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Abstract

In the paper we study the asymptotic behaviour of the number of trees with n vertices and diameter
k = k(n), where k/^/n —*• oo as n —> oo but k = o(n).

1991 Mathematics subject classification (Amer. Math. Soc): 05C30.

1. Introduction

The diameter of a connected graph G is the largest distance between its vertices, where
the distance between two vertices is defined as the number of edges in the shortest
path connecting them. Let t(n,k) denote the number of labelled trees with n vertices
and diameter equal to k. The asymptotic value of t(n, k) for k which is near jn was
established by Szekeres [3] by a delicate analysis of the generating function. The
purpose of this work is to present a simple combinatorial argument by which one can
extrapolate Szekeres' result to all values of k such that k/^/n -> oo but k/n ->• 0 as
n —>• oo.

2. The number of trees with large height—a crude upper bound

In this section we study the behaviour of h{n, k), the number of labelled rooted
trees on n having height k, where by the height we mean the maximum distance from
a fixed vertex v0, called the root, to any other vertex of a graph. (Here and below we
shall always assume that v0 is the lexicographically first vertex.)
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[2] The number of trees with large diameter 299

Our starting point is the following result of Renyi and Szekeres [2], which determ-
ines the limit value of h(n, k) when k is of order yfn.

THEOREM 1. Let n,k be natural numbers and fi = 2n/k2. Then

(1) Pn(k) = ^ - = (2 + o(l))Mf £ (2i V/J - 3/V)
n v nn v n ;=1

uniformly for every 0 < c < \/3\ < C and any positive constants c and C.
In particular, for n large enough and for every I < k < n — I, we have pn(k) <

Let us note that, since c in Theorem 1 could be chosen arbitrarily small, there exists a
function y (n) which tends to infinity as n -» oo such that (1) holds uniformly for every
1 5 I l//*l < y(n). Throughout the paper we shall always assume that this function
y(n) is non-decreasing, y(l) > 1010 and, for n large enough, y{n) < logloglogn.

The formula for pn(k), given in (1), can be transformed (for example, using
Poisson's formula) to the form

/2JFvV 2i4 3/2 \ / i2\ ^/2i4k3 6i2k\ ( i2k2\
2A — > —— = = I exp I = > I I exp I I .

T ft • i \ ^y 7l P - /̂TtL/ / \ p I • i \ ft ft I \ 4-ttl I

Thus, for every function y'(n) < y(n) such that y'{n) —»• oo as n —>• oo, uniformly
for every k = k(n) such that y'{n) < k2/n < y(n) we have,

n2

It turns out that the left hand side of (2), slightly adjusted, can easily be shown to
be an upper bound for pn (k), for all k of the order larger than -y/n.

LEMMA 1. Let

{ / 2/fc3 ( k2 k3 \ 1
Pn(k) I — exp I - — + — I | .

I n \ zn in j \

limsup/(n) < 1.
n—*-oo

PROOF. Note first that

h ( n , k) < ( H~l ) k \ k ( n - I ) " ' * " 2 = (n - " Ul" ^""*-2
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300 Tomasz Luczak [3]

so, for k > n061,

2k ( k2 k3 \ n2 ( k \ nc^ e x p ^ - - + - j < ^ e x p ^ - J <0.5.

(Here and below we claim that all inequalities are valid only for n large enough.)
Suppose that the assertion of Lemma 1 does not hold. Then, for some constant

e > 0, there exist an absolute constant C and a function z(n) such that z(n) > 1 + e
and for every n0, one can find n > n0 such that

2k3 ( k2 k3

(4) p . ( t ) > z ( n ) _exp( - - + -

for some ^ n log logy (n) < k < n061', whereas for every m < n we have

f(m) < Cf(n) < 2Cz(n).

We shall show that (4) leads to a contradiction.
Let us define an («, k, l)-structure as a triple (Tr, P, T"), where 7" is a rooted tree

of | T | < n — I vertices, P = vov\... vk_i is a path of length / contained in T which
starts at the root, and T" is a rooted tree with n — \T'\ vertices with height equal to
/ — 1. Suppose that a rooted tree T has height k and path P' = v0v1v2... vk joining
the root of T to the highest leaf of T. (If there are many such leaves, take as vk the
lexicographically first one.) Then one may obtain from T an («, k, /)-structure by
setting P = VQV\ ... ut_/, and picking as T and T" trees obtained from T by deleting
edge vk-iVk-i+\, where vertex vk-t+1 serves as the root of T'. Thus, the number
a(n, k, I) of (n, k, /)-structures is a rather natural upper bound for h{n, k). In fact, we
shall prove later that for suitably chosen /, h(n, k) = (1 + o(l))a(n, k, I).

Clearly, for a(n, k, I), we have

r-
»=/ * m I n"~

;::>-"•
n\ (m + \)m (n — m — 1)"

V "-1 {m + \)\{n~\-k + l

Hence, using Stirling's formula, we get

a(n, k, 1) nn+1/2 v ^ (m + I)"1"1 (« - m - 1)«-«-*-H-2

(m + 1)! (n - w - 1 - k + ly-m
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x(* - l)Pm{l) exp (-

+

\m n — m — k +1

k -

T ^ V V n-m-l-k + l

(5) x (
m n — m — k + 1 n

where all constants hidden in O() can be bounded from above uniformly for all m.
If Jn\og\ogy(ri) < k < n061 then

k-l y—•-*+/ / {k_i)i

so, from (4),

a{n,k,l) \
n"~2 ~\ O^i m3'2~"t'\2(ji-m) \m ' n—m-k-

We shall estimate the above expression for / = (n/2k) log y (n). Let us consider
first the case when m < /w_, where /w_ = n2/(20k2) logy(«) < I2/logy(m). Then,
due to our assumption,

2/3 / /2 /3 \ 2/3 / /2 /3 \
/»«,(/) < f(m)— exp - — + — < 2Cz(«)— exp - — - + —

w2 \ 2w 3m2/ m2 \ 2m 2>m2)

and, for n large enough,

3 ^ (k-l)2

„ „ , , { k * \ ^ u 3 ( i 2 ( k - i f i3 \
< 2Cz(«)exp ( —- V — - exp - — + ^ ^- + r - r

\ 3 « 2 / ^ / M 7 / 2 V 2m 2{n - m) 3m2/

- ^ , x / ^ k 3 \ ^ kl3 ( I2 kl I3 \
< 2Cz(n) exp - — + -— ) V ^77 exp - — + + —

V 2« 3n2 / *-f /n7/2 V 2m n—m 3 m 2 1
\ / m=t N '

< 2 C z ( « ) e x p ( - - + _

2Cz(/i) *3 / k2 k3 \
n2 CXP V 2n + 3 n V "
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Now set m+ = {An2/k2) log y (n) and consider the case when m_ < m < m+.
For such m we have 0.1 log y{m) < I2/2m < log y{m) so we can approximate pm{l)
using (2). Thus

k3 \ ^ k ( {k-l)2 (\1 ( k3 \ ^

V2n \3«2 / mt^ 2(n - m) \m n

/ t 3 \ f 2kP ( I2 {k - I)2

exp (&) ? ^ e x p (-2^ - 2(^0
The function g{x) = a2/x + b2/{c — x) attains the maximum for x = ac/{a + b).
Set m0 = ln/k and Am = m — m0. Then (6) becomes

k2 k3 \ m^° kl3 ( (Am)2 I2

Finally, note that if m >m+ then

(* - 1 ) 2 k^__ kl m{k -1)2 k2

2(« — m) In n — m n2 2n

Thus, since from Theorem 1 max;{pm(/)} < 0{\/y/m), we arrive at

^ 1 k ({k-l)2 (\ 1
I- +
\m n—m-

^ + OI + r
2{n — m) \m n—m-k
hi 1.3 \ n-*+/-l i

O{k) ( k2 k3 \ 0{k3)
< exD I 1 I <

k2 k3\

2~n + 3n~2)

Hence

n"
/Cz(n) + O(l) \ /2*3 / k2 k3 \ \
V logy(n) / \ « 2 V 2« 3n 2 / /

contradicting (4).
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3. The number of trees with large height—the asymptotic behaviour

In this part of the paper, using the upper bound for pn (k) provided by Lemma 1,
we repeat the argument from the previous section to get the limit value for h(n,k)
when k2In -*• oo but k — o(n). However, in order to do it we should know that, for
suitably chosen /, a(n, k, I) = (1 + o(l))h(n, k).

Let F{n,k) denote a forest chosen uniformly from all forests with the vertex set
{1,2,... ,n) and n — k edges, such that vertices 1,2,... ,k belong to different trees.
Moreover define H(n, k) as the result of adding edges {1, 2}, {2, 3), . . . , { £ — 1, k]
to F(n, k). Now, in order to show that a(n, k, /) = (1 + o(l))h(n, k) it is enough to
prove that almost surely (that is, with probability tending to 1 as n —> oo) the graph
H{n,k) contains no paths starting at vertex 1 longer than k +1 — 2.

LEMMA 2. Let k2/n —> oo, k = o{n) and a>(ri) be any function which tends to
infinity with n. Then almost surely each path contained in H(n,k) which starts at
vertex 1 is shorter than k + co(n)n/k.

PROOF. Let 7}, for / = 1,2,... ,k, denote the tree of F(n, k) which contains
vertex i. We shall show first that almost surely every Tt contains less than m(i) =
(k — i + y/a)(n)n/k)2 vertices. Indeed, since it is well known that almost surely the
maximum size of a tree in the random forest F(n, k) is less than (An2Ik2) logn (see
Pavlov [1]), the size of T( is less than m(i) for every i < k — 3(n/k) logn. On the
other hand, for the expected number of trees Tt such that i > i0 = k — 3(n/k) logn,
and with Tt having more than m(i) vertices, we have

, (k — l)(n — m — i)"-"1-*-1

„ | 1 \irt — 1 v

1 (n - k)"~k+l/2(n - m)"~m~k~l

~ j - ^ m^r> m3'2 (n-k- m)"-k-m+l'2nn

— 2-~i 2—1 m3/2 e X P \ ~~ -ln2

—jfc—1

i<k—iQ m>m(k—i)

3(n[k)\ogn yy

< y -
< 40exp(-<w(n)/3) - • 0.

Let X be the random variable which counts all trees 7} with less than m(i) vertices
and with height at least h(i) = k - i + co(n)n/k. Since h2(i)/m(i) -> 0, the
probability that the height of Tt is larger than h(i) provided that it has m < m(i)
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vertices is, due to Lemma 1, bounded from above by

E 2k3 ( k2 k3 \
— exp (-— + — <

. m2 \ 2m 3m2)
4A2(i) / h\i) h\i

— exp — - l i + -
m \ 2m

Thus, calculations similar to that from (7) lead to the following formula for the
expectation of X

* ^ 4h2(i) ( k2m h\i) h\i)\
E E - P ( + )

k2m h\i)

k2h\i)

< a>(/i)exp(—co(n)) —>• 0.

Thus, almost surely H(n,k) contains no trees 7} with height at least h{i) =
k — i + o){n)n/k and the assertion follows.

THEOREM 2. Let k = k(n) be a function ofn such that k/^/n ->• oo as n -> oo but

k — o(ri). Then

(8) h(n,k) = (l +
(n-k)l

PROOF. Since, for k < y/ny(n), (8) follows from (2) and Stirling's formula it
is enough to prove Theorem 2 for it > */ny(n). Due to Lemma 2, h(n,k) =
(l+o(l))a(«, k,l) wheneverIk/n -> ooasn -> oo. Letusset/ = (n/k)logy(n/k).
Then (5) becomes

a(n,k,l)(n-k)l ' '" ' ' '" ' N »-«-»-*•"

n"-k~2 ~n\

(9) x -
n!

\ ^ ! L Z L ( I k~l V

/ /I 1 m\\
pm(l) exp (-fe + / + O - + — - + - •

\ \m n — m — k +1 n ))

Setw_ = (rt2/50A:2)log)/(rt/fc)andm+ = («2/)t2)logy(n/it)loglogK(«//t). As
in the proof of Lemma 2 we shall split the sum in (9) into three parts and estimate
each of them separately.
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[8] The number of trees with large diameter 305

Note first that, by elementary calculations,

n—m — l— k+l

\ + n-m-l -k + l

k-i \ «-!-*+' (m(k-l)2 /mk3 m2k2H (m(k-l)2 (mk3 mH

Thus, since k2/n > y (n), for m < /n_ we get

n-m-\-k+l

n-m- 1 - k + l)

(10) = ( l + o ( l ) ) ( H ) e x p ( ^ — ) .
1 n-k + l-lj \2n2 J

Moreover,

(1

(11)

+ °(1)) (^n-^Ll)"" 1 ^- (1 +OW) (1 + ^ ) ^ X P (~/+7)

(n - ^)! «*

Hence, for m < m_, using Lemma 1 we get

1 nk(n-k)l ^ J^ ( k -1

^ « /*/ mk P I (\ m
(12) < (1+0(1)) Y, ^ P ^TT + T ^ ^ C> ( +

^—' m7/2 V n 2n2 3m2 2m \m n

/*/ mk2

V n 2n2

But for m < m_ we have

*/ in*2 /3 /2 /2

n 2n2 3m2 2m 20m'

so the left hand side of (12) can be bounded from above by

(l + o(l))V -^rexpf --J— ) <
* ^ YYV ' \ 20m I - »2n2logy(n/^)
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Similarly as in the proof of Lemma 1, using (2), we get

1 nk{n-k)\ ^ k ( k -1 xk+i

n\ L.^f2Pm{l)y + n-m-\-k

2kl3 (kl mk2 I2(kl

and setting m0 = In/k, Am = m — m0 leads to

kl mk> I2

1+0(1) m ^ ° 2kl / (Am 2 /2 \

V 2 ml)
ki2 r00

(14) = * • - w - w / (

In order to deal with large values ofm note that for every x € (0, 1/2) and^ e (0, 1)

(1+Jt/U -y)?~y < ( l+^)exp(-0.1x2j2) .

Thus, for m > m+, we have

k-l

and (11) together with the fact that pm(l) < 100/^fm implies that

A: - / y - - I - *

(.5) 5 0 V i * 5°
| X 2 m+ log log )/(«/*;) n2'

Thus, the assertion follows from (9), (13), (14) and (15).
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As a simple consequence of Theorem 2 we get a new upper bound for h(n,k),
which, for large k, is much better than the one given in Lemma 1.

COROLLARY 1. There exists an absolute constant A such that for every n and every
k > */h~
(16) h(n, k) < An\k3n"-k-4/(n - *)!.

PROOF. Let us suppose that the assertion does not hold. Then we may find a
sequence {1,}°^ and a function k(n) such that k{n) > yfn and

(17) hm j-T = 00.

Due to Theorems 1 and prefthm:3.1 the function k{n) could be chosen in such a way
that n/k{n) < C for some constant C. However, in such a case, from the trivial upper
bound given in (3) we get

/i(n,, *(*,))("/-£)! < n) < c 2

contradicting (17).

REMARK. After some more work it can be shown that if k(n)/n —> a, where
0 < a < 1, then for some constant a (a) > 0

(18) h(n, k) = (1 + o(\))a(a)n\kinn-k-A/(n - k)l.

Theorem 2 states that a (a) —>• 2 as a —> 0 and one could easily check that a (a) —> 1
as a —> 1. However, to determine the exact value of a (a) for 0 < a < 1 one probably
needs more sophisticated tools than the elementary combinatorial approach presented
in this paper.

4. Trees with large diameter

The asymptotic behaviour of the number t(n,k) of trees with n vertices and diameter
k was considered by Szekeres in [3], who found the limiting value of t (n, k) for

THEOREM 3. Letn,kbe natural numbers and P = n/(2k2). Then

2 F £ r _ 3 , + ?5
n j ^ L=

n""1 3 V n j ^
(19) - 307r2/2/}3 + 47r6i6p* - IOTTV/P] exp(-/3;r2/2),

uniformly for every 0 < c < |/5| < C and any positive constants c and C.
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The main result of this section is stated in the following theorem.

THEOREM 4. Let k = k(n) be a function ofn such that k = o{n) but k/^/n -> oo
as n -+ oo. Then

2n*k5n"~k~5

(20) *(«,*) = (i + o ( i ) ) — : —
(n -k)\

REMARK. Note that t(n, k) = (2 + o(l))(k/n)5 exp(-k2/2n + O(k3/n2)). Thus,
if we transform (19) using Poisson's formula, in the resulting sum the polynomial
coefficient of exp(— 1//J) disappears.

PROOF. Let us consider first the case when k is odd. Each tree with diameter
k = 2r + 1 could be, in a natural way, decomposed into two rooted trees, each having
height r, so

t(n,2r + l) = - ^ ( \mh{m,r){n-m)h{n-m,r),
2 Jthii W

where the factor 1/2 appears since we count each tree twice. If m is contained between
n/2 and 3«/4 then we could use Theorem 2 to estimate h(m, r) and h(n — m, r), so,
using Stirling's formula, we get

3"/4 / n \
y ^ \mh(m,r){n — m)h{n — m,r)

r-3 2r\n - m)\(n - m)"-m-r-3

2 '—'.- \ m
m=n/2 \

2 ^m\{n-m)\ (m - r)\ {n - m - r)\

2r6n\n'-2r+1/2 y ^ 1 (n - 2r)"-2rmm~r(n - m)n

~ -Jin (n-2r)l ^f m1'2^ - m)1'2 n"-2r{m - r)m~r(n - m - r)"-m-r

Setw -n/2 + Am. Then

^ 1 (w - 2r)"-2rmm-r(n - m)"-"1"'
7/2(« - tri)1!2 n"-2r(m - r)m~r(n - m - r)"-m-r

V 27 (w -
- 4(Am)2)7/2 n"~2r{n + 2Am - r)

n/2+Am-r(n - 2Am -

^-2 ^ / \6r(n - r)(Am)2

(« -2 r ) 2 (« 2 -4 (Am) 2 ) /

/ 8rAm \A m

V (n - 2r + 2Am)(n - 2Am))
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[12] The number of trees with large diameter 309

27 / 8r2(Am)2 /r(Am)2

exp V — + °

Hence

Iff")
2 is, w

— ..\r n
mh(m, r)(n - m)h{n — m, r) = (1 + o(l))

2«!(2r

Moreover, one can use (16) and repeat the above calculations to show that the sum of
all terms for which either m < n/2 or m > 3n/4 is o(nlr5n"~(2r+l)~5/(n - 2r - 1)!).
Thus, (20) holds for odd it.

Now let k = 2r. Then, similarly as in the odd case, each tree T having diameter
k = 2r can be viewed as two rooted trees T and T" whose roots are joined by an
edge, where the heights of T and T" equals r and r — 1 respectively. Furthermore,
for each tree T, such a decomposition could be done in at least two ways. Hence,
since h(n, k) = (1 + o(l))h(n, k + 1), as an upper bound for t(n, 2r) we get

mh(m, r — 1)(« — m)h(n — m, r)

1 + 0(1),

m=

(21) =(l+o(l))f(n,2r

mh(m, r)(n — m)h(n — m, r)

However, the number of decomposition of a tree T with even diameter into T and
T" can be larger than 2. Indeed, it might happen that deleting from T the common
midpoint w of all paths of length 2r results in a forest of rooted trees, among which
more than two have height r — 1. (By the root of a tree in such a forest we mean the
vertex previously joined to WJ.) Thus, in order to show that the number of trees for
which this happens is a negligible fraction of the number of all trees with diameter
k, it is enough to check that a 'typical' tree T" having height r contains no two
edge-disjoint paths of length r which start at the root.

Note first the following simple fact.

FACT 1. Let F(n,k) be a forest chosen at random from all forests with vertex set
{1, 2 , . . . , «} , which consists ofk components each of them containing precisely one
from vertices [1,2,... ,k) and co(n) —> oo as n —»• oo. Then the probability that
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the component of F(n, k) containing 1 has more than nco(n)/k vertices tends to 0 as
n ->• o o .

PROOF. By symmetry, the expected size of each component of F(n, k) is n/k. Thus
the assertion follows from Markov's inequality.

From the proof of Theorem 2 it follows that to build a rooted tree T with n vertices
and height k one should set / slightly larger than n/k, choose k — I vertices, build a
path P = vovi v2... vk-i starting at the root, choose roughly m other vertices, build on
these vertices a rooted tree having height k — I — 1, join the root of this tree to the last
vertex !>*_/ of P and finally, on the remaining n — m vertices, build a forest F such that
each of its components contains precisely one of vertices v0, vu v2,..., i>*-/. Thus,
by the fact above, if T is chosen at random from all rooted trees with n vertices and
height k then the component of F containing root v0 almost surely has size less than
*Jn < k, provided k/y/n -» oo as n -> oo. Hence, the number of rooted trees of n
vertices which have height r and contain two or more paths of length r starting at the
root is negligible when compared with the number of all rooted trees of size n and
height r, provided r/y/n -*• 0 as n -> oo. Consequently, (21) gives the correct value
of t (n, 2r) and the assertion follows.

REMARK. Similarly as in the case of the height of rooted trees one can also prove
that

t(n, k) < A'n\k5n"-k-5/(n - k)\,

for every k > ^/n and some absolute constant A'.
Moreover, if k{n)/n —> a, where a < 0 < 1, then

where the constant a(a) is defined by (18)).
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