n-1$ positive diagonals in A. Hence it must be that A_{11} is partly decomposable and so there exist permutation matrices P and Q so that

$$
P A Q=\left[\right]
$$

Continuing to decompose A by $\gamma(A)$, as in the form, allows the assumption,
without loss of generality, that

$$
A=\left[\begin{array}{ccccc}
A_{1} & 0 & \cdots & 0 & F_{1} \\
F_{2} & A_{2} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & F_{s} & A_{s}
\end{array}\right]
$$

with $n_{1}=1$ and $\gamma(A)=\sigma\left(F_{1}\right)=\cdots=\sigma\left(F_{s}\right)$. We now argue two cases:
Case 1. $n_{i} \geq 2$ for $i=2, \ldots, s$. In this case

$$
\prod_{i=2}^{s} \operatorname{per} A_{i} \geq \prod_{i=2}^{s}\left(3 n_{i}-2-2 n_{i}+2\right)=\prod_{i=2}^{s} n_{i} \geq \sum_{i=2}^{s} n_{i}=n-1
$$

which contradicts a_{11} being on fewer than $n-1$ positive diagonals.
Case 2. Some $n_{i_{0}}=1, i_{0} \neq 1$. Suppose $a_{1 j_{1}}=1$ and $a_{1 j_{2}}=1$ are in F_{1} with $a_{i_{1} 1}=1$ and $a_{i_{2}}=1$ in F_{2}. Define the $(n-1) \times(n-1)$ matrix

$$
\bar{A}=\left[\begin{array}{ccccc}
A_{2} & 0 & \cdots & 0 & \bar{F}_{2} \\
F_{3} & A_{3} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & F_{s} & A_{s}
\end{array}\right] \text { where } \bar{a}_{i_{1}-1 j_{1}-1}=\bar{a}_{i_{2}-1 j_{2}-1}=1
$$

are the only 1's in \bar{F}_{2}. Per \bar{A} then represents the sum of all positive diagonal products in A containing a_{11}, all those containing $a_{1 j_{1}} \cdot a_{i_{1} 1}$, and all those containing $a_{1 j_{2}} \cdot a_{i_{2} 1}$. (Note that as $n_{i_{0}}=1, \overline{\mathrm{a}}_{i_{1}-j_{1}-1} \cdot \overline{\mathrm{a}}_{i_{2}-1 j_{2}-1}$ is not on a positive diagonal product of \bar{A} as $\overline{\mathrm{a}}_{i_{1}-1 j_{1}-1}, \overline{\mathrm{a}}_{i_{2}-1 j_{2}-1}$ would then have to be on a positive diagonal which contains the two 1's in F_{3} and hence contains the two l's in F_{4}, \ldots, and hence contains the two 1 's in $F_{n_{i_{0}}}$ which is impossible as $\mathrm{n}_{i_{0}}=1$.) Now as $s \geq 3$, $a_{1 j_{1}} a_{i_{2} 1}$ as well as $a_{1 j_{2}} a_{i_{1} 1}$ each lies on at least two positive diagonals, namely those which they share with each 1 in F_{3}. This may be seen by noting that each entry in a fully indecomposable $(0,1)$-matrix is on a positive diagonal $[5,68]$ and hence this property holds for each of $A_{1}, A_{2}, A_{3}, \ldots, A_{s}$. Therefore it follows that any selection of precisely one 1 in each of $F_{1}, F_{2}, F_{3}, \ldots, F_{s}$ must lie on a positive diagonal of A. Hence

$$
\operatorname{per} A \geq \operatorname{per} \bar{A}+4
$$

and since $\bar{A} \in \Lambda_{n-1}(3)$ we have by the induction hypothesis that

$$
\text { per } A \geq 3(n-2)+4>3(n-1)
$$

All cases having been argued, the proof is concluded.

References

1. D. J. Hartfiel and J. W. Crosby, A lower bound for the permanent on $U_{n}(k, k)$, Journal of Combinatorial Theory, Vol. 12 No. 2, (1972), 283-288.
2. D. J. Hartfiel and J. W. Crosby, On the permanent of a certain class of (0,1)-matrices, Canadian Bulletin, Vol. 14 No. 4, (1971), 507-511.
3. Marvin Marcus and Morris Newman, On the minimum of the permanent of a doubly stochastic matrix. Duke Mathematical Journal, 26 (1959), 61-72.
4. H. Minc, On lower bounds for permanent of $(0,1)$-matrices, Proceedings of the American Mathematical Society, 22 (1969), 117-123.
5. Richard Sinkhorn and Paul Knopp, Problems involving diagonal products in non-negative matrices, Transactions of the American Mathematical Society, 136 (1969), 67-75.

Mathematics Department
Texas A \& M University
College Station, Texas 77843

[^0]: Received by the editors December 22, 1972 and, in revised form, April 16, 1973.
 Subject classification: Primary 1530, Secondary 1548.
 Key phrases: $(0,1)$-matrices, permanent, lower bounds.

