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The gauge technique

The gauge technique goes back a long way [1, 2], having been introduced to deal
with the Schwinger–Dyson equations of scalar electrodynamics. Its fundamental
idea is to find an approximate electron-photon proper vertex expressed in terms of
the electron propagator in such a way that the Ward identity is exactly satisfied.
These methods can be extended to NAGTs for constructing approximate three- and
four-point vertices that are gauge invariant and exactly obey the ghost-free Ward
identities of the pinch technique or background-field method. In particular, we
will give here several examples of the three-point proper PT vertex approximately
but gauge invariantly expressed in terms of the gauge-invariant PT proper self-
energy. We do not discuss the four-point vertex, which has been studied elsewhere
[3].

Implementing gauge-invariant studies of NAGTs absolutely requires the gauge
technique or something like it because, unless the Ward identities are satisfied,
gauge invariance is an impossible goal. Outside of perturbation theory, which is
not important for us, or exactly solving the Schwinger–Dyson equations, which is
not possible for us, there is no other method known for systematically and usefully
constructing Green’s functions obeying the right Ward identities.

The gauge technique has two related potential drawbacks. The first is that there
is no such thing as a unique gauge technique vertex. A gauge technique three-
point vertex �GT

μ is one that depends only on two-point functions  and identically
satisfies a Ward identity of the form kμ�GT

μ (k, p) = −1(p) −−1(p − k). To any
proposed gauge technique vertex, we can always add a term �̃μ obeying kμ�̃μ ≡ 0.
The second drawback is that the gauge technique vertex is quantitatively but not
qualitatively wrong for ultraviolet momenta because it is just the omitted, exactly
conserved terms that become as important as the gauge technique terms at large
momentum. How then can the gauge technique be justified? The answer is that in
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5.1 The original gauge technique for QED 105

a theory with a mass gap,1 these identically conserved vertex forms, such as �̃μ,
vanish more rapidly by at least one power of k near zero momentum compared
to the gauge technique vertex. Both these problems suggest that in gauge theories
with a mass gap, which include QED and all the NAGTs of interest to us, the
identically conserved terms are unimportant in the infrared and can be dropped. So
the gauge technique is meant to be used strictly for small momenta. Fortunately,
this is just the region of interest to us, where infrared slavery needs to be cured by
nonperturbative phenomena. In practice, we are forced to use it out to momenta that
are not small compared to a mass scale but comparable to it, so some quantitative
error is inevitable. But we are more interested in the qualitative behavior of QCD
with its infrared slavery, and in particular, we want to know qualitatively how it is
forced to generate a dynamical mass.

Usually, the failure in the ultraviolet can be described as a (partial) failure of
the gauge technique to satisfy the renormalization group; for example, the gauge
technique vertex may have a renormalization group of standard form, but the beta
function coefficients may be wrong. It is possible, in principle at least, to correct
these gauge technique errors systematically both in QED [4] and in asymptotically
free theories [5], but we will not go into such matters here. For a critique of the
gauge technique, see the review [6] by one of the early workers.

The simple QED gauge technique is given first, as a warmup to more complex
problems involving spontaneous symmetry breaking and to the ultimate challenge
of NAGTs. For both Abelian and non-Abelian gauge theories, there are two basic
approaches: via dispersion relations for the propagator, which express the vertex as
a spectral integral involving the spectral weight for the propagator, and via purely
algebraic methods, expressing the vertex directly in terms of the propagators.

5.1 The original gauge technique for QED

5.1.1 Scalar QED

Consider first the proper vertex �μ(p1, p2) coupling a photon of momentum q to a
charged scalar field. We take all momenta as coming into the vertex and normalize
so that the bare vertex is �μ(p1, p2) = i(p1 − p2)μ, with p1 + p2 + q = 0. This
vertex obeys the Ward identity

qμ�μ(p1, p2) = −1(p1) −−1(p2). (5.1)

1 By a mass gap, we mean that there are no massless particles carrying gauge-symmetry charge that appear in
the S-matrix. For NAGTs, as we already know, generation of a dynamical gluon mass requires longitudinally
coupled massless particles akin to Goldstone particles, and such particles are indeed present in the gauge
technique vertex. But these particles are absent from the S-matrix because they are eaten by the gauge bosons.

https://doi.org/10.1017/9781009402415.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415.006


106 The gauge technique

Although throughout this book, proper Green’s functions have been at the forefront
for the pinch technique, for the gauge technique, it is sometimes useful to emphasize
the improper vertex. Multiplying �μ by the two charged-scalar propagators gives
the improper vertex or form factor

Fμ(p1, p2) = (p1)�μ(p1, p2)(p2), (5.2)

with a corresponding change in the Ward identity:

qμFμ(p,−q − p) = (p2) −(p1). (5.3)

At tree level, this is satisfied with the usual expressions

iFμ(p,−p − q) = 1

p2
1 −m2

(p1 − p2)μ
1

p2
2 −m2

(p) = i

p2 −m2
. (5.4)

The Ward identity is true no matter what the charged-particle mass m is, provided
that it is the same for both charged lines in the form factor. This is the basis for one
useful form of the gauge technique.

The charged-field propagators have a Källen–Lehmann representation:

− i(p) =
∫

dσ
ρ(σ )

p2 − σ
. (5.5)

If, in Eq. (5.4), we replace m2 by σ and integrate with weight function ρ(σ ), the
Ward identity is still satisfied. So we define the gauge technique improper vertex
as

iF GT
μ (p1, p2) =

∫
dσ ρ(σ )

1

p2
1 − σ

(p1 − p2)μ
1

p2
2 − σ

. (5.6)

Clearly, this is not a unique solution because we can add any identically conserved
function [Gμ(p, q), qμGμ ≡ 0] to the gauge technique vertex and still solve the
Ward identity. Nevertheless, the gauge technique form factor FGT

μ is still useful
in the region of infrared photon momentum qμ ∼ 0, provided that there are no
massless charged particles in the S-matrix.2 The reason, for scalar charged particles,
is a simple kinematic one: an identically conserved function without massless poles
must vanish at least quadratically in qμ for small qμ. This is proved by exhaustion
of a finite number of cases, of which we give only one example:

Gμ = (q2pμ − qμp · q)H (p, q). (5.7)

2 The only massless charged particles that gauge theories can tolerate are Goldstone-like bosons that get eaten by
the gauge particles.
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Without some special condition on the theory, there is no reason that H should
vanish at qμ = 0. So in the case at hand, corrections to the gauge technique form
factor are O(q2) at small q.

Equation (5.6) for the gauge technique vertex can easily be transcribed with simple
algebra into a form that does not use the Källen–Lehmann representation. We give
the result for the proper vertex:

�GT
μ (p,−p − q) = (2p + q)μ

2p · q + q2
[−1(p + q) −−1(p)]. (5.8)

Note that there are no singularities at qμ = 0.

The great virtue of the gauge technique, and the reason for its existence, is that one
can express an otherwise very complicated three-particle vertex entirely in terms
of a propagator, always maintaining exact local gauge invariance. In this way, the
Schwinger–Dyson equation for this propagator becomes self-contained.

5.1.2 Fermionic QED

The principles are exactly the same; most of the difference is in notation. In
particular, to conform to the usual conventions, we take one momentum to be in-
going and one to be outgoing. There is a proper and an improper vertex, related by
fermionic propagators:

Fμ(p, p + q) = S(p)�μ(p, p + q)S(p + q), (5.9)

and the fermion propagator obeys the Källen–Lehmann representation:

S(p) =
∫ ∞

−∞
dW

ρ(W )

/p −W
. (5.10)

The Ward identity

qμFμ(p, p + q) = S(p) − S(p + q) (5.11)

is solved with the gauge technique form

F GT
μ (p, p + q) =

∫ ∞

−∞
dW ρ(W )

1

/p −W
γμ

1

/p + /q −W
. (5.12)

Remarkably, using this gauge-technique vertex in the Schwinger–Dyson equation
linearizes it, as King [4] shows.

In this simple case, it is also straightforward to construct the algebraic version of
the gauge technique. Define the electron proper self-energy � by

S−1(p) = /p −M +�(p). (5.13)
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108 The gauge technique

Then [4] the proper gauge technique vertex �̃GT
μ that follows from the spectral form

of Eq. (5.12) is

�̃GT
μ = γμ + 1

p2 − p′2
[
�(p)(/pγμ + γμ/p

′) − (/pγμ + γμ/p
′)�(p′)

]
. (5.14)

There is no singularity at p = p′. As before, one could add an identically conserved
term, such as iσμνqν/M , but it is one power of q higher, not two, as in the scalar
case, at small momentum compared to the mass.

5.2 Massless longitudinal poles

QED has an exact U (1) gauge symmetry, but it is certainly possible to find gauge
technique vertices for gauge theories with dynamically broken gauge symmetry, as
a simple O(2) × U (1) gauge model illustrates [7] (Jackiw and Johnson [8] give an
entirely equivalent illustration). There are no scalar fields of any sort in the model,
just the fermions and gauge potentials, so the conventional Higgs mechanism
cannot apply. Nonetheless, a gauge symmetry can be broken dynamically, with
Higgs and associated Goldstone bosons arising as elements of the solution of the
Schwinger–Dyson equations of the original model. Only the O(2) symmetry is
relevant for us (the U (1) gauge field furnishes a critical attractive force that permits
nontrivial symmetry-breaking solutions of the Schwinger–Dyson equations). The
fermions form a two-vector in the O(2) space of the form

ψ(x) =
(
ψ1

ψ2

)
, (5.15)

and they interact with a gauge potential Bμ through the interaction ψ̄γ μBμτ2ψ ,
where τi are the usual Pauli matrices. The idea is to look for symmetry-breaking
solutions of the Schwinger–Dyson equations where the fermion proper self-energy
has the form

�(p) = �s(p) + τ3�v(p). (5.16)

Thus, �s preserves the gauge symmetry, and �v violates it. In particular, the
symmetry-violating self-energy can split the fermion masses.

The Ward identity for the proper fermion Bμ vertex is

(p − p′)μ�μ(p, p′) = S−1(p)τ2 − τ2S
−1(p′). (5.17)

Without the τ3 term in the fermion self-energy, the vertex, just like the bare vertex,
would point solely in the τ2 direction, and the model would be like two copies of
QED. But with the τ3 term, there must be a term in the vertex behaving like τ1.
Moreover, this part must be singular at small q ≡ p − p′ because at qμ = 0, the
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right-hand side of the preceding equation does not vanish. This singularity turns
out to be a massless, longitudinally coupled scalar – in other words, a dynamical
Goldstone boson. This pole part of the proper vertex must have the following
singularity for q � 0:

�μ(p, p′) = 2iτ1�v(p)qμ
q2

+ · · · , (5.18)

as one can readily check; the omitted terms are regular at q = 0. It is this Goldstone
boson, now appearing in the completely dressed vertex and not classically, that gives
the B-field a mass because its pole in the vertex, behaving like 1/q2, cancels the
usual kinematical factor of q2 in theB-field proper self-energy that would otherwise
prevent mass generation in a gauge theory. This cancellation of the pole is what we
mean when we say that a Goldstone particle is eaten by a gauge boson.

We will not pursue this model further, except to say that it is essential that the
gauge-boson forces acting on the fermions be attractive (which is why there is
a second gauge potential). If they are, the Schwinger–Dyson equations indeed
have a symmetry-violating fermion self-energy that vanishes at large momentum,
fermionic mass splitting, a dynamical Higgs boson, and a nonzero B-boson mass,
all of whose properties are calculable in terms of the parameters of the original
model, whose Lagrangian had none of these effects. However, if the forces are not
attractive, the Schwinger–Dyson equations are inconsistent and nonrenormalizable
and can only be made consistent3 by introducing bare fermion andB-boson masses.

For us, the point of considering this model is that much the same properties
will turn up in non-Abelian gauge theories (with no matter fields of any sort):
gauge-boson mass generation necessarily accompanied by longitudinally coupled
massless scalars (really long-range, pure-gauge parts of the gauge potential). And
the gauge-boson mass will vanish roughly as 1/q2 at large momentum, making the
Schwinger–Dyson equations renormalizable and self-consistent.

5.3 The gauge technique for NAGTs

It took many years after the QED gauge technique to develop similar tools for non-
Abelian gauge theories. The first construction [9] used a spectral form analogous
to the original QED gauge technique, where the spectral integral is the Lehmann
representation of the electron propagator. Later, a very general nonspectral con-
struction was given [10] that expressed the gauge technique three-gluon vertex
algebraically in terms of the PT proper self-energy. This construction was general

3 In actuality, no Abelian gauge theory is really consistent at asymptotically high energies because of the Landau
singularity induced by a positive beta function, but this is not of interest to us.
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110 The gauge technique

enough to use at finite temperature or for situations involving dynamical symmetry
breaking (which requires other fields in appropriate representations; QCD cannot
undergo dynamical symmetry breaking because the quarks are in the fundamental
representation [11]).

We repeat here the notation and structure used in Chapter 1 for the PT propagator,
both in a covariant Rξ gauge and in the light-cone gauge. In both cases, d̂(q) is the
gauge-invariant scalar part of the PT propagator; these two propagators differ only
in gauge terms that receive no corrections and play no essential role. The Ward
identity for the (inverse) propagator is simply that it is transverse, aside from the
irrelevant gauge-fixing terms:

� Covariant gauge

îαβ(q) = Pαβ(q)d̂(q) + ξ
qαqβ

q4
(5.19)

−î−1
αβ (q) = Pαβ(q)d̂(q)−1 + 1

ξ
qαqβ. (5.20)

� Light-cone gauge

îαβ(q) = Qαβd̂(q) + η
qαqβ

(n · q)2
(5.21)

−î−1
αβ (q) = Pαβ(q)d̂(q)−1 + 1

η
nαnβ, (5.22)

where the gauge-fixing parameter η (which has dimensions of (mass)2) is set
to zero at the end of calculations.

We repeat the definition of Pμν and Qμν given in Chapter 1:

Pμν(q) = gμν − qμqν

q2
(5.23)

Qαβ = gαβ − nαqβ + nβqα

n · q .

In both cases, the PT self-energy is defined by

d̂−1(q) = q2 + i�̂(q). (5.24)

The general Ward identity for the PT vertex relates the corrections to the free
vertex to the proper self-energy and has already been found at the one-loop level
in Chapter 1:

q
μ

1 �̂μνα(q1, q2, q3) = �̂να(q2) − �̂να(q3), (5.25)
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where the full PT proper vertex �̂μνα is the sum of the free vertex and �̂μνα. The
free vertex could be either the usual bare vertex or the �ξ vertex of Chapter 1.
Suppose that we use the usual free vertex; then another form of this Ward identity
is as follows:

q
μ

1 �̂μνα(q1, q2, q3) = d̂−1(q2)Pμν(q2) − d̂−1(q3)Pμν(q3). (5.26)

In the light-cone gauge, the right-hand side is really the difference between two
inverse propagators:

q
μ

1 �̂μνα(q1, q2, q3) = ̂−1
αβ (q2) − ̂−1

αβ (q3). (5.27)

This is not so in covariant gauges, unless the vertex used is the �ξ vertex.

5.3.1 The gauge technique in the light-cone gauge

Just as for scalar charged particles, there is one special case where Eq. (5.27) is an
identity, and that is the case of free massive gauge bosons. We generate the massive
propagator by keeping only the quadratic terms of the kinetic energy plus the
gauged nonlinear sigma (GNLS) model (Eq. (2.7)), and the vertex by keeping only
the free cubic vertex plus the cubic term of the GNLS model. For the propagator,
we need only replace �̂ by m2 in Eq. (5.24), and the cubic vertex is

�̂(m2)
μνα (q1, q2, q3) = (q1 − q2)αgμν + m2

2

q1μq2ν(q1 − q2)α
q2

1q
2
2

+ c.p., (5.28)

where c.p. stands for cyclic permutations (of momenta and indices). This vertex,
or the improper form factor F̂ defined in Eq. (5.30), identically satisfies its Ward
identities for any mass m.

If the PT propagator satisfied a Källen–Lehmann representation, we could then
proceed to write a spectral integral for the form factor, as in the Abelian gauge
theories. It is not surprising that infrared slavery, with its so-called wrong signs,
does not permit a positive spectral function, but there still is a dispersion relation
of the type of Eq. (5.5). The dispersion relation is just an integral over the massive
propagator (we omit writing the η term of Eq. (5.21) because, ultimately, η is set
to zero – although this must not be done until the end of any calculation):

îαβ(q) =
∫

dσ ρ(σ )Qαβ

1

q2 − σ
. (5.29)

Spectral form of the gauge technique The one-dressed-loop version of this self-
energy has a term involving (schematically) an integral over �0̂̂�̂ plus a seagull
term. Provided that the propagators are transverse and �̂ satisfies its Ward identity,
the output self-energy is transverse (and gauge invariant because the inputs to it will
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112 The gauge technique

all be gauge invariant). The integrand of the one-dressed-loop self-energy integral
involves a partly improper form factor, which we define as

F̂μνα(q1, q2, q3) = ̂ρ
μ(q2)̂λ

ν(q3)�̂ρλα(q2, q3), (5.30)

with

q
μ

1 F̂μνα(q1, q2, q3) = ̂νσ (q3) − ̂μρ(q2). (5.31)

The expression [9]

F̂ GT
μνα(q1, q2, q3) =

∫
dσ ρ(σ )

Qρ
μ(q2)

q2
2 − σ

�̂
(σ )
ρλα(q1, q2, q3)

Qλ
ν(q3)

q2
3 − σ

(5.32)

satisfies the Ward identity of Eq. (5.27) for any spectral function ρ(σ ), that is, for
any PT propagator.

Algebraic form of the gauge technique The algebraic form [10] of the gauge
technique vertex for NAGTs is considerably more general than the spectral form
and can be used not only for QCD-like theories but also for theories with symmetry
breaking, at finite temperature, and, in fact, for any physically reasonable circum-
stances for NAGTs in three or four dimensions. (The three-dimensional version is
very useful for the functional Schrödinger equation, and we deal with it in Chap-
ter 6.) We give it here only for the simple circumstance that the gluon PT proper
self-energy is diagonal in group space (with group indices assigned in accordance
with the momentum argument) and only in d = 4; see [10] for generalizations and
references to other circumstances. The gauge technique radiative correction to the
free vertex (see Eq. (5.25)) is

�̂μνα(q1, q2, q3) = −q1μq2ν

2q2
1q

2
2

(q1 − q2)ρ�̂ρα(q3)

− [Pρ
μ (q1)�̂ρν(q2) − Pρ

ν (q2)�̂ρμ(q1)]
q3α

q2
3

+ c.p., (5.33)

and this satisfies the Ward identity of Eq. (5.25). (The replacement of �̂μν(q) by
m2Pμν gives – after some algebra – the previous result of Eq. (5.28).) Note the
presence of massless longitudinal excitations in this vertex; these decouple if the
self-energies vanish at zero momentum.

Both the spectral form and the algebraic form have been used in studies of dynamical
gluon mass generation in the light-cone Schwinger–Dyson equations of the pinch
technique [9, 10], and a simplified algebraic form has been used in the covariant
pinch technique Schwinger–Dyson equations [12]. These equations are detailed in
Chapter 6.
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