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THE INVARIANT POLYNOMIAL ALGEBRAS FOR
THE GROUPS ISL(n) AND ISp(n)

HITOSHI KANETA

§0. Main theorems

This paper is a continuation to the previous one [3]. We shall show
that, for the inhomogeneous linear group ISL(n + 1, R) (resp. ISp(n, R)),
the coadjoint invariant polynomial algebra is generated by one (resp. n)
algebraically independent element. We shall state our results more
precisely.

1) ISL(n +1,R), (n = 1).

We can consider the following vector space §, to be a subspace of
the dual space realized as in Section 1 of the Lie algebra of ISL(n + 1, R);

0 0 o0

. 0 . .
=y . ;
° 0’. 0
yn+1,n 0 yn+1

Let ¢ = ([[3-15%.1)7ei1 be a polynomial function on §,. Denote by .7,
the C-algebra of the coadjoint invariant polynomial functions on the
dual space of the Lie algebra of ISL(n + 1, R).

TueorEM 1. The restriction map of £, into the set of polynomials on
9, is an injective algebra-homomorphism, whose image is C[t].

(i) ISp(n,R) (n = 1).

In this case we can consider the following vector space §, to be a
subspace of the dual space realized as in Section 2 of the Lie algebra of
ISp(n, R);
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0 vy, 0 0 0
yﬂ. 0 | . 0 . . .
@" — 0 0 :)’272—3,2”—9 . . .
Yon-2,20-5 O 0 0 0
0 c oo 0 Yoo O
0 oo 0 0 Yo

Let s,(0<i<n—1) be the i-th fundamental symmetric polynomial in
Yaroi-1Yoi-10e L= kR < n=1) and set ¢, = $;Vsn-12.Y5. It is not difficult
to see that ¢, (0 £ i £ n — 1) are algebraically independent over C. Denote
by £, the algebra of coadjoint invariant polynomial functions on the
dual space of the Lie algebra of ISp(n, R).

THEOREM 2. The restriction map of £, into the set of the polynomials
on 9, is an injective algebra-homomorphism, whose image is C[t,, - - -, t,-.].

The proofs of Theorems 1 and 2 will be given in Section 1 and
Section 2 respectively.

§1. The group ISL(zn + 1, R)

Let G, and IG, be the Lie groups SL(n + 1, R), and ISL(n + 1, R),
respectively. Denote by g, and Ig, their Lie algebras respectively. To
be definite,

I1G, = {(é‘ f); ueG,, aeR”“}, Ig, = {(‘f g), Xegq,, xeR“*‘}. We
can identify the dual space Ig} of Ig, with g, X R**' via the following

bilinear form on Ig, X (g, X R™*");

<(§ (g;)’ &, y)> =LX, Y)utmn + {6 Vs

where (X, Y)ywm.n = 2(n + 1) tr (XY) ie. the Killing form of the Lie
algebra g, [4, p.390] and {x,y),., = ‘xy. Clearly the following e, e;, and
<i<n 1<,k {<n+1,j+ k) form a basis of Ig,;

0 N
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©)
and f,=0---010---0). The dual basis is given by the following &,

&5 and fa;
(i—(n+1) ]

o, = — ,,,,,f},,,,,f L (n * 1) = ,‘Jr,e
i 2()7, + 1)2 i Jk 2(n + 1) kg

i
and f,,, =/f,. Forag= (Z (11) ¢ IG, we have
(e(F ¥)a (X)) = X ¥y + Ko+ 2, w )y

Consequently the coadjoint action CoAd(g) of g is given by
CoAd (g)(Y,y) = (uYu™" + A, ‘u™'y)

with A = > (wa, ‘u"'y),,,d, where o ranges the above bases of g, (not of
Ig,). In the sequel we shall use the notation g-(Y,y) for CoAd (g)(Y, y).

Moreover, we identify G, and R"*' with the subgroups {(Z g); ue Gn}

and {(g“‘ ‘11) ; aeR”“} of IG, respectively. Denote by .#, the algebra

of IG,-invariant polynomial functions on Ig¥*. &, stands for the same as
in Section 0. The Theorem 1 is an easy consequence of the following
three lemmas.

Lemma 1.1. The union of the orbits {g-9.; g€ IG,} is dense in Ig} =
g, X R**'. In particular the restriction map F— F|9, of %, into the set
of polynomial functions on 9, is an injective algebra-homomorphism.

Proof. We can show that almost all (Y, y) € Ig} is conjugate to some
element of ,. Indeed, if y,., #+ 0, there exists a u € G, such that u-(Y, y)
= (wYu ', tu'y) with Cu'y) =40, ---,0,y,.,). Taking some aecR**', we
obtain
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To complete the proof, it suffices to reverse the procedure in the proof
of the following Lemma 1.3. The details, however, will be omitted.

LeEmmA 1.2. Let F be a homogeneous element of #,. Then the restric-
tion F|9, takes the form c(([[r-: Y51, )yai)™ for some constant ¢ and non-
negative integer m.

Proof. Let d be the degree of F. Then the restriction F|$, can be
written as

n

ak an+1

a"la"':an-f-l(n yk+l,k> n+1l
k=1

Since F|§, is invariant under the action of the diagonal matrix [c,,- - -,c, .1}
eG,, F|9, must be equal to

aiteretanp1=4d

n
b n aj an+1
:STREEN an+1 yk+l,k n+1
k=1

With  Duoanis = Qagyeensansn ([ oo i ¢#). It is now immediate that
= 0 unless «;, = ka, for all .

ar+eectap+1=d

a

A1y An-t+1

LEMMA 1.3. There exists one and only one polynomial F in £, such
that the restriction F|9, takes the form ([[i.,¥i.)yeti

Proof. Define subspaces %, of Igf = g, X R**' and subgroups G, .
of G, as follows 1<k n+1).

Y = Yk * 0 )
Yir =0 Yk ~I, o o
%, = 0---0 ¥ O : + 7 ; TER
0 . . . . o n 0
0
\ 0 yn+1,7z O yn+l,
ALk
Y O
I, o o
@n+l= 0 +f ;yn+l,n+1:0> TeR
(o] n
yn+1J
u 2 0
G,.= o ¢ €G,; ze R, C=diaglec, - -, Coisi]
0 ¢

Aksn+1).
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Moreover, set IG, , = {(2‘ ‘{); ueG,,, aeR"*‘} 1<Lk<n+1). Note

that IG, , leaves %, invariant (1 <k < n + 1). Let Y,(c) be a represent-
ative of #,. Starting with a G, -invariant polynomial function

FE@) = ([1o80.)5 XE@e),

we shall define a polynomial function Fe.#, such that F|%, = F,. For
Y(o)=Y, + T(‘—In ?L 8) eY2=k=n+1), put 2z, = Vi1, - Vie-2)/

)
Yix-r and
‘1 0 )
0 0
0 . 0
v, = v(Yi(2) = |2, 1 yelYie-s
0.-.... 0 1
. 0 )

By simple calculation we obtain

Z,_, * % 0

0---0 ¥ 0 % : —I, o o
V- Yi(o) = | LT : + 7 e, _,
: T, ) ’ 0 o n 0
0..--.v. 0 Vo ttin 0 Voot
with
1 1 1! 0
Z_, = 0 . 0 Yk—& 0 . O + Yieox ) 0 ,
2, 1 2, 1 1

where Y, , denotes the (kB — 1) X (k — 1)-matrix whose (i, j)-component
(1<1i,j <k —1)is the one of Y,. Define functions F, on %, inductively
by Fi (Y. (7)) = F,_,(v,-Y(z)) @ <k <n+1). Note that F, does not de-
pend on y, ;, - -+, ¥;-1; (j = k) nor z. In particular F, are invariant under
the action of @< R**'. We shall show by induction on % that F, are
G, -invariant polynomials. Elementary calculation reveals that g’ =
v(g- Y (o)gu(Y,(z))~! takes the form
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u’ 2z * I,u 2

0.---0 ¢ 0 0 0

0. vnnn 0 ¢ for g = {0 0 0 ¢ €G,,.
0 C C

We can verify easily that F,_,(g’-Y,_,(r)) = F,_,(r) even though g’ does not
necessarily belong to G, ,-,. Since v(g-Y,(2))-(g- Y,(0)) = g’ (\(Y,(2))- Y.(2)),
we have F,(g-Y,(z)) = F(Y.(z)). Note now that F, is a polynomial in all
variables except possibly for y.,.,.. In case >3, F, is a polynomial
function on %,, because F,(g-Y,(z)) = F,(Y.(z)) for

Ik—3 1

01 G
= S .
g _1 0 ny k

In—-k+2

In case k < 2, F, = F,, which can be verified easily. To sum up, F(1 <
k< n+1)is an IG, ,-invariant polynomial function on #,. Now a func-
tion Fe #, is to be defined. For (Y, y) e Ig¥, put
1
v:v(Y,y)= OO eGn (55)=(y“ "'3yn)/yn+1)°
tj', ’ 1
Keeping in mind that v-(Y,y) = (vYv™}, ‘v-'y) € %, .,, we define F by F(Y, y)

= F,. (v-(Y,y)). Then F belongs to #,. To see this, firstly we shall show
F to be G,-invariant. By simple calculation we get for ue G,

*

v(u- (Y, Yyuu(Y, y)=! = ( Yoo/ Cl ).

) € Gn,n+l .

Since F,., is G, ,,,-invariant, it follows that F(u-(Y, y) = F(Y,y). The
same argument as for F, yields that F' is a polynomial. Secondly, on
account of the IG, ,,-invariance of F,.,, we obtain for a € R*"*'(CIG,)
F(a-(Y,y)) = F(vav™"-(v-(Y, ) = F,.(vav="-(v-(Y, y)))
= n+1(U'(Y, y)) = F(Ya y) ’

since R™' is a normal subgroup of IG,. This completes the proof of
Lemma 1.3.
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§2. The group ISp(n, R)

Let now G, and IG, be the Lie groups Sp(n, R) and ISp(n, R) respec-
tively. Namely,

G, = {ue GL@n, R); ‘ud,u = J,}  with J, =

and IG, = {((l; il); uveG,, ac RZ“}. Denote by g, and Ig, their Lie alge-

bras respectively. We may assume n = 2, since G, = SL(2, R). We can
identify the dual space Ig¥* of Ig, with g, X R* via the following bilinear
form on Ig, X (g, X R™);

<<}0( g)’ &, y)> =X, Y + <% Y)w -

Here (X, Y),,(y = 2(n + 1) tr (XY) i.e. the Killing form of g, and {(x, ).,
= ‘xJ,y. In the sequel we consider G, and R* to be the subgroups

{(g (1)>; ue Gn} and {(gz" %); ae Rz"} of IG, respectively. It is not dif-

ficult to see that the following e;, €, 1.4 €inicts €op-ny €1 <1< 0, 1<
J<2k -2 2<k<n)and f(1 < ¢ < 2n) form a basis of Ig,;

N

0 0 ;

e, = ~1 ’ €100 = ’

_t
€i0i-1 = €gi-1,21

fOzk—z O 0
2, : 0
0
€j0k-1 = O 0 o) ) with z, = | 1 | ® € R*"2,
t(Jk—IZ])
O 02n—2k 0
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Oy s 0 ) (0]
& 0
0
e = |~ Ue-i2) o, ., fi=|1lo.
0-.--. 0
\ 0 02"'2"; \ 6 J

Elementary calculation shows that the following é,, €., €51,0:-15 €061, €5,
and f, form the dual basis of Ig*;

A

& =efdn+ 1), &1 = eyqy1/2n + 1),
Crinio1 = €iy,0/2(n + 1), &, 01 = €55 [2(—1),
o = €paui/2—1), fo=—df, (=J—(=1)).
Since
B ey IE PR i S

it follows that

CoAd (g)(Y,y) = (uYu™' + A, wy)  with A = 3 {wa, uy),,o,

where o ranges the elements of the basis of g, (not of Ig,) given above.

Simpler notation g-(Y,y) will be used for CoAd(g) (Y, y). 9, and £,
stand for the same as in Section 0.

LeEmMA 2.1. The union of the orbits {g-9.; g € IG,} contains an open
set of Ig¥ = g, X R*™. In particular the restriction map F — F|9, of £, into
the set of polynomial functions on §, is an injective algebra-homomorphism.

Proof. Denote by 9, the union (Jg-9, (g€ IG,). Note that , contains
elements of the form

Y 0 0
Y) = 0 0 Yn-12a O (Y belongs to an open set 0,_, of g,..).
0 0 yZn

This follows from the Proposition 1.3.4.1 [5, p. 101] and the simple fact
that the set consisting of the following elements (ue G,_,, ¥;; € R)
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0
ARES 0. K u!
y2n~3,‘2n~2
[ yZn—Z,Zn—S 0

contains a Cartan subalgebra {ie, + -+ + 2,_.,¢,.,; ;€ R} of g,.,. Using
the notation in the proof of Lemma 2.3, we have v,... (Y, ¥..) €%,
for (Y,y, ¥.,)€%,.,. In other words, there exists a smooth map of
Y M Von—2Y2n-1,0n = 0} into #,, which contains the set {a~(Y); Yeo, ,ae R}
(recall that R*™ is regarded as a subgroup of IG,). Thus there exists an
open set @,,, of #,,,. Similar argument shows the existence of an open
set 0 of Ig* such that 0 C 9,.

Let 5, (0 <i <n — 1) be the i-th fundamental symmetric polynomial
N Yope-1Yei-1,0 (1= k= n—1) and set ¢, = 5,5,,-13,.

LeMMA 2.2, Let F be an element of #,. The restriction F|9, takes
the form 3,50 Quy,..oian o280+ - - L5271

Proof. Since F|9, is invariant under the action of the diagonal matrix
[1,---,1,¢c1e@G, it takes the form > ,. By(¥s,-1,2.53.)", Where B, are
polynomials In Yy 0115 Yor-1,26 1 < B < n — 1). Moreover, F'| 9, is invariant
under any substitution Y, ..-1, Yex-1,26 £O¥ —Yeroe-1, —Yex-1,2c and the per-
mutations of Y001, Y-, 1 <k <n —1). Consequently B, can be
written as 2 .50 Ouyyeeiensypr S5 - - Si»7%. It remains to prove that o, + - - -
+ a,.; < B. By simple calculation we obtain

0 0} (O Vig 0 O 0 )
. . o -0 . . .
L., ; Yut o S
" : O . . Yon-s,0n-2 : 0
g 0 yZn—Z,Zn O 0 y
0ceennnn.. 0 ; 0...0 —y 0 0 Yioron O
(0--.0 ¢ O 2 Lo, 0 0 0 Yan
( [ 0 Vi f() ....... 0] x 0 0 )
0o - 0 .| :
l yzl. B + y | : 0 : *
- 0 . . yzn—3,2n~2 Yen-1,21 I : : :
o [ y2n—3,2n—3 0 to 01 O * 0
0 0 0 Yon-1.2n 0
Lo * * x 0 Yen |

https://doi.org/10.1017/50027763000020833 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020833

70 HITOSHI KANETA

for ¢ = —¥/Ysu-1.2.- Since the value of F at this point must be represented
as a polynomial in y, we conclude that «, + -+ + «,_, < 8 (note that the
value of F at this point does not depend on the omitted components: cf.
the proof of Lemma 2.1).

LEmMA 2.3. There exists uniquely F® e #, such that the restriction
FO1%,=t0=i<n-—1).

Proof. Denote by %, (resp. G, ) (k= n, n+ 1) the following sub-
spaces (resp. subgroups) of Ig* (resp. G,);

Y * o 0 Y * 0
JZ‘/n = o * y2n—1,2n 0 ’ @n+l = _t(Jn—ly) * y2n—1.2n 0 >
*x % % Yaon L * x % Yen
u 0 ] u % o0
Gn,n = * O ; ue Gn-—l ’ Gn,n+l = o * 0 ; ue Gn—l
0
* * * %k %

Set IG, , = {(g ‘1’) ueG,, ac RZ”} (k=n,n+1). We shall define pol-

ynomial functions F» on %, (k =n, n + 1). The values of F{ at
Y % o 0
0 % Ypporsn O
0 * =« Ven

are defined by requiring that > 22} FOT* -9 =y, _, ..v3, X det (T + Y),
where T is an indeterminate. Note that the restriction F{’|%#, is equal
to ¢, up to the signature. Keeping in mind that F$’ does not depend on
the omitted components, we can easily verify that F{ are G, ,-invariant.

For
Y x Y 0
V3,9 = | =4uesd) % Yowrn 0 | €@ (e R,
* £ ES y?.n
put
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(1,,_, o —y 0 0]
t(Jn—zy) 1 —y2n—3/y2n—2 0 :
Ver =Y, 3,00 = | o© 0 1 s 0leq,,
[ T 0
I
L O't(Jn—ly)/yZn—Z

where ' = (¥, -+, Y2n-0)[Y2u-2 and ¢ = —Yen-olYen-1,2n- Then we have

' 0 0 # 0 0]
uYu™' + 0 0 ygn—zllyzn—l,zn * . .
Vs (Y, 9, You) = 01 9 £ 0
0 e 0 0 Y00 O
L [0 *x x 0 Yer )

where u is the first 2n — 2) X (2n — 2)-block of the matrix v,,,. Secondly,
defining function F®, on #,., by F&L(Y, ¥, ¥2) = FOW,ii (Y, ¥, ya))s We
shall show that they are IG, ,.,-invariant polynomial functions. An ele-
ment g of G, ., can be represented as g8, for some

u 0 L., z o
g8 = ¢c 0 Je@G,, and g,= 0 I (ze R 9.
b C—l l(Jn—lz) ’
Clearly g,-(Y,9,¥.,) (j = 1,2) are equal to

uYu-! x ¢ 'uy 0

~ct(']n—x.'y)u—l * czy2n—l,2n 0

* O Cc o
and _
Y —24J,..y) — (v + yZn—I,an) HJp-12) * % 0 1
S O] ¥ Yen-1,2n 0
L * * * yZn

respectively. Elementary calculation yields

v(gj'(Y’ y’ yZn))gjv(Y7 y: y2n)_1 € Gn,n (] = 17 2) .

On account of G, ,-invariance of F{, it follows easily that F{), are
G, ..-invariant. In particular, F@.(g-(Y,y, ¥..) = F.(Y, ¥, 3..) for
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IZn—4
g = ( ‘]1 ) € Gn,n+1 .
I

This implies that F{), are polynomials, since F{2, are polynomials in all
variables except possibly for y,,.,. Recalling that F¢), depend only on
Y,y and y,,, we conclude immediately that F%, are invariant under the
action of ae R**. Thus F{), are IG, ,.,-invariant polynomial functions.
For (Y,y)e Igk = g, X R*", let v = v(Y,y) be the matrix

IZn—2 0 —5’

t(Jn-lj}) 1 ,yZn—I/yZn Wlth t5/ = (y7 .t '7y2n—2)/y2n .
o 0 1

Then v-(Y,y) = (vYv~?, vy) belongs to %,.;.. To complete the proof of
Lemma 2.3 we shall define functions F® on Ig¥ by FO(Y,y) = F{,(v-(Y, )
(0<i<n—1) and show that F® are elements of #,. To being with,
F% are G, -invariant. Indeed, for u e G,, simple calculation reveals that

k *® *
(o]

% % %
U(U'(Y, y))uv(Y, y)—l = [ o 1 0 eGn,n+1
% % % %

Since F§, are G, ,.-invariant, it follows that F® are G, -invariant. By
the same argument as for F$},, we now conclude that F* are polynomials.
Using the G,-invariance of F® and G, ,.,-invariance of F{},, we obtain
for a € R*™

FO(a-(Y,y) = FOWY, y)au(¥, y)~'- (Y, )- (Y, ¥)))
= Fi2.(u(Y, y)av(Y, )" (Y, 3)- (Y, y))
= Fu(Y, 9)(Y,9) = FO(Y, ).

IG, being generated by G, and R*™, F® are IG,-invariant. The proof of
Lemma 2.3 is complete.
Theorem 2 follows at once from Lemmas 2.1, 2.2 and 2.3.

Added in proof. After this paper had been accepted for publication,
[6] appeared. [2] is now published (Comm. Math. Phy., 90 (1983), 353-372).
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