

p-n Based Photoelectrochemical Device for Water Splitting Application Alpha-Hematite (α -Fe₂O₃)-Titanium Dioxide (tio₂) as N-Electrode & Polyhexylthiophene (rrphth) - Nanodiamond (ND) as P-Electrode

CrossMark

Hussein Alrobei^{1,2}, Hye Young Lee³, Ashok Kumar¹, and Manoj K. Ram^{4,5}

¹Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, USA

²Department of Mechanical Engineering, Sattam bin Abdulaziz University, Alkharj, Saudi Arabia

³Department of Materials Science and Engineering, University of South Florida, Tampa, Florida 33620, USA

⁴Clean Energy Research Center, University of South Florida, Tampa, FL 33620, USA

⁵PolyMaterials APP, LLC, 3802 Spectrum Blvd, Suite 145, Tampa, FL -33612, USA

ABSTRACT

Recently, photoelectrochemical (PEC) water splitting using semiconductor photoanode has received great attention due production of hydrogen through clean energy. The alpha hematite (α Fe₂O₃) is one of the candidate amongst photoanodic materials, which is chemically stable, abundant in nature with a band gap of 2.0-2. 2eV allowing to be harvesting in the visible light. However, it has also drawn back due to high recombination rate of electron-hole pair revealing the low concentration of charges and lower device performance. In common with α -Fe₂O₃, the titanium dioxide (TiO₂) has been known as one of the most explored photoanode electrode material due to its physical and chemical stability in aqueous and non-toxicity. However, TiO_2 has large bandgap (3.0-3.2 eV) that results in absorbing UV light and very small part of visible region. Incorporation of TiO_2 in α -Fe₂O₃ could achieve better efficiencies as photoanode materials by enhancing the electric conductivity, limited hole diffusion length, and both materials can absorb light in both UV and visible spectrum range. However, the photoanodic properties of α -Fe₂O₃ with different concentrations of TiO₂ are mostly unknown. Under this work, α -Fe₂O₃-TiO₂ nanomaterial was synthesized using a hydrothermal method. The α -Fe₂O₃-TiO₂ nanomaterials containing different weight percentage (2.5, 5, 16, 25, and 50) of TiO₂ to α -Fe₂O₃ were characterized using SEM, XRD, UV-Vis, FTIR and Raman techniques, respectively. The electrochemical properties of α - Fe_2O_3 -TiO₂ nanomaterials were investigated by cyclic voltammetry and chronoamperometry techniques, respectively.

INTRODUCTION

The great attention has been paid for the production of hydrogen as an alternative energy by the photoelectrochemical (PEC) splitting water processes [1, 2]. The transition metal oxide semiconductors have been used as photocatalyst for water PEC based splitting applications [3-6]. Among materials, α -Fe₂O₃ is one of the extensively explored material, and has advantages for production of hydrogen in PEC process: chemically suitable for electrolytes (PH > 3), relatively narrow bandgap (2.0 -2.2eV), abundant and inexpensive [7, 8]. Due to the short electron-hole pair time (<10 ps) and hole diffusion length (2-4 mm) which cause high recombination rate of photogenerated carriers in the bulk, hematite based water splitting has lower efficiency than that of the theoretical (12.6 mA/cm²), and have restricted PEC applications [9, 10]. On the surface of hematite based water splitting, in addition, the oxidation-reduction seems to delay due to the kinetics of the interfacial extraction of hole, and then might be accompanied by increased charge recombination and the decline of efficiency [9, 11]. To improve photoelectrochemical properties, TiO₂ has been investigated because of low cost for the fabrication of photoelectrochemical stability and inexpensive[12, 13]. However, TiO₂ has also significant limitations. Firstly, excitation is generated in response to UV regions. Secondly, the PEC device, which has been fabricated with TiO₂ often, has short diffusion length of excitation [14, 15]. To solve above limitations, there are some suggestions of reducing bandgap that allows PEC device to absorb visible region and making large contact area with electrolyte that allows PEC device to split of electronhole pairs [14, 16]. As gathering advantages of both metal oxide materials, TiO₂ with Fe₂O₃ film was shown as increasing contacting area with electrolyte reducing e-h recombination and shift light absorption along with visible region [9, 17, 18].

However, the property change of hematite photoanode by TiO_2 different concentrations is unknown exactly. Under this work, nanocomposite α -Fe₂O₃-TiO₂ nanomaterials with different concentrations (50%, 25%, 16%, 5% and 2.5% of TiO₂) were synthesized by hydrothermal method, and were dried at 300 °C and 500°C, respectively. The physical properties of α -Fe₂O₃-TiO₂ nanomaterials were compared by using SEM, XRD, UV-Vis, FTIR and Raman measurements. The photoelectrochemical properties were also estimated by chronoamperometry technique.

EXPERIMENT DETAILS AND CHARACTERIZATION

Iron chloride (FeCl₃), titanium (IV)-isopropoxide solution (TTIP), and sodium hydroxide (NaOH) were used to synthesize the α -Fe₂O₃-TiO₂ nanomaterials. Potassium bromide (KBr, Aldrich) which was purchased from Sigma-Aldrich co., was used for making FTIR sample pellets. Acrylic acid (Aldrich) was used by mixing the synthesized material for fabricating film. To measure electrochemical properties, indium tin oxide (ITO) glasses coated was used to coat α -Fe₂O₃-TiO₂ which worked as working electrode. We have used, silicon wafers coated with polyhexylthiophene (RRPHTh)-nanodiamond (ND) as counter electrode.

 α -Fe₂O₃-TiO₂ nanomaterials were synthesized by hydrothermal process. Equation 1 shows the chemical reaction equation. The synthesized α -Fe₂O₃-TiO₂ nanomaterials were obtained by changing different concentrations of reactant materials, which were FeCl₃ and TTIP. To obtain different concentrations of TiO₂ (50%, 25%, 16%, 5% and 2.5%), the amount of FeCl₃ and TTIP were put into the round bottom flask with DI water (450 ml), respectively. To dissolve the above materials, the resulting solution was stirred with magnetic stir bar, and the flask was put on the hotplate at 60 °C for an hour. After an hour, NaOH solution (50mL) was added to the resulting solution and connected up to reflux condenser. Reaction temperature was maintained at 90 °C for chemical reaction, and reaction time was maintained for 24 hours. The solution was separated as the α -Fe₂O₃-TiO₂ nanomaterial and residues by using filter paper. The α -Fe₂O₃-TiO₂ nanomaterial was washed using DI water twice in order to remove the impurities. Then, α -Fe₂O₃-TiO₂ nanomaterial was dried at 300 °C, and 500 °C for 2 hours for each and dried α -Fe₂O₃-TiO₂ nanomaterial and further grinded by using ball-milling machine. TiO₂ nanomaterials was fabricated with 0.05M of TTIP, and subsequently dried at 500 °C for 3 hours using similar condition of α -Fe₂O₃-TiO₂ nanomaterial synthesis process.

$$4FeCl_3 + Ti\{OCH(CH_3)_2\}_4 + 5NaOH \xrightarrow[at 90^\circ C for 24 hours \& drying]{} 2(2TiO_2 - Fe_2O_3)$$
$$+ \alpha \ (eq1)$$

The α -Fe₂O₃-TiO₂ nanomaterial and KBr powder were mixed and applied hydraulic press for obtaining the pellets. The Fe₂O₃ pellet and TiO₂ pellet were prepared for comparative analysis. To fabricate film-type specimens, the α -Fe₂O₃-TiO₂ nanomaterial was mixed with little acetic acid for obtaining the colloidal materials. The colloidal α -Fe₂O₃-TiO₂ materials were used to coat on ITO glasses (2cm ×2.5 cm) and were cured at 100 °C for an hour. The counter electrode was fabricated by immersing pieces of Si-wafer in RRPHTh-ND colloidal solution [19].

The X-ray diffraction (XRD), SEM and Raman spectroscopy were performed by using powder form samples. For electrochemical properties, a Potentiostat/Galvanostat instrument (Radiometer Analytical, Volta lab 40 PGZ301) was utilize. To measure cyclic voltammetry and chronoamperometry properties, the working electrode (α -Fe₂O₃-TiO₂ /ITO) and the counter electrode (RRPHTh-ND /Si) were immersed in NaOH (0.1M) solution as electrolyte and connected to the equipment using clips.

UV-Vis SPECTROSCOPY

The UV-Vis characterizations on α -Fe₂O₃-TiO₂ nanomaterials film on glass substrates was measured using UV-visible spectrophotometer (Jasco- V-670 absorption spectrometer). Figure 1 and Figure 2 UV-Vis spectra of TiO₂, α -Fe₂O₃ and α -Fe₂O₃-TiO₂ that were prepared at various concentrations of TiO₂ to α -Fe₂O₃, and dried at 300 °C and 500°C, respectively. The absorption spectra were able to obtain from the UV-Vis spectroscopy by measuring the sample holder that contained powder formed sample dissolved in DI water. Table 1 and 2 listed the absorption peaks of all samples. For comparison, the α -Fe₂O₃ nanomaterial exhibits absorption in the vicinity of 300 nm in the UV region and broad weak absorption at 400-600 nm in the visible region (figure 1&2a). For the TiO₂ nanomaterials, two absorption bands in the UV regions at 237 nm and 327nm are observed. In addition, there are also few very weak absorption bands at 428 nm and 488nm in visible region (figure 1&2). Figure 1 (b-f) b- shows the UV-Vis absorption bands for five different concentrations TiO₂ (2.5%, 5%, 16%, 25% and 50%) to α -Fe₂O₃ nanomaterials dried at 300 °C. Figure 2(b-f) shows absorption band for α -Fe₂O₃-TiO₂ nanomaterials dried at 500 °C with same condition. From the figure 1 and figure 2, drying temperature seems to have insignificant influence on absorption bands of the material. For high concentration of TiO₂ (16, 25, and 50%) samples, the absorption bands are similar to that of TiO₂ sample. Thus, absorption bands exhibit the characteristic of TiO₂ nanomaterial. For the low concentration TiO₂ (5 and 2.5 %) samples, the absorption bands appear for the α -Fe₂O₃-TiO₂ nanomaterials which are different spectra than Fe₂O₃ and TiO₂ samples. The absorption bands at 238, 270 and 320 nm begin to exhibit in UV region. In addition, strong absorptions appear near 428 and 540 nm in visible region. Thus, α -Fe₂O₃-TiO₂ nanomaterial with small quantity of TiO₂ seems to be red shifted due to the TiO₂ nanomaterials showing the improvement in absorption in the range of 400-600nm[20, 21].

UV-Vis Spectra (Samples dried at 300 °C)

Table 1: The peaks of each α-Fe2O3-TiO2 dried at 300 °C

	Wavenumber (cm ⁻¹)
TiO ₂	237, 327, 428, 488
TiO ₂ (50%)	236, 397, 438, 524, 607
TiO ₂ (25%)	238, 321, 386, 532
TiO ₂ (16%)	236, 453, 561
TiO2 (5%)	279, 325, 428, 534
TiO ₂ (2.5%)	216, 236, 264, 329, 432, 537
Fe ₂ O ₃	299, 364, 488, 537

Figure 1 UV-Vis absorption spectra of a-Fe₂O₃-TiO₂ dried at 300 °C

Table 2: The peaks of each α-Fe₂O₃-TiO₂ dried at 300 °C

	Wavenumber (cm ⁻¹)
TiO ₂	237, 327, 428, 488
TiO ₂ (50%)	235, 334, 398, 526
TiO ₂ (25%)	236, 404, 432, 528
TiO ₂ (16%)	236, 335, 456, 560
TiO2 (5%)	230, 271, 329, 428, 544
TiO ₂ (2.5%)	218, 239, 268, 322, 428, 544
Fe ₂ O ₃	299, 364, 488, 537

Figure 2 UV-Vis absorption spectra of α-Fe₂O₃-TiO₂ dried at 500 °C

FTIR MEASUEMENT

The FTIR measurement on nanomaterials was made using KBr pellets in transmission mode using FTIR spectrophotometer (Perkin-Elmer spectrum one). The data was obtained after averaging the 16 scans for each sample recorded from 400 to 2000 cm⁻¹. Figure 3 shows the Fe₂O₃, TiO₂, and α -Fe₂O₃-TiO₂ nanomaterials with different concentrations of TiO₂ (50, 25, 16, 5 and 2.5%) at 500 °C of drying. The samples were measured by using transmission mode from 400 to 2000 cm⁻¹. The infrared bands of all samples are shown as Table 3. The weak band near 1630 cm⁻¹ is relevant to H-O-H bending vibration mode, since moisture on the surface of sample is adsorbed [22]. The TiO₂ samples shows broad band in range of 400 to 700 cm⁻¹ which is ascribed to the stretching vibration of Ti-O-Ti and Ti-O bridge bond [22, 23]. On the other hand, the Fe₂O₃ sample exhibits the broad band at 580 cm⁻¹, which is ascribed to the Fe-O(metal-oxygen) stretching-mode [24]. For the α -Fe₂O₃-TiO₂ nanomaterial, infrared bands at 460 and 560 cm⁻¹ seem to be corresponding to the α -Fe₂O₃-TiO₂ nanomaterial lattice.

Table 3: The infrared bands of each α-Fe ₂ O ₃ -TiC)2
---	----

	Wavenumber(cm ⁻¹)
TiO ₂	583, 651, 713, 767, 898, 1452, 1624, 1751
TiO ₂ (50%)	442, 483, 588, 720, 950, 1354, 1451, 1541, 1620
TiO ₂ (25%)	473, 582, 859, 942, 1070, 1346, 1452, 1542, 1617
TiO ₂ (16%)	469, 554, 856, 932, 1066, 1346, 1449, 1622, 1726
TiO ₂ (5%)	454, 540, 932, 1064, 1184, 1341, 1521, 1615
TiO ₂ (2.5%)	456, 542, 928, 1064, 1170, 1346, 1527, 1629
Fe ₂ O ₃	454, 501, 561, 582, 825, 1041, 1373, 1621, 1757

Raman Spectroscopy

Figure 4 shows the Raman spectra of the Fe₂O₃, TiO₂, and α -Fe₂O₃-TiO₂ nanomaterials with different concentrations of TiO₂ (50, 5, and 2.5%) with heat treatment at 500 °C. Table 4 indicated the Raman peak of all sample. The Fe₂O₃ sample exhibits peaks of 225, 295, 409 cm⁻¹ that are assigned to hematite. Namely, the lines at 225 cm⁻¹ is assigned to the A_{1g} vibration mode and 296 and 409 cm⁻¹ are assigned to the E_g vibration mode [25, 26]. The TiO₂ samples shows 205, 275, 434, 633 and 823 cm⁻¹. The TiO₂ sample includes both anatase and rutile phases; Raman shifts nearby 205, and 633 cm⁻¹ for anatase phase and nearby 434 and 823 cm⁻¹ for rutile [27-29].

Table 4: The peaks of each α -Fe₂O₃-TiO₂

	Wavenumber (cm ⁻¹)
TiO ₂	205, 275, 434, 633, 823
TiO ₂ (50%)	215, 278, 375, 717, 978
TiO ₂ (5%)	232, 288, 406, 628, 664, 819, 975
TiO ₂ (2.5%)	225, 243, 299, 406, 614, 664, 819, 967
Fe ₂ O ₃	225, 295, 409, 712, 824, 970

Wavenumber (cm⁻¹) Figure 4 Raman spectra of α-Fe2O3-TiO2 dried at 500 °C

Scanning Electron Microscopy (SEM)

THE SEM pictures of nanomaterials were measured using Field Emission Hitachi S800 Scanning Electron Microscope. Figure 5 shows scanning electron microscopy (SEM) images of Fe₂O₃, TiO₂ and α -Fe₂O₃-TiO₂ with different concentration of TiO₂ (50, 5 and 2.5 %) samples. Figure 5a-b show SEM images of synthesized TiO₂ and Fe₂O₃ nanomaterial samples respectively, and average diameter of particles are less than 10µm. On the other hand, figure 5c-e shows SEM images of α -Fe₂O₃-TiO₂ with different concentration of TiO₂ (50, 5 and 2.5 %) nanomaterials. Figure 5d-f show the urchin–like nanostructure consisting of nanowires on the particle, thus the average particle size is over 10 µm. The urchin-like nanostructure obtains more surface area, which may improve the effective interface of α -Fe₂O₃ and improve performance of water splitting application [18, 26, 30].

Figure 5 SEM images of (a) α-Fe₂O₃ (b) TiO₂ (c) Fe₂O₃ + 50%TiO₂ (d) Fe₂O₃ + 5%TiO₂ (e) Fe₂O₃ + 2.5%TiO₂ which are dried at 500 °C

CHRONOAMPEROMETRY

The electrochemical studies on various α -Fe₂O₃-TiO₂ nanomaterial films were conducted using Potentiostat/galvanostate of model "PGZ 301 Dynamic EIS voltammetry" from Volta lab. The chronoamperometry curve was measured by using two electrodes consisting of α -Fe₂O₃-TiO₂ nanomaterial (50% of TiO₂ dried at 500 °C) film as working electrode and RRPHTh-ND as counter electrode. 1M of NaOH solution was utilized as electrolyte. The electrochemical photo response was measured by switching on/off the lamp (60W). Figure 6 shows the chronoamperometry photocurrent curve with time (sec) for oxidation-reduction reaction of α -Fe₂O₃-TiO₂ film. When charge potential was at 1000 mV, current density was at 120 μ m/cm² of maximum and 90 μ m/cm² of average (Figure 6a), when charge potential was at 2000 mV, current density was at 800 μ m/cm² of average (Figure 6b). The increase of potential shows the larger current density due to oxidation of water.

Figure 6. The photocurrent responses for α-Fe₂O₃-TiO₂ nanomaterial sample with 50% of TiO₂ heat treatment at 500 °C. (a) working electrode applied with 1000mV of charge potential, (b) is applied with 2000 mV of charge potential

CONCLUSIONS

The α -Fe₂O₃. TiO₂ nanomaterial was synthesized with different percentages of TiO₂. The α-Fe₂O₃-TiO₂ nanomaterial is able to absorb visible region. The low concentration of TiO₂ (5% and 2.5%) nanomaterial may be concerned of changing the structure of α -Fe₂O₃ nanomaterials based on SEM images. The urchin- nanostructure improves the effective interface of a-Fe2O3 and also enhances the performance of water splitting application. The TiO₂ sample in α-Fe₂O₃-TiO₂ nanomaterial shows the presence of both phases such as anatase and rutile. In addition, production of photocurrent seems to be improving with illuminating the electrode based on α -Fe₂O₃-TiO₂ nanomaterial. TiO₂ nanomaterial contributes to improve the performance of PEC device based on α-Fe₂O₃-TiO₂ nanomaterial electrode by shifting absorbing region of light, and by expanding the contact area with electrolyte on α -Fe₂O₃-TiO₂ surface. The increase of potential shows the larger current density due to oxidation of water using a α -Fe₂O₃-TiO₂ nanomaterial film.

REFERENCES

- 1. B.-R. Kim, H.-J. Oh, K.-S. Yun, S.-C. Jung, W. Kang and S.-J. Kim, Progress in Organic Coatings 76, 1869 (2013).
- 2.
- D. Kuth, E.M. Hayes, D.K. Martin and K. Hatipoglu, An overview of photoelectrochemical cells (PEC): Mimicking nature to produce hydrogen for fuel cells, in SoutheastCon, 2017 (IEEE2017), pp. 1. M. Ni, M.K. Leung, D.Y. Leung and K. Sumathy, *Renewable and Sustainable Energy Reviews* 11, 401 (2007). 3.
- 4. 5.
- R. Histori, J. Kubota and K. Domen, *Chemical Society Reviews* 43, 7520 (2014).
 A. Kudo, *Catalysis Surveys from Asia* 7, 31 (2003).
 J. Deng, J. Zhong, A. Pu, D. Zhang, M. Li, X. Sun and S.-T. Lee, *Journal of Applied Physics* 112, 084312 (2012). 6.
- A. Murphy, P. Barnes, L. Randeniya, I. Plumb, I. Grey, M. Horne and J. Glasscock, International journal of hydrogen energy **31**, 1999 (2006). A. Watanabe and H. Kozuka, *The Journal of Physical Chemistry B* **107**, 12713 (2003). X. Li, P.S. Bassi, P.P. Boix, Y. Fang and L.H. Wong, *ACS applied materials &* 7.
- 8. 9. interfaces 7, 16960 (2015).
- 10. K. Sivula, F. Le Formal and M. Grätzel, ChemSusChem 4, 432 (2011).

- S.J. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo and J. Tang, Energy & Environmental Science 8, 731 (2015).
 Y.J. Hwang, C. Hahn, B. Liu and P. Yang, Acs Nano 6, 5060 (2012).
 A. Fujishima, T.N. Rao and D.A. Tryk, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1, 1 (2000).
 S. Choudhary, S. Upadhyay, P. Kumar, N. Singh, V.R. Satsangi, R. Shrivastav and S. Dass, International journal of hydrogen energy 37, 18713 (2012).
 M. Zhou, X.W.D. Lou and Y. Xie, Nano Today 8, 598 (2013).
 X. Chen, C. Li, M. Grätzel, R. Kostecki and S.S. Mao, Chemical Society Reviews 41, 7909 (2012). 11.
- 12.
- 13.
- 14.
- 15.
- 16. 7909 (2012). A. Malik, S. Hameed, M. Siddiqui, M. Haque and M. Muneer, *International Journal of*
- 17. J. Zhu, J. Ren, Y. Huo, Z. Bian and H. Li, *The Journal of Physical Chemistry C* 111,
- 18. 18965 (2007)
- M.K. Ram, H. Gomez, F. Alvi, E. Stefanakos, Y. Goswami and A. Kumar, *The Journal of Physical Chemistry C* 115, 21987 (2011).
 O. Zandi, B.M. Klahr and T.W. Hamann, *Energy & Environmental Science* 6, 634 19.
- 20. (2013).
- X. Yang, R. Liu, C. Du, P. Dai, Z. Zheng and D. Wang, ACS applied materials & interfaces 6, 12005 (2014).
 C. Johnston, G. Sposito and C. Erickson, Clays and Clay Minerals 40, 722 (1992).
 D. Zhang, High Energy Chemistry 47, 177 (2013).
 M. Ahmadi Golsefidi, F. Abbasi, M. Abrodi and Z. Abbasi, Journal of Nanostructures 6, 4 (2017). 21.
- 22. 23.
- 24. 64 (2016).
- 25.
- J.I. Peña-Flores, A.F. Palomec-Garfías, C. Márquez-Beltrán, E. Sánchez-Mora, E. Gómez-Barojas and F. Pérez-Rodríguez, *Nanoscale research letters* 9, 499 (2014).
 D. De Faria, S. Venâncio Silva and M. De Oliveira, *Journal of Raman spectroscopy* 28, 2013. 26.
- 27.
- 28. 29
- D. De Parla, S. Venancio Silva and M. De Orivena, Joan and S. Lenanci, P. M. Stark, S. S. Venancio, J. Stagi, M. Salis, A. Casu, S. Enzo and F. Delogu, *The Journal of Physical Chemistry C* 117, 7850 (2013).
 T. Ohsaka, F. Izumi and Y. Fujiki, *Journal of Raman spectroscopy* 7, 321 (1978).
 T. Mazza, E. Barborini, P. Piseri, P. Milani, D. Cattaneo, A.L. Bassi, C. Bottani and C. Ducati, *Physical Review B* 75, 045416 (2007).
 N. Mirbagheri, D. Wang, C. Peng, J. Wang, Q. Huang, C. Fan and E.E. Ferapontova, *Acs Catabasis* 4, 2006 (2014). 30. Catalysis 4, 2006 (2014).