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On ternary Diophantine equations of
signature (p, p, 3) over number fields
Erman Isik , Yasemin Kara , and Ekin Ozman
Abstract. In this paper, we prove results about solutions of the Diophantine equation x p + yp = z3

over various number fields using the modular method. First, by assuming some standard modularity
conjecture, we prove an asymptotic result for general number fields of narrow class number one
satisfying some technical conditions. Second, we show that there is an explicit bound such that
the equation x p + yp = z3 does not have a particular type of solution over K = Q(

√
−d), where

d = 1, 7, 19, 43, 67 whenever p is bigger than this bound. During the course of the proof, we prove
various results about the irreducibility of Galois representations, image of inertia groups, and
Bianchi newforms.

1 Introduction

Solving Diophantine equations is one of the oldest and widely studied topics in
number theory. Yet we still do not have a general method that would allow us to
produce solutions of a given Diophantine equation. Most of the time, it may be easier
to show the nonexistence of solutions, but even this can be quite challenging as it was
the case for the proof of Fermat’s Last Theorem (FLT). The method to solve the Fermat
equation, used by Wiles in his famous proof, can be adapted to solve similar Fermat-
type equations. This strategy, which is referred as the “modular method,” starts with an
elliptic curve attached to a putative solution of the given equation. Then, using many
celebrated theorems of the area, the problem can be reduced to one of the following:
computing newforms of a certain level, or computing all elliptic curves of a given
conductor with particular information about torsion subgroup and rational isogeny,
or computing all solutions to an S-unit equation. Neither of these computations are
easy in general. Especially if one needs to prove Fermat’s theorem over a number
field other than rationals, some fundamental theorems that go into the proof now
become conjectures only, such as the modularity conjecture. Recently, there has been
much progress in several different generalizations of this famous result. For instance,
in [12], Freitas and Siksek proved the asymptotic FLT for certain totally real fields
K. That is, they showed that there is a constant BK such that, for any prime p > BK ,
the only solutions to the Fermat equation ap + bp + c p = 0 where a, b, c ∈ OK are the
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trivial ones satisfying abc = 0. Then, Deconinck [7] extended the results of Freitas and
Siksek [12] to the generalized Fermat equation of the form Aap + Bbp + Cc p = 0 where
A, B, C are odd integers belonging to a totally real field. Later, in [27], Şengün and
Siksek proved the asymptotic FLT for any number field K by assuming modularity.
This result has been generalized by Kara and Ozman in [17] to the case of the
generalized Fermat equation. Moreover, recently, in [31, 32], Turcas studied the Fermat
equation over imaginary quadratic fields Q(

√
−d) with class number one.

Similar generalizations are quite rare for other Fermat-type equations such as x p +
yq = zr . The solutions of this equation have been studied over rationals by many math-
ematicians including Darmon, Merel, Bennett, and Poonen. Several mathematicians
have worked on similar Fermat-type equations with different exponents over rational
numbers. We have summarized these results in [14]; therefore, we will not repeat them
here, but we want to mention that not many results exist for generalizations of these to
higher degree number fields. During the write-up of this paper, we have been informed
about the work of Mocanu [23] where she improves the results in [14] and proves
similar versions for the Diophantine equation of signature (p, p, 3). In this paper, we
also study the solutions of x p + yp = z3 over number fields. However, our results differ
from Mocanu (and hence the results in [14]) in the sense that we prove results about
solutions of equation (1.1) over fields that are not totally real. In the Appendix, we
mention versions of these results for the Diophantine equation of signature (p, p, 2).
Our results can be summarized as follows.

1.1 Our results

Let K be a number field, and let OK be its ring of integers. For a prime number p, we
refer the equation

ap + bp = c3 , a, b, c ∈ OK ,(1.1)

as the Fermat equation over K with signature (p,p,3). A solution (a, b, c) is called
trivial if abc = 0, otherwise non-trivial. A solution (a, b, c) of equation (1.1) is called
primitive if a, b, and c are pairwise coprime. Since we will consider number fields with
class number one, a putative solution (a, b, c) can be scaled such that a, b, and c are
coprime.

Note that if p > 3, then one can produce infinitely many nonprimitive solutions to
equation (1.1). Indeed, if p ≡ −1 (mod 3) and a, b, c ∈ OK satisfying ap + bp = c, then
(ac, bc, c

p+1
3 ) is a nonprimitive solution to equation (1.1). Observe that if x , y, z ∈ OK

satisfy x p + yp = z, then we have (xz)p + (yz)p = (z
p+1

2 )2, so one can obtain a, b, c ∈
OK such that ap + bp = c2. If p ≡ 1 (mod 3) and a, b, c ∈ OK such that ap + bp = c2,
then (ac, bc, c

p+2
3 ) is a nonprimitive solution to equation (1.1). Thus, we consider only

primitive solutions to equation (1.1). In [5], it was shown that equation (1.1) has finitely
many primitive solutions.

We say that “the asymptotic Fermat Theorem holds for K and signature (p, p, 3)” if
there is a constant BK such that, for any prime p > BK , the Fermat equation with sig-
nature (p, p, 3) (given in equation (1.1)) does not have nontrivial, primitive solutions.
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We have two main results about solutions of equation (1.1). The first result is an
asymptotic result for some of the solutions over general number fields, and the second
one is an explicit result for general solutions over some imaginary quadratic fields.

Theorem 1.1 Let K be a number field with narrow class number h+K = 1 satisfying
Conjectures 2.2 and 2.3 and containing Q(ζ3) where ζ3 is a primitive third root of unity.
Assume that λ is the only prime of K lying above 3. Let WK be the set of (a, b, c) ∈ OK
such that (a, b, c) is a primitive solution to x p + yp = z3 with λ∣b. Then there is a
constant BK—depending only on K—such that, for p > BK , equation (1.1) has no solution
(a, b, c) ∈WK . In this case, we say that the asymptotic FLT holds for WK and signature
(p, p, 3).

Theorem 1.2 Let K = Q(
√
−d), where d ∈ {1, 7, 19, 43, 67}, and let �K be the largest

prime in Table 2 corresponding to K. Let CK , MK be defined as in Proposition 3.9 and
Corollary 3.10. Assume that Conjecture 2.2 holds true for K. Let λ be the prime of OK
lying over 3. Then:
Case I For any prime p >max{�K , CK}, the Fermat equation over K with signature

(p, p, 3) does not have any nontrivial primitive solutions (a, b, c) ∈ OK such
that λ∣b.

Case II If p > BK =max{�K , CK , MK}, p splits in K, and p ≡ 3 (mod 4), then the
Fermat equation over K with signature (p, p, 3) does not have any nontrivial
primitive solutions (a, b, c) ∈ OK .

Remark 1.3 The bound for Case 1 above is 199, and this bound can be made smaller
depending on the field we work on, as can be seen in Table 2. Combining this with
Proposition 3.9 and Case 1 of Corollary 3.10, we see that the bound 199 works for all
the five imaginary quadratic fields mentioned in the statement of Theorem 1.2.

Similarly, for Case 2 of Theorem 1.2, it is possible to take BK as 44, 483, using
Proposition 3.9 and Case 2(a) of Corollary 3.10.

Various different techniques have to be combined to achieve these results. For the
asymptotic result, we mostly follow the approach in [14, 17], which relies on the paper
of Şengün and Siksek [27]. For instance, we need the absolute irreducibility of the
associated Galois representation in order to apply the Serre’s modularity conjecture.
In order to do this, one needs to prove the irreducibility first and then pass to absolute
irreducibility. This is rather classical when the Frey curve has potentially multiplicative
reduction at q for some q appearing in the denominator of the j-invariant of the Frey
curve. However, for (p, p, 3) case, the associated Frey elliptic curve has potentially
good reduction when 3 does not divide the norm of ab. Therefore, one can only get
a result about solutions of a particular type. This was also mentioned in the papers of
Turcas [31, 32]. It is sometimes possible to overcome this obstruction when working
over explicit fields. For instance, as done by Najman and Turcas in [24], using a result of
Vaintrob and Larson, it is possible to prove the absolute irreducibility of the associated
Galois representation when p is bigger than a computable constant BK . One can apply
a similar argument to the Galois representation related to the Diophantine equation
of signature (p, p, 3). Of course, in order to do this, we need an irreducibility result for
ρE , p when p is bigger than an explicit constant B. This is a nontrivial task to do even
in the case of the classical Fermat equation, which was done by Freitas and Siksek in
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[13]. We combine all these to obtain our second result, which gives information about
the solutions of (p, p, 3) over imaginary quadratic number fields of class number one.

2 Preliminaries

In this section we give the necessary background to prove the results. We follow [12,
27] and the references therein.

2.1 Conjectures

In this subsection, we state the conjectures assumed in the above theorems. For more
details, we refer to Sections 2 and 3 of [27].

Let K be a number field with the ring of integers OK , and let N be an ideal of OK .
The following result is proved by Şengün and Siksek in [27].

Proposition 2.1 [27, Proposition 2.1] There is an integer B(N), depending only on N,
such that, for any prime p > B(N), every weight-two, mod p eigenform of level N lifts to
a complex one.

In order to run the modular approach to solve Diophantine equations, one needs
generalized modularity theorems. Due to the lack of their existence, we can only prove
our theorems up to some conjectures. One of the assumed conjectures is a special case
of Serre’s modularity conjecture over number fields, stated below.

Conjecture 2.2 [11, Conjecture 4.1] Let ρ ∶ GK → GL2(Fp) be an odd, irreducible, con-
tinuous representation with Serre conductor N (prime-to-p part of its Artin conductor)
such that det(ρ) = χp is the mod p cyclotomic character. Assume that p is unramified in
K and that ρ∣GKp

arises from a finite-flat group scheme over OKp
for every prime p∣p.

Then there is a weight-two, mod p eigenform θ over K of level N such that, for all primes
q coprime to pN, we have

Tr(ρ(Frobq)) = θ(Tq),

where Tq denotes the Hecke operator at q.

Additionally, we will use a special case of a fundamental conjecture from the
Langlands program for the asymptotic result. Note that we do not need Conjecture
2.3 for Theorem 1.2 since K is restricted to a finite (fixed) list of fields.

Conjecture 2.3 [27, Conjecture 4.1] Let f be a weight-two complex eigenform over K
of level N that is nontrivial and new. If K has some real place, then there exists an elliptic
curve Ef/K of conductor N such that

#Ef(OK/q) = 1 +Norm(q) − f(Tq) for all q ∤ N.(2.1)

If K is totally complex, then there exists either an elliptic curve Ef of conductor N

satisfying (2.1) or a fake elliptic curve Af/K, of conductor N2, such that

#Af(OK/q) = (1 +Norm(q) − f(Tq))2 for all q ∤ N.(2.2)
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2.2 Frey curve and related facts

In this subsection, we collect some facts related to the Frey curve associated with a
putative solution of equation (1.1) and the associated Galois representation.

Let GK be the absolute Galois group of a number field K, let E/K be an elliptic curve,
and let ρE , p denote the mod p Galois representation of E. We use q for an arbitrary
prime of K, and Gq and Iq, respectively, for the decomposition and inertia subgroups
of GK at q. For a putative solution (a, b, c) to equation (1.1) with a prime exponent p,
we associate the Frey elliptic curve as in [2],

E = Ea ,b ,c ∶ Y 2 + 3cXY + bpY = X3(2.3)

whose arithmetic invariants are given by ΔE = 33(ab3)p , jE =
33c3(9ap + bp)3
(ab3)p , and

c4(E) = 9c(9ap + bp), c6(E) = −33(33c6 − 2232c3bp + 23b2p).
For the result below, we have the same assumptions on the number field K

mentioned in the introduction. Namely, K is a number field of degree d such that
the narrow class number of K, h+K = 1 and there is a unique prime λ over 3.

Lemma 2.4 Let λe = 3OK where OK is the integer ring of K. The Frey curve E is
semistable away from λ and has a K-rational point of order 3. The determinant of ρE , p
is the mod p cyclotomic character. The Galois representation ρE , p is finite flat at every
prime p of K that lies above p. Moreover, the conductor NE attached to the Frey curve E
is given by

NE = λε ∏
q∣ab ,q∤3

q,

where
(1) ε ∈ {0, 1} if λ∣ab and p > 2e.
(2) ε ≥ 2, 3 if λ ∤ ab. Moreover, if e = 1, ε ∈ {2, 3}.

In particular, if λ∣ab, the curve E is semistable, and otherwise, the curve E has additive
reduction at λ.

The Serre conductor NE , which is the prime-to-p part of the Artin conductor of ρE , p ,
is supported on λ and belongs to a finite set depending only on the field K.

Proof Assume that the narrow class number h+K = 1. Recall that the invariants
c4(E), c6(E), and ΔE of the model E are given by

c4(E) = 9c(9ap + bp), c6(E) = −33(33c6 − 2232c3bp + 23b2p), ΔE = 33(ab3)p .

Suppose that q ≠ λ divides ΔE , which implies that ab is divisible by q. Since a, b,
and c are pairwise coprime, q divides either a or b. Therefore, c4(E) = 9c(9ap + bp)
is not divisible by q, i.e., vq(c4(E)) = 0. Hence, the given model is minimal and E is
semistable at q. Moreover, we have p∣vq(ΔE). It follows from [28] that ρE , p is finite
flat at q if q lies above p. We can also deduce that ρE , p is unramified at q if q ∤ p.

Now, assume that λ divides ab. Note that λ can only divide one of a or b. Without
loss of generality, say λ∣b. The result regarding λ ∤ ab can be handled in an identical
manner.
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In all cases, the valuation vλ(NE) = ε can be calculated via [25, Tableau III]. Note
that, when λ∣ab, the equation is not minimal. After using the change of variables X =
32x , Y = 33 y, we get vλ(c4(E)) = vλ(c6(E)) = 0 when p > 2e, and hence ε = 0, 1.

The statement concerning the determinant is a well-known consequence of the
Weil pairing attached to elliptic curves. The fact that the Frey curve E has a K-rational
point of order 3 follows from [2, Lemma 2.1(c)].

Finally, to show that there can be only finitely many Serre conductors NE , note
that only the prime λ can divide NE . As NE divides the conductor NE of E, vλ(NE) ≤
vλ(NE) ≤ 2 + 3vλ(3) + 6vλ(2) by [29, Theorem IV.10.4]. Hence, there can be only
finitely many Serre conductors and they only depend on K. ∎

Given a number field K, we obtain a complex conjugation for every real embedding
σ ∶ K ↪ R and every extension σ̃ ∶ K ↪ C of σ as σ̃−1 ισ̃ ∈ GK where ι is the usual
complex conjugation. Recall that a representation ρE , p ∶ GK → GL2(Fp) is odd if the
determinant of every complex conjugation is −1. If the number field K has no real
embeddings, then we immediately say that ρE , p is odd.

The following results give us information about the image of inertia groups under
the Galois representation ρE , p .

Lemma 2.5 [12, Lemma 3.4] Let E be an elliptic curve over K with j-invariant jE . Let
p ≥ 5, and let q ∤ p be a prime of K. Then p∣#ρE , p(Iq) if and only if E has potentially
multiplicative reduction at q (i.e., υq( jE) < 0) and p ∤ υq( jE).

By using the previous result, we obtain the following lemma.

Lemma 2.6 Let λ be the only prime ideal of K lying above 3, and let (a, b, c) ∈WK
with prime exponent p > υλ(3). Let E be the Frey curve as in (2.3), and write jE for its
j-invariant. Then E has potentially multiplicative reduction at λ and p∣#ρE , p(Iλ) where
Iλ denotes an inertia subgroup of GK at λ.

Proof Assume that λ is the only prime ideal of K lying above 3 with υλ(b) = k.
Then υλ( jE) = 3υλ(3) − 3pk. Since p > υλ(3), and k ≥ 1, we have vλ( jE) < 0 and
clearly p ∤ υλ( jE). This implies that E has potentially multiplicative reduction at λ
and p∣#ρE , p(Iλ). ∎

The following well-known result about subgroups of GL2(Fp) will be frequently
used.

Theorem 2.7 Let E be an elliptic curve over a number field K of degree d, and let
G ≤ GL2(Fp) be the image of the mod p Galois representation of E. Then the following
holds:

• If p∣#G, then either G is reducible or G contains SL2(Fp), and hence it is absolutely
irreducible.

• If p ∤ #G and p > 15d + 1, then G is contained in a Cartan subgroup or G is contained
in the normalizer of Cartan subgroup but not the Cartan subgroup itself.

Proof For the proof, the main reference is [30, Lemma 2]. The version above
including the proof of the second part is from [10, Propositions 2.3 and 2.6]. ∎
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3 Properties of Galois representations

3.1 Level reduction

In this subsection, we will be relating the Galois representation attached to the Frey
curve with another representation of lower level.

Theorem 3.1 Let K be a number field with h+K = 1 satisfying Conjectures 2.2 and 2.3.
Assume that λ is the only prime of K above 3. Then there is a constant BK depending
only on K such that the following holds. Let (a, b, c) ∈WK be a nontrivial solution to
equation (1.1) with exponent p > BK . Let E/K be the associated Frey curve defined in
(2.3). Then there is an elliptic curve E′/K such that the following statements hold:
(1) E′ has good reduction away from λ.
(2) E′ has a K-rational point of order 3.
(3) ρE , p ∼ ρE′ , p .
(4) vλ( j′) < 0 where j′ is the j-invariant of E′.

We will give the proof of this theorem in Section 3.1.1 after stating the necessary
lemmas. The following is Proposition 6.1 of [27]. We include its statement for the
convenience of the reader, but we will omit its proof and refer to [27] instead.

Proposition 3.2 Let L be a Galois number field, and let q be a prime of L. There is
a constant BL ,q such that the following is true. Let p > BL ,q be a rational prime. Let
E/L be an elliptic curve that is semistable at all p∣p and having potentially multiplicative
reduction at q. Then ρE , p is irreducible.

By applying the above proposition to the Frey curve, we get the following corollary.

Corollary 3.3 Let K be a number field with h+K = 1, and suppose that λ is the only prime
of K above 3. There is a constant CK such that if p > CK and (a, b, c) ∈WK is a nontrivial
solution to the Fermat equation with signature (p, p, 3), then ρE , p is surjective, where E
is the Frey curve given in (2.3).

Proof By Lemma 2.6, E has potentially multiplicative reduction at λ. Moreover, E
is semistable away from λ from Lemma 2.4. Let L be the Galois closure of K, and
let q be a prime of L above λ. Now, by applying Proposition 3.2, we get a constant
BL ,q such that ρE , p(GL) is irreducible whenever p > BL ,q. Note that there are only
finitely many choices of q∣3 in L and L only depends on K. Hence, we can obtain a
constant depending only on K and we denote it by CK . If necessary, enlarge CK so
that CK > vλ(3). Now, we apply Lemma 2.6 and see that the image of ρE , p contains an
element of order p. By Theorem 2.7, any subgroup of GL2(Fp) having an element of
order p is either reducible or contains SL2(Fp). As p > CK > vλ(3), the image contains
SL2(Fp). Finally, we can ensure that K ∩Q(ζp) = Q by taking CK large enough if
needed. Hence, χp = det(ρE , p) is surjective. ∎

3.1.1 Proof of Theorem 3.1

In this subsection, Theorem 3.1 will be proved. Although the proof closely follows the
ideas in [17], we will give it here for the sake of completeness and for the convenience
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of the reader. We continue with the notations introduced in the statement of Theorem
3.1 and the assumptions of the theorem.

Lemma 3.4 There is a nontrivial, new (weight-two) complex eigenform f which has an
associated elliptic curve Ef/K of conductor N′ dividing NE .

Proof We first show the existence of such an eigenform f of level NE supported only
on {λ}.

By Corollary 3.3, the representation ρE , p ∶ GK → GL2(Fp) is surjective and hence
is absolutely irreducible for p > CK . Now, we apply Conjecture 2.2 to deduce that there
is a weight-two, mod p eigenform θ over K of levelNE , withNE as in Lemma 2.4, such
that, for all primes q coprime to pN, we have

Tr(ρE , p(Frobq)) = θ(Tq).
We also know from the same lemma that there are only finitely many possible levelsN.
Thus, by taking p large enough (see Proposition 2.1) for any level N, there is a weight-
two complex eigenform f with level N which is a lift of θ. Note that since there are
only finitely many such eigenforms f and they depend only on K, from now on, we
can suppose that every constant depending on these eigenforms depends only on K.

Next, we recall that if Qf ≠ Q, then there is a constant Cf depending only on f such
that p < Cf [27, Lemma 7.2]. Therefore, by taking p sufficiently large, we assume that
Qf = Q. In order to apply Conjecture 2.3, we need to show that f is nontrivial and new.
As ρE , p is irreducible, the eigenform f is nontrivial. If f is new, we are done. If not, we
can replace it with an equivalent new eigenform of smaller level. Therefore, we can
take f new with level N′ dividing NE . Finally, we apply Conjecture 2.3 and obtain that
f either has an associated elliptic curve Ef/K of conductor N′, or has an associated
fake elliptic curve Af/K of conductor N2

E .
By Lemma 3.5, if p > 24, then fhas an associated elliptic curve Ef. As a result, we can

assume that ρE , p ∼ ρE′ , p where E′ = Ef is an elliptic curve with conductor N′ dividing
NE . ∎
Lemma 3.5 [27, Lemma 7.3] If p > 24, then f has an associated elliptic curve Ef.

We can now give the proof of Theorem 3.1.

Proof of Theorem 3.1. Lemma 3.5 gives us that if p > 24, then f has an associated
elliptic curve Ef. Therefore, by Lemma 3.4 we can assume that ρE , p ∼ ρE′ , p , where
E′ = Ef is an elliptic curve of conductor N′ dividing NE .

Lemma 3.6 If E′ does not have a nontrivial K-rational point of order 3 and is not
isogenous to an elliptic curve with a nontrivial K-rational point of order 3, then p < CE′

where CE′ is a constant depending only on E′. ∎
Proof By Theorem 3.7, there are infinitely many primes q such that #E′(Fq) /≡ 0
(mod 3). Fix such a prime q ≠ λ, and note that E is semistable at q. If E has good
reduction at q, then #E(Fq) ≡ #E′(Fq) (mod p). Since 3∣#E(Fq), the difference,
which is divisible by p, is nonzero. As the difference belongs to a finite set depending
on q, p becomes bounded. If E has multiplicative reduction at q, we obtain

±( Norm(q) + 1) ≡ aq(E′) (mod p)
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by comparing the traces of Frobenius. We see that this difference being also nonzero
and depending only on q gives a bound for p. ∎

Now, suppose that E′ is 3-isogenous to an elliptic curve E′′. As the isogeny induces
an isomorphism E′[p] ≅ E′′[p] of Galois modules (p ≠ 3), we get ρE , p ∼ ρE′ , p ∼ ρE′′ , p
completing the proof of (iii). After possibly replacing E′ by E′′, we can suppose that
E′ has a K-rational point of order 3 giving us (ii).

It remains to prove vλ( j′) < 0 where j′ is the j-invariant of E′. By Lemma 5.2 of
[27], p divides the size of ρE , p(Iλ). Now, Lemma 2.5 implies that vλ( j′) < 0 since the
sizes of ρE , p(Iλ) and ρE′ , p(Iλ) are equal.

The following theorem of Katz is used in the proof of the above lemma.

Theorem 3.7 [18, Theorem 2] Let E be an elliptic curve over a number field K, and
let m ≥ 2 be, an integer. For each prime p of K at which E has good reduction let N(p)
denote the number of Fp-rational points on Emod p. If we have

N(p) ≡ 0 (mod m)

for a set of primes p of density one in K, then there exists a K-isogenous elliptic curve E′
defined over K such that

#(Tors E′(K)) ≡ 0 (mod m).

3.2 Irreducibility of Galois representations

Throughout this subsection, K = Q(
√
−d), where d ∈ {1, 7, 19, 43, 67}, (a, b, c) ∈ OK ,

is a nontrivial, primitive, putative solution of the equation x p + yp = z3.
The idea of this section is to prove that when p is bigger than an explicit constant,

then the mod p Galois representation ρE , p ∶ GQ → Aut(E[p]) ≅ GL2(Fp) attached to
E is absolutely irreducible.

We will use the following result of Freitas and Siksek.

Lemma 3.8 [13, Lemma 6.3] Let E be an elliptic curve over a number field K with
conductor NE , and let p be a prime > 5. Suppose that ρp = ρE , p is reducible. Write

ρp ∼ (
θ ∗
0 θ′), where θ , θ′ ∶ GK → F∗p are the isogeny characters. Let Nθ ,Nθ′ denote

the conductors of these characters. Fix a prime q ∤ p of OK .
We have the following:

• If E has good or multiplicative reduction at q, then vq(Nθ) = vq(Nθ′) = 0.
• If E has additive reduction at q, then vq(NE) is even and vq(Nθ) = vq(Nθ′) =

vq(NE)/2.

Proposition 3.9 Let E/K be the Frey curve attached to a putative solution to equation
(1.1), and let p > CK be a prime where CK is defined as below. Then ρE , p is irreducible.

CK = 47 if the equation y3 + 24bpc y + 16b2p ≡ 0 (mod λ2) has a solution in the ring
of integers of the local field Kλ , and otherwise CK = 44, 483.
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Proof Suppose that ρp = ρE , p is reducible. Write ρp ∼ (
θ ∗
0 θ′), where θ , θ′ ∶ GK →

F∗p are the isogeny characters. Let Nθ ,Nθ′ denote the conductors of these characters.
Fix a prime q ∤ 3p of OK . By [13, Lemma 6.3], we get vq(Nθ) = vq(Nθ′) = 0 since E is
semistable away from λ.

By Lemmas 2.4 and 3.8, vλ(Nθ) = vλ(Nθ′) ∈ {0, 1}.
Now, we deal with p∣p.

(1) Say Nθ or Nθ′ is relatively prime to p. Note that interchanging θ and θ′ corre-
sponds to replacing E with an isogenous elliptic curve E/ker θ. Since ker θ is a
K-rational subgroup of E[p] of order p, the elliptic curves E and E/ker θ are
p-isogenous. Therefore, without loss of generality, assume that (p,Nθ) = 1 and
vp(Nθ) = 0 for all p∣p as in the previous case. We also have vq(Nθ) = 0 for all
q ∤ 3p, as explained above. Therefore, Nθ = λm , where m = 0 or 1, which implies
that θ is a character of the ray class group of modulus λm of K.

Using Magma, we computed the ray class groups for these moduli and get the
following groups only:

{1},Z/2Z,Z/4Z.

• If the order of θ is one then θ is trivial. Then ρp ∼ (
1 ∗
0 θ′), and this implies that

E has a K-rational point of order p. By Lemma 2.4, E has also a point of order 3,
then E(K) has a 3p-torsion point, but by the work of Kamienney, Kenku, and
Momose [16, 19], this is not possible when p ≥ 7, hence a contradiction.

• If the order of θ is two, then we can conclude that E has a point of order 3p over a
quadratic extension L of K and get a contradiction since, by [8], E(L)[p] = {0}
if p > 17. Here, L is the number field cut out by the character θ2, i.e., ∣L ∶ Q∣ = 4.

• If the order of θ is four, let L be the unique quadratic extension of K cut out by
θ2. Then θGL is quadratic. Let E′ be the twist of E by θGL . The elliptic curve E′
is also over L and has a point of order p as in the previous case. Again, we get a
contradiction by [8].

(2) Now, we are left with the case that neither Nθ nor Nθ′ is relatively prime to p.
Recall that E is semistable away from λ and p is not ramified in K. Then either p
is inert or p splits in K.
(a) p is inert in K: By [13, Corollary 6.2], E cannot have good supersingular

reduction at p. Therefore, E has good ordinary or multiplicative reduction
at p and

ρp ∣Ip ∼ (
χp ∗
0 1)(3.1)

(see [4, Section 3]), where χp is the mod p cyclotomic character. By [21,
Lemma 1], p has to be relatively prime with Nθ or Nθ′ , which contradicts
to the assumption of item (2).

(b) p splits in K: Say p = PP′ and P∣Nθ ,P′ ∤ Nθ and P ∤ Nθ′ ,P′∣Nθ′ . By [13,
Corollary 6.2], we know that E has good ordinary or multiplicative reduction
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atP andP′ by equation (3.1), we see that one of the characters θ , θ′ is ramified
at P and the other is ramified at P′, θ∣IP = χp ∣P, and θ′∣IP′ = χp ∣P′ . Hence, θ
is unramified away from P and λ since all bad places of E except possibly λ
are of potentially multiplicative reduction.
(i) λ divides ab: In this case, by Lemma 2.4, E has multiplicative or good

reduction at λ; therefore, we can say that θ is unramified away from P.
The character θ2∣IP = χ2

p ∣IP is also unramified away from P; therefore,
by [31, Lemma 4.3], θ(σλ) ≡ NormKP/Qp(α)2 (mod p), where σλ is the
Frobenius automorphism at λ = ⟨3⟩. We also know that, by [27, Lemma
6.3], θ2(σλ) ≡ 1 (mod p) (note that E has multiplicative reduction at λ).
Therefore, we have p∣NormKP/Qp(λ)2 − 1, a contradiction since p > 20.

(ii) λ does not divide ab: In this case, by Lemma 2.4, E has additive reduction
at λ, so the above argument fails. Recall that vλ(ΔE) = vλ(33b3p ap) = 3
and vλ(c6(E)) = 3. By [20, p. 356], we see that θ4 or θ 12 is unramified
at λ. The case θ 12 happens when the equation y3 + 24bpc y + 16b2p ≡ 0
(mod λ)2 does not have a solution. Therefore, we have θ4∣IP = χ4

p ∣IP is
unramified away from P or θ 12∣IP = χ12

p ∣IP is unramified away from P.
By [31, Lemma 4.3], θ4(σP) ≡ NormKP/Qp(α)2 = 9 (mod p), where

α is a nonzero prime-to-p element of K and σP is the Frobenius auto-
morphism atP = ⟨α⟩. Therefore, the polynomial x4 − 9 has a root θ(σP)
modulo p. Recall that E has potentially good reduction at λ since vλ( jE) >
0. Let Pλ(x) be the characteristic polynomial of the Frobenius of E at λ.

Since ρp ∼ (
θ ∗
0 θ′), we get Pλ(x) ≡ (x − θ(σλ))(x − θ′(σλ)) (mod p).

Hence, we can conclude that p∣Res(x4 − 9, Pλ(x)), where Res denotes
the resultant of the polynomials. Note that Pλ(x) ∈ Z[x] and its roots
have absolute value less than or equal to

√
Norm(λ) = 3 (see [6, Propo-

sition 1.6]). Then the possibilities for Pλ(x) are as follows:

P1(x) = x2 + 9, P2(x) = x2 − x + 9, P3(x) = x2 − 2x + 9,

P4(x) = x2 + x + 9, P5(x) = x2 + 2x + 9,

P6(x) = x2 + 3x + 9, P7(x) = x2 − 3x + 9, P8(x) = x2 + 4x + 9,

P9(x) = x2 − 4x + 9,

P10(x) = x2 + 5x + 9, P11(x) = x2 − 5x + 9, P12(x) = x2 + 6x + 9,

P13(x) = x2 − 6x + 9.

We computed these 13 resultants, and none of them has a prime divisor
greater than 47. Since p > 47, we get a contradiction.

For the case of θ 12∣IP = χ12
p ∣IP , similarly we need to compute the

resultants of Pi with x 12 − 9 and see that none of them has a prime divisor
greater than 44, 483. ∎
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In this corollary, we will summarize the cases where we have absolute irreducibility.

Corollary 3.10 (1) Let p be odd. If λ∣ab and ρE , p is irreducible, then ρE , p is absolutely
irreducible.

(2) Assume that λ ∤ ab. Let K be an imaginary quadratic field, and let p > MK for some
effectively computable constant MK depending only on K.
(a) Say p splits in K and p ≡ 3 (mod 4). If ρE , p is irreducible, then ρE , p is absolutely

irreducible.
(b) Say p ≡ 1 (mod 3) and ρE , p(Iλ) is divisible by 3 (which means that the

inertia has order 12 and this happens if and only if y3 + 24bpc y + 16b2p ≡ 0
(mod λ2) does not have a solution). If ρE , p is irreducible, then ρE , p is absolutely
irreducible.

(3) Let p be odd. If K is totally real, then ρE , p is irreducible if and only if it is absolutely
irreducible.

Proof (1) The Frey curve E attached to a putative primitive solution (a, b, c) ∈ O3
K

of x p + yp = z3 is semistable when λ∣ab where λ is the prime of OK lying over
3. These were discussed in Lemma 2.4. By Proposition 3.9, we know that ρE , p is
irreducible when p is big enough. In Proposition 3.9, we make this bound explicit.
Recall that the j-invariant of E is jE = 33 c3(9a p+b p)3

(ab3)p . Therefore, vλ( jE) = 3vλ(3) −
3pvλ(b) < 0 and p ∤ vλ( jE) when p > 5. Therefore, by the theory of Tate curve,

the inertia group Iλ contains an element which acts on E[p] via (1 1
0 1) which

has order p. By Theorem 2.7, the image ρE , p contains SL2(Fp) and hence is an
absolutely irreducible group of GL2(Fp).

(2) Assume that λ ∤ ab. We will use the below theorem of Larson and Vaintrob
(Theorem 3.11).

Assume that ρE , p is irreducible but absolutely reducible. Then, by Part 1 of
Theorem 2.7, p cannot divide the order of ρE , p(GK). By the second part of the
same theorem, for big enough p, the image ρE , p(GK) is in a nonsplit Cartan
subgroup or it is in the normalizer of a Cartan subgroup but not in the Cartan
itself. Now, we will rule out the second case. Say ρE , p(GK) has an element g
which is not in nonsplit Cartan but in the normalizer of nonsplit Cartan. Let h be
any element of the nonsplit Cartan subgroup different from the identity element.
Then h and g do not share a common eigenvector, and this contradicts to the
assumption that ρE , p(GK) is absolutely reducible.

Similar argument can be made if ρE , p(GK) is in the normalizer of a split Cartan
case but not in the split Cartan itself.

Therefore, we can conclude that ρE , p(GK) is in a nonsplit Cartan subgroup.
The rest of the argument is similar as in [24]. Up to conjugation, ρE , p ⊗

Fp ∼ (
λ 0
0 λp), where λ ∶ GK → Fp2 and λp+1 = χp , where χp is the cyclotomic

character.
(a) Assume that p splits in K and p ≡ 3 (mod 4). We will assume that ρE , p is

irreducible but absolutely reducible and get a contradiction. We will apply

https://doi.org/10.4153/S0008414X22000311 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000311


Diophantine equations of signature (p, p, 3) over number fields 1305

the above theorem to the elliptic curve E attached to a putative solution of
equation (1.1). Assuming that the prime p is greater than the constant given
in the theorem, we get a complex multiplication (CM) elliptic curve E′/K

with ρE′ , p ⊗ Fp ∼ (
θ 0
0 θ′) such that θ 12 = λ12 .

Since p splits in K, we see that the image ρE′ , p(GK) is contained inside a
split Cartan subgroup, which implies that the character θ is in fact Fp-valued.
In particular, the order of θ is divisible by p − 1.

We also know that, by Theorem 1 of [22], λθ−1 is unramified away from the
additive primes of E. Therefore, λθ−1 is unramified at P∣p. Since λp+1 = χp ,
we get θ p+1∣IP = χp ∣IP . Note that p ≡ 3 (mod 4), p−1

2 is odd. We deduce that
χ(p−1)/2

p ∣IP = (θ p−1)(p+1)/2∣IP = 1. However, the order of χ(p−1)/2
p ∣IP is p − 1

since it surjects on F∗p .
(b) If ρE , p(Iλ) is divisible by 3, then there exists an element g ∈ ρE , p(Iλ) which

has order 3, and hence λ(g) ∈ F×p2 has order 3. Moreover, note that χp is
unramified at p. Therefore, χp(g) = λp+1(g) = 1, which implies that 3∣p + 1.

(3) When K is totally real, then the absolute Galois group GK contains a complex
conjugation. The image of this complex conjugation under ρE , p is similar to

(1 0
0 −1), which implies that if ρE , p is irreducible, then it is absolutely irreducible.

∎

The following theorem of Larson and Vaintrob is used in the proof of the above
corollary.

Theorem 3.11 [22, Theorem 1] Let K be a number field. There exists a finite set of primes
MK , depending only on K, such that, for any prime p ∉ MK and any elliptic curve E/K

for which ρE , p ⊗ Fp is conjugate to (λ ∗
0 λ′) where λ, λ′ ∶ G → F×p are characters, one

of the following happens.

(1) There exists an elliptic curve E′/K with CM, whose CM field is contained in K, with

ρE′ , p ⊗ Fp is conjugate to (θ ∗
0 θ′) and such that θ 12 = λ12 .

(2) The Generalized Riemann Hypothesis (GRH) fails for K = Q(√−p) and θ 12 = χ6
p .

Moreover, in this case, ρE′ , p is already reducible over Fp and p ≡ 3 (mod 4).

4 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1.
Let K be a number field with h+K = 1 satisfying Conjectures 2.2 and 2.3 and

containing Q(ζ3)where ζ3 is a primitive third root of unity. Assume that λ is the only
prime of K above 3. Let BK be as in Theorem 3.1, and let (a, b, c) ∈WK be a nontrivial
solution to the Fermat equation with signature (p, p, 3) given in (1.1). We now apply
Theorem 3.1 and obtain an elliptic curve E′/K having a K-rational point of order 3
and (potentially) good reduction away from λ with j-invariant j′ satisfying vλ( j′) < 0.
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n ∣Fn ∣ ∣Kn ∣

4 998, 395 28, 750

6 605, 497 20, 320

8 26, 361 1, 264

10 895, 218 51, 527

12 67, 466 750

Table 1: Numerical examples.

However, by Theorem 4.1 applied with � = 3, there is no such an elliptic curve, which
gives us a contradiction.

Theorem 4.1 [11, Theorem 1] Let � be a rational prime. Let K be a number field
satisfying the following conditions:
• Q(ζ�) ⊂ K, where ζ� is a primitive �th root of unity;
• K has a unique prime λ above �;
• gcd(h+K , �(� − 1)) = 1, where h+K is the narrow class number of K.
Then there is no elliptic curve E/K with a K-rational �-isogeny, good reduction away
from λ, potentially multiplicative reduction at λ.

Remark 4.2 Since we assume that Q(ζ3) ⊂ K, the triple (ζ3 , ζ2
3 , 1) is a nontrivial

solution to equation (1.1) in OK . However, as ζ3 is a unit in OK , the prime λ does
not divide (ζ3) = OK , so (ζ3 , ζ2

3 , 1) /∈WK .

4.1 Numerical examples

Let Fn denote the set of number fields of degree n and class number 1 with discrim-
inant less than Dn , where Dn is 108 if n = 4, 6, 8 and 1016 if n = 10, 12. Let Kn denote
the subset of Fn such that if K ∈Kn , then K satisfies the following:
• Q(ζ3) ⊂ K;
• the narrow class number of K is 1;
• there is only one prime ideal of K lying above 3.

We computed the complete sets Fn and Kn for n = 4, 6, 8, 10, 12 in
the John Jones Number Field Database [15]. The cardinalities
of these sets are given in Table 1, and details can be found online at
https://sites.google.com/view/erman-isik/research?authuser=0.

It then follows from Theorem 1.1 that, for any K that belongs to Kn , the asymptotic
FLT holds for WK .

5 Proof of Theorem 1.2

In this section, we will prove Theorem 1.2. One of the main steps toward the proof is to
lift mod p eigenforms to complex ones. Recall that it follows from Proposition 2.1 that

https://doi.org/10.4153/S0008414X22000311 Published online by Cambridge University Press

https://hobbes.la.asu.edu/NFDB/
https://sites.google.com/view/erman-isik/research?authuser=0
https://doi.org/10.4153/S0008414X22000311


Diophantine equations of signature (p, p, 3) over number fields 1307

there is a constant B(N) such that, for p > B(N), all weight-two, mod p eigenforms
lift to complex ones. However, we want to make this bound explicit for the fields we
consider for Theorem 1.2. Before the proof of Theorem 1.2, we will state the key point
to overcome this difficulty. Note that our approach follows closely [31, Section 2] and
[27, Sections 2 and 3].

Let K be a number field with the integer ring OK , and let N be an ideal of OK .
Assume that p is a rational prime unramified in K and relatively prime to N. Consider
the following short exact sequence given by a multiplication-by-p map

0→ Z(p)
×p�→ Z(p) → Fp → 0,

where Z(p) denotes the ring of rational numbers with denominators prime to p.
This exact sequence gives rise to a long exact sequence on the cohomology groups

from which we can extract the following short exact sequence:

0→ H1(Y0(N),Z(p)) ⊗ Fp → H1(Y0(N),Fp) → H2(Y0(N),Z(p))[p] → 0,(5.1)

where H2(Y0(N),Z(p))[p] denotes the p-torsion subgroup of H2(Y0(N),Z(p)).
Hence, we deduce that the p-torsion subgroup of H2(Y0(N),Z(p)) is trivial if and
only if the reduction map from H1(Y0(N),Z(p)) to H1(Y0(N),Fp) is surjective. As
explained in [27, 31], we see that, for primes p > 3, if the group H2(Γ0(N),Z(p))
has a nontrivial p-torsion element, then Γ0(N)ab will have a p-torsion as well. If
H2(Y0(N),Z(p)) has only trivial p-torsion, then we deduce that the map

H1(Y0(N),Z(p)) ⊗ Fp
δ�→ H1(Y0(N),Fp)

is surjective. Therefore, any Hecke eigenvector in H1(Y0(N),Fp) comes from such an
eigenvector in H1(Y0(N),Z(p)) ⊗ Fp . We can now utilize a lifting lemma of Ash and
Stevens [1, Proposition 1.2.2] to deduce that, by fixing an embedding Q↪ C, we can
regard a cohomology class in H1(Y0(N),Z(p)) as a class in H1(Y0(N),C).

The existence of an eigenform (complex or mod p) is equivalent to the existence
of a cohomology class in the corresponding cohomology group that is a simultaneous
eigenvector for the Hecke operators such that its eigenvalues match the values of the
eigenform. With this interpretation, we see that, for p > 3, the mod p eigenforms lift
to complex eigenforms whenever the abelianization Γ0(N)ab has only trivial p-torsion
element.

5.1 Proof of Theorem 1.2

Let K = Q(
√
−d)with d ∈ {1, 7, 19, 43, 67}, and let λ denote the prime ideal of K lying

above 3. Suppose that (a, b, c) ∈ O3
K is a nontrivial primitive solution to equation (1.1).

Let ρE , p be the residual Galois representation induced by the action of GK on
E[p]. We want to apply Conjecture 2.2 to ρE , p . Note that in order to do this, we need
ρE , p to be absolutely irreducible. It follows from Corollary 3.10 that ρE , p is absolutely
irreducible under the assumptions of Theorem 1.2 and hence satisfies the hypotheses
of Conjecture 2.2. This will be explained in Cases I and II below. For now, let us assume
that Conjecture 2.2 is applicable. Applying this conjecture, we deduce that there exists
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Number fields valλ(NE) Primes � such that Γ0(NE)ab[�] ≠ 0

Q(i) 1,2,3 2,3

Q(
√
−7) 1,2,3 2,3

Q(
√
−19) 1,2,3 2,3 ,5

Q(
√
−43) 1,2,3 2,3,5,59,67,199

Q(
√
−67) 1,2,3 2,3,5,17,19,37,47,67

Table 2: Prime torsions in Γ0(NE)ab .

a weight-two, mod p eigenform θ over K of levelNE such that, for all primes q coprime
to pNE , we have

Tr(ρE , p(Frobq)) = θ(Tq),
where Tq denotes the Hecke operator at q.

Recall that NE denotes the Serre conductor of the residual representation ρE , p ,
which is a power of λ. We now aim to lift this mod p Bianchi modular form to a
complex one.

We compute the abelianizations Γ0(NE)ab implementing the algorithm of Şengün
[26]. One can access to the relevant Magma codes online at https://warwick.ac.
uk/fac/sci/maths/people/staff/turcas/fermatprog. The results of the algorithm can be
found at https://sites.google.com/view/erman-isik/research?authuser=0. We record
here the primes � that appear as orders of torsion elements of Γ0(NE)ab for each
number field in Table 2.

Assume that �K is the largest prime in Table 2 related to the number field K, and that
p > �K . It then follows that the p-torsion subgroups of Γ0(NE)ab are all trivial, so the
mod p eigenforms must lift to complex ones. The procedure explained at the beginning
of Section 5 together with Conjecture 2.2 implies that there exists a (complex) Bianchi
modular form f over K of level NE such that, for all prime ideals q coprime to pNE ,
we have

Tr(ρE , p(Frobq)) ≡ f(Tq) (mod p),
where p is a prime ideal of Qf lying above p and Qf is the number field generated by
the eigenvalues. Let us denote this relation by ρE , p ∼ ρ

f,p.
Recall that the constants CK and MK were defined in Proposition 3.9 and in

Corollary 3.10.

5.2 Case I

Assume that the prime ideal λ of K lying above 3 divides b. Note that, in this case,
the associated Frey curve is semistable by Lemma 2.4. By Proposition 3.9, ρE , p is
irreducible when p > CK . By Part 1 of Corollary 3.10, ρE , p is absolutely irreducible
if it is irreducible. Therefore, Conjecture 2.2 is applicable to ρE , p . When we apply
Conjecture 2.2 and the lifting argument above, we see that the corresponding Bianchi
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modular form f is of level 1 or λ. Since there are no Bianchi newforms at these levels
over K, it follows that Theorem 1.2 holds true for p >max{�K , CK}. This proves Case
I of Theorem 1.2.

5.3 Case II

Assume now that λ does not divide b.
In this case, we do not have the absolute irreducibility of ρE , p for all primes p as

illustrated in Corollary 3.10. Therefore we need the restrictions in the statement of
Part II of Theorem 1.2, i.e., p ≡ 3mod 4 and p splits in K. Under these restrictions and
when p >max{CK , MK}, ρE , p is absolutely irreducible by Corollary 3.10. We also need
p > �K to lift the mod p eigenforms to complex ones as explained above. Therefore,
from now on, we assume that p > BK =max{CK , MK , �K}.

Recall that, in this case, the associated Frey curve is semistable away from λ and
the power of λ in the conductor of E is 2 or 3 by Lemma 2.4. Then the corresponding
Bianchi modular form is of level dividing λ3.

Lemma 5.1 Let us fix a prime ideal q ≠ λ of K, and let f be a newform of level dividing
λ3. Define the following set:

A(q) = {a ∈ Z ∶ ∣a∣ ≤ 2
√

Norm(q), Norm(q) + 1 − a ≡ 0 (mod 3)}.

If ρE , p ∼ ρ
f,p, where p is the prime ideal of Qf lying above p, then p divides

Bf,q ∶= Norm(q) ⋅ (Norm(q + 1)2 − f(Tq)2) ⋅ ∏
a∈A(q)

(a − f(Tq))OQf
.

Proof If q∣p, then Norm(q) is a power of p. Now, assume that q does not divide p.
Then the Frey curve E has semistable reduction at q. If it has a good reduction, then
we have

Tr(ρE , p(Frobq)) ≡ aq(E) ≡ f(Tq) (mod p).

Note that, by Lemma 2.4, the Frey curve E, given in (2.3), has a 3-torsion point, so
3 divides #E(Fq) = Norm(q) + 1 = aq(E). By the Hasse–Weil bound, we know that
∣aq(E)∣ ≤ 2

√
Norm(q). So aq(E) belongs to the finite set A(q). Finally, suppose that

E has multiplicative reduction at q. Then, by comparing the traces of the images of
Frobenius at q under ρE , p , we have

±( Norm(q) + 1) ≡ f(Tq) (mod p).

It then follows that p divides ( Norm(q) + 1)2 − f(Tq)2. Hence, p divides Bf,q. ∎

Using Magma, we computed the cuspidal newforms at the predicted levels, the
fields Qf, and eigenvalues f(Tq) at the prime ideals q of norm less that 50 for each
imaginary quadratic number field K = Q(

√
−d) with d ∈ {1, 7, 19, 43, 67}. For each

modular form f of level dividing λ3, we computed the ideal

Bf ∶= ∑
q∈S

Bf,q ,
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where S denotes the set of prime ideals q ≠ λ of K of norm less than 50. The algorithm
that we implemented and the results for the following fields can be found online at
https://sites.google.com/view/erman-isik/research?authuser=0.

Set Cf ∶= NormQf/Q(Bf). It then follows from Lemma 5.1 that if ρE , p ∼ ρ
f,p, then

p divides Cf. Note that it is possible to find Cf = 0. In this case, we need to deal with
such modular forms individually.

We say that an elliptic curve C/K of conductor N ⊂ OK corresponds to a cuspidal
Bianchi modular form F for Γ0(N), if the L-series L(C/K , s) attached to C/K is equal
to the Mellin transform L(F , s) of F.

(1) If K = Q(i), then there is no Bianchi modular form at level λε where ε = 1, 2. There
is only one modular form at level λ3. For this modular form, we have Cf = 0
and Qf = Q. The elliptic curves in the isogeny class given in the LMFDB label
2.0.4.1-729.1-a correspond to this form. All the elliptic curves in this class
are defined over Q and have CM.

(2) If K = Q(
√
−7), then there is no Bianchi modular form at level λε with ε = 1, 2.

There are three modular forms at level λ3. For one of these forms, Cf is divisible
by 2 and 5, and for the other, Cf is divisible by 2 and 7. For the third modular
form, we get Cf = 0, and Qf = Q. The elliptic curves in the isogeny class given in
the LMFDB label2.0.7.1-729.1-a correspond to this cuspidal form. All the
elliptic curves in this class are defined over Q and have CM.

(3) If K = Q(
√
−19), then there is no Bianchi modular form at level λ. There are two

Bianchi modular forms at level λ2. For both of these forms, Cf is divisible by 2.
There are three modular forms at level λ3. For one of these forms, Cf is divisible
by 7, and for the other, Cf is divisible by 2 and 17. For the third modular form,
we get Cf = 0 and Qf = Q. The elliptic curves in the isogeny class given in the
LMFDB label 2.0.19.1-729.1-a correspond to this modular form. All the
elliptic curves in this class are defined over Q and have CM.

(4) If K = Q(
√
−43), then there is no Bianchi modular form at level λ. There are two

Bianchi modular forms at level λ2. For one of these forms, Cf is divisible by 2
and 5, and for the other, Cf is a power of 2. There are three modular forms at
level λ3. For one of these modular forms, Cf is one, and for the other modular
form, Cf is divisible by 2 and 23. For the third modular form, we get Cf = 0,
and Qf = Q. The elliptic curves in the isogeny class given in the LMFDB label
2.0.43.1-729.1-a correspond to this Bianchi modular form. All the elliptic
curves in this class are defined over Q and have CM.

(5) If K = Q(
√
−67), then there is no Bianchi modular form at level λ. There are two

Bianchi modular forms at level λ2. For both of these forms, Cf is divisible by 2. At
level λ3, we find three modular forms. For one of these modular forms, Cf is one,
and for the other, Cf is divisible by 11 and 19. For the third modular form, we get
Cf = 0 and Qf = Q. The elliptic curves in the isogeny class given in the LMFDB
label 2.0.67.1-729.1-a correspond to this modular form. All the elliptic
curves in this class are defined over Q and have CM.

If ρE , p ∼ ρ
f,p, then by Lemma 5.1 we have p∣Cf. Since p > BK and BK is large

enough, the isomorphism ρE , p ∼ ρ
f,p is impossible when Cf ≠ 0. If Cf = 0, then the

Bianchi modular forms correspond to elliptic curves defined over Q with CM. Let
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ρE′ , p ∶ GK → GL2(Fp) denote the mod p Galois representation attached to E′, where
E′ is an elliptic curve that corresponds to the Bianchi modular form with Cf = 0. Then,
for all but finitely many primes q ⊂ OK , we have Tr(ρE , p(Frobq)) = Tr(ρE′ , p(Frobq)).
Since the set of Frobenius elements is dense in GK and the representation ρE , p is
irreducible, it follows from Brauer–Nesbitt theorem (see [3], and for our application,
see [9, Theorem 5.7]) that ρE , p and ρE′ , p are isomorphic.

To complete the proof, we must eliminate the possibility that ρE , p and ρE′ , p are
isomorphic. Recall that, by Corollary 3.10, the mod p Galois representation ρE , p is
absolutely irreducible, but ρE′ , p can never be absolutely irreducible since E′ has CM.
This proves Case II of Theorem 1.2.

Remark 5.2 For simplicity, we only considered the fields where there is only one
prime ideal lying above 3, so we excluded the fields Q(

√
−2) and Q(

√
−11). Note that

the triple (ω, ω2 , 1), where ω is a primitive third root of unity, is a solution to equation
(1.1). Hence, we had to exclude the case Q(

√
−3).

One can try to apply the argument above to deal with the Fermat equation with
signature (p, p, 3) defined over the imaginary quadratic field Q(

√
−163). However,

we were unable to compute all the Bianchi modular forms over Q(
√
−163) at level λ3.

A Appendix. Ternary equation of signature (p, p, 2)

In [14], we have proved that the equation x p + yp = z2 has no solutions asymptotically
where 2∣b over certain number fields. Using the method in the proof of Theorem 1.1,
we can extend the results to any number field K with h+K = 1. The difference relies in the
proof method. Generally speaking, in order to solve a Diophantine equation using the
modular method, one needs to either compute newforms of a certain level or compute
all elliptic curves of a given conductor and particular information about torsion
subgroup and/or rational isogeny or compute all solutions to an S-unit equation.

In [14], we used the S-unit equation method and this restricted us to the totally real
number fields. However, using Theorem 4.1 as we did for proving Theorem 1.1, we can
get the following result about the solutions of x p + yp = z2.

Theorem A.1 Let K be a number field with narrow class number h+K = 1 satisfying
Conjectures 2.2 and 2.3. Assume that β is the only prime of K lying above 2. Let WK be
the set of (a, b, c) ∈ OK such that ap + bp = c2 with β∣b. Then there is a constant BK—
depending only on K—such that, for p > BK , the equation x p + yP = z2 has no solution
(a, b, c) ∈WK .

A hypothetical solution (a, b, c) ∈WK with exponent p > BK gives rise to an elliptic
curve E′/K with a K-rational 2-isogeny, good reduction away from P and potentially
multiplicative reduction at P. However, this contradicts with Theorem 4.1, and hence
there is no such a solution.

Now, we give some examples of totally real number fields with h+K = 1, in which 2
is totally ramified.

Degree 2n case. Let f1(x) = x2 − 2, and fn(x) = ( fn−1(x))2 − 2 for n ≥ 2. Let Kn =
Q(θn), where θn is a root of the polynomial fn(x). Then it can be seen that Kn =
Q(
√

2 + ⋅ ⋅ ⋅ +
√

2) = Q(ζ2n+2 + ζ−1
2n+2), the maximal totally real subfield of Q(ζ2n+2).
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Then, Kn is a totally real number field of degree 2n in which 2 is totally ramified.
For 2 ≤ n ≤ 5, it is possible to check that the narrow class number of Kn is 1, and
hence it follows from Corollary 6.5 of [14] that the asymptotic FLT holds for all Kn
with 2 ≤ n ≤ 5. For some other higher values of n, it is only conjecturally true that the
narrow class number is 1 (using MAGMA under GRH).

Degree 3, 4, 5 case. For n ≥ 3, letFn be the set of totally real number fields of degree
n, discriminant ≤ 106, in which 2 totally ramifies. We are able to find the complete sets
F3 ,F4, and F5 in the John Jones Number Field Database [15]. We define the
following sets:
• Let Gn be the set of K ∈ Fn such that h+K is odd.
• Let Kn be the set of K ∈ Gn such that h+K = 1.

Of course, Kn ⊆ Gn ⊆ Fn , and the asymptotic FLT holds for any K belong-
ing to Kn by Corollary 6.5 of [14]. The cardinalities of Kn ,Gn , and Fn are
given in the following table, and can be found online at https://sites.google.com/
view/erman-isik/research?authuser=0.

n ∣Fn ∣ ∣Gn ∣ ∣Kn ∣

3 8, 600 3, 488 3, 046

4 1, 243 1 1

5 23 13 13
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