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ON THE STONE-WEIERSTRASS THEOREM
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Abstract

Let M be a vector subspace of the Banach space C(ft) of all real-valued continuous functions
on a compact space ft, and suppose that M contains a subset L and the constant functions. Then in
order that L be dense in M it is necessary and sufficient that L, M satisfy a filtering property and
that each m in Af can be approximated on every two points of ft by functions in L.

In generalizing the classical Weierstrass theorem, one of the usual forms
of the so called Stone-Weierstrass theorem reads: Let L be a subset of the
Banach space C(ft) of real continuous functions on a compact space fl. Then L
is dense in C(ft) provided that the following four conditions are satisfied:

(a) L is a subspace of C(ft);
(b) L is a sublattice of C(ft);
(c) L separates the points of ft;
(d) L contains the constant functions.

Because of (a) and (d), the condition (c) may be replaced by
(c') Each / in C(Sl) can be approximated on every (pair of) two points on

SI by functions in L in the sense that for e > 0, w,, w2 G ft, there exists / G L
such that

\l(wi)-f(wi)\<e 0" = 1.2).

Thus, in the presence of (a), (b) and (d), the two-point approximation property
(c') is sufficient (and necessary) for the uniform approximation (i.e., the density
property) of L to hold. On the other hand, neither (a), (b) nor (d) is a necessary
condition; for example, the vector subspace of C[0,1] generated by the
exponential function and all polynomials of the form a,x + a2x

2+ • • ••+ anx" is
dense in C[0,1] but does not satisfy conditions (b) and (d). Some trivial
examples show that (a) is also unnecessary. In this note, we put forward the
following result which in particular gives a set of necessary and sufficient
conditions for a subset (not necessarily a vector subspace) L to be dense in
C(ft).
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THEOREM 1. Let M be a vector subspace of C(ft), and suppose that M
contains a subset L and the constant functions. Then in order that L be dense in
M, i.e., M C L it is necessary and sufficient that the following two conditions be
satisfied:

(a) For each m E M, the family {/ G L: / < m} is f (directed upwards or
empty) and {/ G L: / > m} is I for each m EM.

(b) each m in M can be approximated on every two points of ft by
functions in L.

If L is a lattice then (a) certainly holds. Thus the classical Stone-Weierstrass
Theorem follows immediately. The theorem is due to Edwards and Vincent-
Smith (1968) in the special case when L is a vector subspace containing the
constant functions.

To see the necessity, suppose that M C L. Then (b) certainly holds and
1 E M C L , so 3 e G L such that || e - 11| < h then {S e S 3/2 on ft. To verify
(a), let m G M, and

/,,/2ELm = { l £ t : ! < m } .
By compactness of ft, 3 e > 0 such that /,, /2 < m - 2e. Since m - s £M, for
this e, 3 / G L such that \\l - m + E\\< e so / G Lm and /,, l2 < m - 2e < I, as
required to prove for the direct property of Lm. Similarly one can show the
other half assertion in (a). The sufficiency of (a) and (b) can be established by
modifying arguments of Edwards (1969) together with some standard results in
convexity theory. Alternatively, it can be seen immediately from Theorem 2
(below) which is a variant of Edwards theorem and its presentation is more
closed to the classical theorem of Stone-Weierstrass.

To facilitate our further discussions, we must recall a few standard
concepts in the Choquet boundary theory. We shall identify the Banach space
M(ft) of real Radon measures on ft with the Banach dual of C(ft). M+(ft),
P(ft) respectively denotes the positive Radon and probability measures on ft.
For each x G ft, ex G P(ft) is the point-measure concentrated on x. Let W be a
wedge of upper semi-continuous (u.s.c.) functions on ft into [ - °°, °°). For fi, v
in P(ft), we say that /x < v (relative to W) if M ( / ) ^ v{f) for all f G W. We
shall write /A ~ v if /n < v and /x > v. For each x in ft, let

Then, by definition, x G ft is a point in the Choquet boundary Chw(il) if
supp /x C [JC] whenever /A > ex. Thus, if W is assumed to separate the points of
ft, then x G Chw(Ct) iff ft = ex whenever fi ~ e».

If one takes W = C(ft) then clearly Chw(Cl) = ft. Another example is to
take ft = K, a compact convex set in a locally convex space and W = A(K) C
C(K) consisting of continuous affine functions, then Chw(K) is precisely the
extreme boundary d,K of K.
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The following theorem is proved by Edwards (1969) in the case when
ft = K, M = A(K) and L is a vector subspace of M.

THEOREM 2. Let L, M be as in Theorem 1, and suppose that condition (a)
is satisfied. Let f G M. Then f G Liff it can be approximated on every two points
of ChM(fl) by functions in L, that is, iff,

(*) V e >0, w,, w2EChM(il), 9 / G L such that | l(w,)-f(w,)\ < e for
i = 1,2.

The necessity part is trivial and the idea of proof for the sufficiency part
follows essentially Edwards (1969) and is based on a generalized Dini-Cartan
filtering argument together with an application of Bauer's [c.f. Alfsen (1971)]
maximal principle. For completeness, we give a proof and this proof will be
divided into a few steps.

PROPOSITION 1. Let W be as before: a wedge of u.s.c. functions on ft. Then
each f e W attains its Ci-maximum on the Choquet boundary Otw(ft). More
generally if f is a pointwise limit of a directed downward subfamily of W then f
attains its Q-maximum on Chw(Cl).

The first assertion is the usual content of the well-known Bauer's maximal
principle. The second assertion can be deduced from the first. In fact, let W-^
be the set of all pointwise limits of directed downward subfamilies of W. Then
W— is also a wedge of u.s.c. functions. By a well-known monotone con-
vergence theorem in integration theory, it is easy to verify that fj, > v relative
W iff fji > v relative W_,, thus Chw(D.) = Cliw_.(ft), and the result follows.

The following result generalizes the well-known Dini-Cartan theorem:

PROPOSITION 2. Suppose that WD(Sif<-w on Chw(Cl) for some
w e W. (More precisely, let $ be a directed downward subfamily of W with
pointwise limit f on ft such that f < - w on Chw(£l).) Then there exists g0 G 'S
such that go < — w on ft.

PROOF. By assumption / + w < 0 on Chw(il) and / + w G W-,, (since W is
a wedge); it follows from the preceding proposition that / + w < 0 on ft. Thus
c&lf<-won£l and it now follows from the classical Dini-Cartan argument
that 3 goG <S such that go< - w on ft.

PROPOSITION 3. Let M be a vector subspace of C(ft) containing the
constant functions. For each h G C(ft), define the upper envelope function h by

/i(x) = inf{m(x):m£M,/i<m on ft} (xGft).

Then, for each x G ft, one has that

h(x) = max{/x(/j): /x G P(ft), p ~ ex relative to M).
In particular, if h is constant on [x]M and x G diM(ft) then h(x) = h(x).
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PROOF. For any fixed x Gil, the map h «*»h(x) is a welldefined sublinear
functional on C(ft) such that /i = h if /i £ M and /i g 0 if h g 0. For a fixed
/i G C(ft), by the Hahn-Banach theorem there exists a linear functional <f> on
C(ft) such that <j>(h) = h{x) and <^(/) s / (x ) for each / in C(n). Then <̂  is a
positive normalized linear functional on C(il) (so <j> G P(ft)) and <j> ~ ex

relative to M. Hence

/i(A:) = (fi(/i)graax{/i(/i):/ieP(fl),fi~£1 relative to M},

and the result follows since the opposite inequality is easy to check.
We are now ready to prove the sufficiency part of Theorem 2. Suppose

then L, M and / satisfy the condition (a) and the two-point approximation
property (*). We wish to show that / G L. Let e > 0 be given. For each
x G ChM(VL), it follows from (*) that the family

Lx={l(EL: l(x)<f(x) + e}

is non-empty and has the pointwise supremum, say /„ such that / - e < fx g
+ oo on ChM(il). If we can show that Lx is directed upward then proposition 2
would enable us to choose L G Lx such that f - e < lx on ft and consequently
the family

<S = {/ G L: / - e < I on ft}

is non-empty and has the pointwise infimum < f + e on ChM(fl). By condition
(a) it follows from Proposition 2 that there exists g G ̂  such that g < f + e on
ft. Then g £ L and || g - f || < e. Thus, to complete the proof one need only
show that Lx is directed upward for all x G ChM(il). Accordingly, let /,, l2 G Lx,
h = /, v l2 and a = f(x) + e. Then, in virtue of Proposition 3, h(x) = h(x)< a. It
follows from the definition of h that there exists m G M such that h <m and
m(x)<a. Now, /,,/2 are elements of the family {lGL:l<m} which is
directed upward by condition (a); thus there is / 3 G L s u c h that llyl2S l,< m
(so that I3(x) < m(x) < a ) . This implies that I3 G Lx and 13S I,, l2, as required to
prove.
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