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THE INVARIANT POLYNOMIAL ALGEBRAS FOR

THE GROUPS ISL(n) AND ISp(n)

HITOSHI KANETA

§ 0. Main theorems

This paper is a continuation to the previous one [3], We shall show
that, for the inhomogeneous linear group ISL(n + 1, R) (resp. ISp(n, R)),
the coadjoint invariant polynomial algebra is generated by one (resp. ή)
algebraically independent element. We shall state our results more
precisely.

(i) ISL(n + 1, R), (n ^ 1).

We can consider the following vector space ξ>n to be a subspace of
the dual space realized as in Section 1 of the Lie algebra of ISL(n + 1, R);

0 0 0
. 0

0 \
0

Let t == (X\n

k=iyl + i,k)ylX\ be a polynomial function on §n. Denote by J^
the C-algebra of the coadjoint invariant polynomial functions on the
dual space of the Lie algebra of ISL(n + 1, R).

THEOREM 1. The restriction map of J'n into the set of polynomials on
ξ>n is an ίnjectίve algebra-homomorphism, whose image is C[t].

(ii) ISp(n, R) (n ^ 1).

In this case we can consider the following vector space Qn to be a
subspace of the dual space realized as in Section 2 of the Lie algebra of
ISp(n,R);
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Let 5̂ (0 ^ i ^ n — 1) be the i-th fundamental symmetric polynomial in

y2k,2k-iy2k-i,2k (l^k<^n = ΐ) and set tt = sίy2n^U2nytn. It is not difficult

to see that tt (0 <Ξ i <; λi — 1) are algebraically independent over C. Denote

by ,/n the algebra of coadjoint invariant polynomial functions on the

dual space of the Lie algebra of ISp(n, R).

THEOREM 2. The restriction map of J'n into the set of the polynomials

on ξ>n is an injectίve algebra-homomorphίsm, whose image is C[t0, , £W-J.

The proofs of Theorems 1 and 2 will be given in Section 1 and

Section 2 respectively.

§ 1. The group ISL(n + 1, R)

Let Gn and IGn be the Lie groups SL(n + 1, R), and ISL(n + 1, R),

respectively. Denote by qn and 7gre their Lie algebras respectively. To

be definite,
IG* = {{o ΐ)^^Gn,aeR"ή,lQn = ̂ ξ j); Xe g,, xe R"ή. We

can identify the dual space la* of Iqn with Qn X Rπ+1 via the following

bilinear form on JgB X (gΛ X i " 1 ) ;

where <X, y> ϊ f ( B + 1 ) = 2(n + 1) tr (XY) i.e. the Killing form of the Lie

algebra Qn [4, p. 390] and (x, y}n+i = ιxy. Clearly the following e ί( eJt and

0

e, = - 1 ®,
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Φ

and f4 = '(0 0 1 0 0). The dual basis is given by the following eu

ejk and /,;

Ί-(n + 1)

2(n

i-(n + 1)

i
Φ,

2(n

and /, = /,. For a £ = ( " j ) e IGn we have

Consequently the coadjoint action CoAd(g) of g is given by

CoAd(g)(Y,y) - (^Fw-1 + A, 'u-'y)

with A = J ] <ωα, ίz/"13'>ri + 1ώ, where ω ranges the above bases of gn (not of

Jgn). In the sequel we shall use the notation g (Y,y) for CoAd(g)(Y,;y).

Moreover, we identify Gn and Rn+ί with the subgroups | ί " γj; ueGn\

and jί n + 1 ? ) ; αei? n + 1 of IGn respectively. Denote by Jn the algebra

of JCrn-invariant polynomial functions on Jg*. ί$n stands for the same as

in Section 0. The Theorem 1 is an easy consequence of the following

three lemmas.

LEMMA 1.1. The union of the orbits {g-Qn; geIGn] is dense in Jg* =

qn X Rn + 1. In particular the restriction map F-^F\ξ>n of Jn into the set

of polynomial functions on !ξ)n is an ίnjectίve algebra-homomorphίsm.

Proof. We can show that almost all (Y,y)e Jg* is conjugate to some

element of φ n . Indeed, if yn + 1 Φ 0, there exists aueGn such that u-(Y,y)

'= (uYu~\ ιu-ιy) with Qu^y) = %0,

obtain

a.u.(Y,y) =

, 0,yn + 1). Taking some aeRn+\ we

ό
0

0

6
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To complete the proof, it suffices to reverse the procedure in the proof

of the following Lemma 1.3. The details, however, will be omitted.

LEMMA 1.2. Let F be a homogeneous element of Jn. Then the restric-

tion F\$n takes the form c((Y[l=1 yl+hk)ynXl)m for some constant c and non-

negative integer m.

Proof. Let d be the degree of JF. Then the restriction F\Qn can be

written as
/ n \

V"1

 n I FT Λ/ak \Λ/an + ί
Z J

 α«i, ,«n + i\ II Jk + Uk jJn + l
ai+ ..+an + 1 = d \k = l /

Since F\ξ>n is invariant under the action of the diagonal matrix [cu ,cn M];

e Gn, F\ίQn must be equal to

aχ+" +an+1 = d \k = l /

with bau..^an+1 = aau...jan+Xl\l=1cl1

+

+

1

ak-ak+1). It is now immediate that

βα i... αw+i = 0 unless ak = kax for all k.

LEMMA 1.3. There exists one and only one polynomial F in J> n such

that the restriction F\!QU takes the form (X\7ϊ=ιyl+uk)ylX\.

Proof. Define subspaces ^ f c of Ig* = gTC X Rn+1 and subgroups GTCϊfc:

of Gn as follows (1 ̂  k £ n + 1).

11 Vifc * 0

0 ... 0

0

0

0 yn+hn 0 y n + 1

+ τi zeR
\ o n 0/

(1 ^ AJ < ή)

0

0

0

ό

z

Co

0 i

c

eGn

0

z

0

eRn

°\
o)

>

Jn

c =

+ 1,71 + 1

: diag [c

0, τ

-fc + l J

(1 ^ k ̂  Λ + 1) .
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Moreover, set IGn,k = ί ( " f ) ; u e Gn,fc, a e Rn+ί\ (1 ^ k ^ n + 1). Note

that IGnk leaves ^k invariant (1 <Ξ k <L n + 1). Let Yk(τ) be a represent-

ative of Wk. Starting with a GW)1-invariant polynomial function

= (π
we shall define a polynomial function FzJn such that F\^/t — Ft. For

Yk(τ) =Yk

J*,*-i and

^ ^ ^ n + 1), put zk =

0
0

0

ό

0 1

0

0
•ln-k + 1 •

By simple calculation we obtain

o . . . o 0

with

0

0 yn

0

where Ϋlc_ι denotes the (k — 1) X (k — l)-matrix whose (i,/(-component

(l<i,j <Lk — I) is the one of Yfc. Define functions F k on ^ f c inductively

by Ffc(yfc(τ)) = -Ffc-i(iV Yfc(r)) (2 ^ Λ ^ n + 1). Note that Fk does not de-

pend on yuj9 - - ',yj-uj (j > k) nor r. In particular Fk are invariant under

the action of aeRn+ί. We shall show by induction on k that Fk are

GTCjfc-invariant polynomials. Elementary calculation reveals that g/ —

) - 1 takes the form
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U' Z'

0 0 C'

0 0

0

0 0

Co

C

for g = 0 0 c0

0

0

c

e G ,

We can verify easily that Fk_ι(g'• Yk-ΐ(τ)) = F^.^τ) even though g' does not

necessarily belong to G,.,.,. Since v(g- Yk(τ))-(g- Yk(τ)) = gf • (v(Yk(τ)) • y*(r)),

we have Fk(g Yk(τ)) = Fk(Yk(τ)). Note now that Fk is a polynomial in all

variables except possibly for yk,k-t. In case k ^ 3, Ft is a polynomial

function on <&„, because Fk(g-Yu(τ)) = Fk(Yk(τ)) for

0 1

- 1 0
e G ,

In case k < 2, Fk = Fu which can be verified easily. To sum up, Fk(l <Ξ

k ^ n + 1) is an /G^-invariant polynomial function on <S/k. Now a func-

tion Feyn is to be defined. For (Y,y)elQ*, put

Γl

0
0

Keeping in mind that v (Y,y) = (vYv'\tv1y)eWnλ.u we define Fby F(Y,y)

= Fn+ί(v-(Y, y)). Then F belongs to Jfn. To see this, firstly we shall show

F to be Gn-invariant. By simple calculation we get for ueGn

e G .

Since F κ + 1 is GKiKH1-invariant, it follows that F(u-(Y,y)) = F(Y,y). The

same argument as for Fk yields that F is a polynomial. Secondly, on

account of the ZG,,^+1-invariance of Fn+1, we obtain for ae Rn+\<zIGn)

F(a.(Y,y)) = Fiυav-^iv iY^))) = Fn+1(vav-'-(v-(Y,y)))

= Fn+1(v.(Y,y)) =

since Rn+1 is a normal subgroup of IGn. This completes the proof of

Lemma 1.3.
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§ 2. The group lSp(n, R)

Let now Gn and IGn be the Lie groups Sp(n, R) and ISp(n, R) respec-

tively. Namely,

Gn = {u e GL(2n, R); ιuJnu = Jn} with Jn =

and IGn = {(% f ) ; w e Gn9 a e R2n\. Denote by gw and /gn their Lie alge-

bras respectively. We may assume n >̂ 2, since Gi ^ SL(2, i?). We can

identify the dual space 7g* of Iqn with qn X i?2?z via the following bilinear

form on Iqn X (gn X i?2n);

r 0

- 1
1
0

' 0

- 1
1
0

ί o ) ' ( 7 5 : y ) ) = <X' γ>fP(") + <x'y>2n'
Here <X, Y)sp{n) = 2(n + 1) tr (XY) i.e. the Killing form of gn and <x,y>2«

= lxJny. In the sequel we consider Gn and j?2re to be the subgroups

ί ( o l ) ; M e G ») a n d f o " l ) ; aeR2n) oΐIGn respectively. It is not dif-

ficult to see that the following eu e2ί_1>2</, e2ίt2ί_l9 e;,2fc_1? eJt2k(l <L ί <L n, I <^

j <L2k - 2, 2<Lk<Lή) and / / I <: ^ ^ 2λi) form a basis of Jg n ;

β* =

0 1

0 0

(2Ϊ)

o o with Zj =

0

1

0

Θ

0
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0

0
0

o9o o

0

φ .

Elementary calculation shows that the following eu e2ί_li2ί, e2U2ί_u eU2k_ueU2k

and ft form the dual basis of Jg*

1),

1),

1),

= - (-

Since

\
~{X

o \o 1/
eIGn,

it follows that

CoAd (g)(Y, y) = 1 + with A = Σ <«>a, uy)2nώ ,

where ω ranges the elements of the basis of $n (not of I g J given above.

Simpler notation g (Y,y) will be used for CoAd(g)(Y, y). $ζ>n and tfn

stand for the same as in Section 0.

LEMMA 2.1. The union of the orbits {g-Qn; geIGn} contains an open

set of Jg* = qn x i?2w. In particular the restriction map F-+ F\!gn of Jn into

the set of polynomial functions on Qn is an injectίυe algebra-homomorphism.

Proof. Denote by $n the union (J g. $n (g e IGJ. Note that $n contains

elements of the form

o o

0
0 yin.lltn 0

0 0 Jin

(Ϋ belongs to an open set Θn-X of g κ . t ) .

This follows from the Proposition 1.3.4.1 [5, p. 101] and the simple fact

that the set consisting of the following elements (ue Gn_,, ytj e R)
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0

V

3

yn

0

, _' _

3/2n-3,2n-2

' 0

contains a Cartan subalgebra {λίe1 + + λn-&n-ι\ heR} of g ^ . Using

the notation in the proof of Lemma 2.3, we have vn+1. (Y, y, y2n) e&n

for (Y, y, y2n) e&n+1. I n other words, there exists a smooth map of

&n+λ{y2n-2y2n-i,2n = 0} into &n9 which contains the set {a (Ϋ); Ye On_u a e R2n}

(recall that R2n is regarded as a subgroup of IGn). Thus there exists an

open set Θn + 1 of &n+1. Similar argument shows the existence of an open

set 0 of Ig* such that Θ c ξ>n.

Let Si (0 ̂  i ^ λi — 1) be the ΐ-th fundamental symmetric polynomial

i n y2k,2k-iy2k-i,2k ( l £ k £ n - ί) a n d s e t tt = siy2n.1yln.

LEMMA 2.2. Let F be an element of Jn. The restriction F\ίgn takes

the form Σβts=0 ^ , - , ^ - ί 0 * * K-V

Proof. Since JF| ξ)n is invariant under the action of the diagonal matrix

[1, , 1 , c, c"1] eGn, it takes the form Σβ>0 Bβ(y2n_h2nyln)
β, where B^ are

polynomials in y2k,2k-x, y2k-i,2jc (I ̂  k ̂  n — ΐ). Moreover, F\$n is invariant

under any substitution y2k,2k-u y2k-i,2k f° r —yikw-u —y2k-i,2k and the per-

mutations of 3>2fc,2fc-i> y2k-i,2k (1 ̂  k ̂  n — ϊ). Consequently Bβ can be

written as Σak^o bau...ian_uβ9 sϊ1 s^ϋi1. It remains to prove that ax +

+ <xn-\ ̂  /5 By simple calculation we obtain

0 0

4,-2 ό

σ 0
0 ° 7
O O a 0 2

0 yn

Vtx 0 '

o .

0 y1 2

o .

o o -:
o

0

0

0

0
72W-1,2n

0 0

: 0

0 y

0 y2 :

0 0

... o

0

o
*

Ό

0- 0 1 0

0

* 0

* 0
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for σ = —yly2n-i,2n- Since the value of F at this point must be represented

as a polynomial in y, we conclude that ax + + an.x <L β (note that the

value of F at this point does not depend on the omitted components: cf.

the proof of Lemma 2.1).

LEMMA 2.3. There exists uniquely F{ί) e J'n such that the restriction

Y

0

*

' u

0

*

0

*

*

0

*

0
0

0

2* 0

3V

ueGr,^

Proof. Denote by ^ f c (resp. GnΛ) (k = n, n + 1) the following sub-

spaces (resp. subgroups) of Jg* (resp. Gn);

Ϋ * 0

o

0 : ue

Set JGn,fc = | ( J J ) ; u 6 Gn t t, α e i?24 (fe = n, n + 1). We shall define pol-

ynomial functions F f on Wk (k = n, n + 1). The values of F™ at

* o 0

* * y2n

are defined by requiring that Σi=i F^T2^'^ = y2n-,,2ny\n X d e t ( Γ + Ϋ),

where T is an indeterminate. Note that the restriction F^ \ <&'n is equal

to tt up to the signature. Keeping in mind that F^ does not depend on

the omitted components, we can easily verify that F™ are GTO)rΓinvariant.

For

* y 0 1

* y2n-l,2n 0

put
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-4 0

Tn_ty) 1

o 0

-y

1

• 0

0

2*-2 0

(7

0

ό

where <j> = (yu ,y2n-4)/y2n-2 and σ = -y2n-2ly2n-U2n. Then we have

\ύΫu-ι
0 0 \ \ * ?

0 0 lyϊn-Jy^-Lanl * :

0

1 0

0

0

* 0

0 0 y2n_li2Λ 0

* * 0 y

where u is the first (2n — 2) X (2ra — 2)-block of the matrix υn+1. Secondly,

defining function F^+ι on ^ n + 1 by F^UΫ, y, yj - F f (ι;.+1.(y, y,y2n)), we

shall show that they are /Gn,^-invariant polynomial functions. An ele-

ment g of Gn,n+1 can be represented as g:g2 for some

c 0 e Gn,n and g2 = I o

Clearly gj-(Ϋ,y,y2n) (J = 1> 2 ) are equal to

uΫw1 * cΓ^y 0

and

o l

respectively. Elementary calculation yields

v(gj -(F, y, Λ j ^ i ^ y , y, y2»)-1 e Gn,π (i = 1,2).

On account of GTO,n-invariance of F%\ it follows easily that F^U are

Gnιn+1-invariant. In particular, FZUg (Ϋ, y, y2n)) - -F^^F, y, y2n) for
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β*n-t

σ — Ji l e G71,71+1 '

This implies that Fip+1 are polynomials, since F%li are polynomials in all

variables except possibly for y2n-2. Recalling that F{^+1 depend only on

Ϋ, y and y2n, we conclude immediately that F{^+1 are invariant under the

action of aeR2n. Thus F^ are IGn>n+1-invariant polynomial functions.

For (7, y) e IQ* - gw X R2n, let υ = v(Y, y) be the matrix

with ^ =

Then v-(Y, y) = (uYb"1, try) belongs to ^ n + 1 . To complete the proof of

Lemma 2.3 we shall define functions F ( ί ) on IQ* by F(ί)(Y, y) = F%Mv>_(Y, y))

(0 ^ i ^ n — 1) and show that i^(i) are elements of Jn. To being with,

F(ί) are Gw-invariant. Indeed, for u e Gn, simple calculation reveals that

1 0

Since F%lι are Gnin+1-invariant, it follows that F{ί) are Gw-invariant. By

the same argument as for F%\u we now conclude that F{i) are polynomials.

Using the Gn-invariance of F{i) and Gn)TO+1-invariance of JF^+i, we obtain

for a e R2n

-1 (v(Y, y) (7, y)))

IGn being generated by Gn and i?2re, F ( ί ) are JGw-invariant. The proof of

Lemma 2.3 is complete.

Theorem 2 follows at once from Lemmas 2.1, 2.2 and 2.3.

Added in proof. After this paper had been accepted for publication,

[6] appeared. [2] is now published (Comm. Math. Phy., 90 (1983), 353-372).
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