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FRACTIONAL POWERS OF OPERATORS
DEFINED ON A FRECHET SPACE
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1. Introduction

The problem of finding a suitable representation for a fractional power of an operator
defined in a Banach space X has, in recent years, attracted much attention. In
particular, Balakrishnan [1], Hovel and Westphal [3] and Komatsu [4] have examined
the problem of defining the fractional power (— AY for closed densely-defined operators
A such that

(i) X e p(A) (the resolvent set of A) for each X > 0;
(ii) | | ; .(/l/-/l)-1 | |<M<oo for all /l>0. (1.1)

Although the methods presented in [1], [3] and [4] differ to some extent, each is
based primarily on the Bochner integral

(-AYf=-n-1sm(n<x)]x'l-\XI-A)-1Afdl (1.2)
o

which, for 0 < R e a < l , defines ( — A)" as an operator on some suitably restricted
subspace of X. In addition, the expected properties of fractional powers such as the
index law

{-Af{-Af = {-Af*fi (Reoc,Rej?>0) (1.3)

are established in each case.
In this paper, we relax the condition that X be a Banach space and consider the case

where the operator A is defined on a Frechet space. By imposing conditions of a nature
similar to (1.1), it will be shown that formula (1.2), interpreted slightly differently, can be
used as the basis for defining fractional powers for Rea>0. Properties associated with
these fractional powers, such as (1.3), will then be established in a natural manner by
making certain modifications to the existing Banach space theory.

The motivation for developing a theory of fractional powers within this more general
framework is the following.

Firstly, our main objective is to solve equations which can be expressed in the form

(-A)'x = y (Rea>0), (1.4)
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166 W. LAMB

where x and y are members of some function space X. It is our intention to study
particular equations of this type in a future paper. As a first step, it is natural to attempt
to extend the semi-group {( — A)"; Rea>0} to a group {( — A";aeC} such that, for any
complex numbers a and /?, and xeX,

(i) {-Af-.X^X;
(ii) (-An-AYx = (-AT+l>x;
(iii) {-A)°x = x. (1.5)

For such a group, the inverse of any operator ( — A)* is ( — A)"" so that the solution of
(1.4) is given by x = ( — A)~xy. Unfortunately, before this extension process can be
carried out, certain additional constraints involving the existence of the inverse operator
A ~1 have to be imposed. These have the undesirable effect of restricting the size of the
function space X. One way of overcoming this difficulty is to utilise the theory of
generalised functions. Equation (1.4) is then replaced by the weaker version

where / and g belong to some space of generalised functions Y' and A denotes the
extension of the operator A to this space. If we adopt the definition given by Zemanian
[12], then Y' is the dual of a space of testing functions Y which is either a Frechet space
or the inductive limit of a family of such spaces and, in general, neither of these is a
Banach space. Moreover, if, as frequently happens, the generalised operator A is defined
to be the adjoint of some operator A* (the formal adjoint of A) which acts upon Y, then
we would expect ( — A)* to be the adjoint of ( — A*)a, provided the latter exists. This
indicates that, to make any progress in studying equation (1.6), a theory of fractional
powers must first be developed for operators defined on a Frechet space.

A second justification for this theory is in a similar vein. Recent developments in the
subject of generalised functions have included the extension of certain operators of
fractional calculus to various spaces of generalised functions. Prominent in this has been
McBride [7] who has successfully tackled the problem of extending modifications of the
Riemann-Liouville and Weyl operators of fractional integration. These operators
behave, in essence, like fractional powers of the basic integral operators J and K,
defined on suitable functions / by

Jf{x) = )f{t)dt;Kf{x) = ]f{t)dt,
0 x

and therefore the work presented in this paper can be regarded as a natural progression
from that carried out by McBride.

We begin in Section 2 by introducing some of the notation which is used throughout
the text. For convenience, we also state some facts concerning the calculus of functions
which assume values in an arbitrary Frechet space X.

In Section 3 we examine operators which satisfy certain conditions of equi-continuity
and establish various spectral results. These are used in Section 4 where a theory of
fractional powers is developed for a class of operators P(X). For AeP(X), ( — A)" is
defined by a formula based on (1.2) and various properties associated with fractional
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powers are established. In particular, it is shown that the family of operators
{( — AY; Rea>0} so defined forms a semigroup and, by imposing certain additional
restrictions, we demonstrate that this can be extended to a group {(— AY; a e C} which
satisfies (1.5). Throughout we concentrate only on continuous operators. This, however,
causes no serious limitations since future applications lie in the field of generalised
functions. There the standard practice is to construct a space of testing functions which
ensures that the operator under investigation possesses properties such as continuity
and invertibility.

In Section 5 we turn our attention to the dual space X' and show that a
corresponding theory of fractional powers can be developed for operators defined on X'.
This is accomplished by employing some basic results on adjoint operators.

Finally, in Section 6, we indicate how this theory can readily be applied to certain
classes of generalised functions.

For brevity, we present only the basic theory in this paper. In a future paper we hope
to discuss examples involving certain classical and generalised integral and differential
operators and consider applications to a class of hypergeometric integral equations.

2. Notation and basic definitions

Unless otherwise stated, X will denote a Frechet space equipped with the topology
generated by a separating family of seminorms S = {yk}k

x>
=0. To represent the dual space

of X, we use the customary notation of X', with the value assigned to xeX by /eX'
expressed as (f,x). Similarly, we denote the class of all continuous linear operators
mapping X into itself by L(X) and use the symbol LS(X) for the same set equipped with
the topology of pointwise convergence (see [11, p. 110]). This topology may be regarded
as that generated by the (generally) uncountable collection of seminorms {%kx;xeX,
k = 0,1,...} where

tk,x(A)=yk(Ax). (2-1)

Since X is a Frechet space, it follows from [9, Theorem 2.8] that LS(X) is complete.
In developing the theory, we shall frequently use results from the calculus of vector-

valued functions. Since the concepts of strong (weak) continuity and holomorphy are
well-known [9, p. 78], we pause here only to discuss how the Riemann integral of a
function assuming values in a Frechet space X may be defined. If (p maps a compact
interval [a, b~] into X, then we define the Riemann integral of <f> over [a, b~] in the
obvious manner by using the seminorms ykeS instead of the Euclidean norm in the
definition of the Riemann integral of a numerically-valued function. When the Riemann
integral of <f> over [a, b~] exists, we write it as J£ 4>(X) dX.

Since A' is a Frechet space, it is clear that whenever the Riemann integral exists in X,
it is necessarily unique. The question of existence is answered by the following lemma.

Lemma 2.1. If <f>:[a,b~\^X is a strongly continuous vector-valued function, then the
Riemann integral J* <f>(?.) dl exists in X. Moreover,

for any yk e S.
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Proof. A proof of this lemma can be found in [5, pp. 26-27].

3. Spectral theory

The spectrum and resolvent set of an operator AeL(X) are defined in the normal
fashion. Thus a complex number X belongs to the resolvent set p(A) if the resolvent
operator R(X; A) = (XI — A) ~ * exists as an operator in L(X). The complement of p(A) in
C is the spectrum of A, denoted by a(A).

To enable us to deduce certain facts concerning the operators R(X;A), Xep(A), we
restrict our attention to a subset p*(A) of p(A). This subset is defined in the following
manner.

Definition 3.1. A complex number X belongs to the set p*(A) if

(i) Xep(A)
(ii) f o r e a c h s e m i n o r m yk e S, t h e r e e x i s t s a s e m i n o r m y t e S s u c h t h a t

)Tx)Syt(x) (3.1)

for all n=l,2,... and xeX, where CA is a positive constant depending only upon X.

Remark 3.2. It can easily be verified that, as a result of (3.1), the family of operators
{[CAi?(A;/l)]n}"=1 is equi-continuous in n (see [9, p. 43]).

Obviously the constant Cx in (3.1) may be replaced by any other positive constant Dx

such that Dx < CA. Therefore we can define

CX(A) = sup {Cx. inequality (3.1) is valid}.

It is interesting to note that, when A' is a Banach space,

and CaM)

Theorem 3.3. Let AeL(X) be such that P*(A)£0. Then

(i) p*(A) is open;
(ii) R(X;A) is a strongly holomorphic Ls(X)-valued function of X on p*(A).

Proof, (i) To prove that p*(A) is open, we merely remark that if £ep*(A) and fi is
such that \n-^\<Ci<C^A), then the series ^ = 0 [ R ( ^ ) ] m + 1(^-/i)r" converges to
R(n; A) in LS(X). Moreover, for any yk e S, there exists a yt e S such that

where Clt = (Ci — \(i — £\)~1. Thus fiep*(A) and it follows that p*(A) is open.
(ii) We first verify that R(X; A) is continuous on any compact subset K of p*(A). To

this end, let X,fieK with X fixed.
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Then

Tk,x(R(l,A)-R(n;A))

= yk(R(X; A)x - K(w A)x) (from (2.1))

^|/x — ^M^k) max {yt (/?(//;X)x)} (for some indices kuk2,.. .,kn) (3.2)
1 § i g n

where M^/c) is a constant depending on fc and (3.2) has been obtained by utilising [12,
Lemma 1.10-1] in conjunction with the resolvent equation. Now let £, be fixed in K, let
x be an arbitrary element in X and let Q<Ci<C^A). Then, for any fieS(£,CJ2), where

we can express R(fx; A)x as

t )Y + ix. (3.3)t
n=O

Moreover, by Definition 3.1, for any ykeS there exists a y/^eS such that

y»([CV?(6 A)]"x) ̂  yI(4)(x) (n = 1,2,...).

Hence, from (3.3),

Since K is compact, there exist a finite sequence {^.}J"=1 and constants C i . ^ . ( )
0 = 1 , 2 , . . . , m ) such that Kc{jf=lS{^i,C^I2). If we set M 2 = m a x 1 g J g m {2/C4.}, then
we can deduce that

y,(4 ,(*)} (3.4)

for any fieK. Thus, from (3.2) and (3.4),

max

as n~*k in K. Since yk was arbitrarily chosen, it follows that R{X;A) is continuous on K.
The result can now be deduced by making minor modifications to the argument used
for the case when X is a Banach space [8, p. 40].

4. Fractional powers of operators defined on Frechet spaces

In this section we shall be concerned with the following class of operators.
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Definition 4.1. The set P(X) consists of continuous linear operators A:X-*X which
are such that

(i) R(X; A) e L{X), for all X > 0; (4.1)
(ii) for each yk e S there exists a y, e S such that

yk(lCm(A;A)Yx)^yi(x) (4.2)

for all xeX, X>0 and n= l , 2 , . . . , where C is a positive constant independent of X,
n and x.

The following comments are appropriate. Firstly, condition (4.2) can be used to
establish that the family of operators {[CAJ?(A;̂ 4)]"} is equi-continuous in A>0
and n = 1,2,.... Secondly, when AT is a Banach space, (4.1) and (4.2) reduce to the conditions
stated in (1.1) and therefore results concerning fractional powers of continuous
operators defined on a Banach space can be deduced as a special case of the theory
developed here.

Definition 4.2. Let A e P(X) and let a e C with Re a > 0. Then we define the fractional
power (— A)" by

( - Afx = - n ~1 sin (rax) ] X" ~l [R(X; A) - X/( 1 + X2)~]Ax dX
o

-sin(na/2)Ax (0<Rea<2) (4.3)

and

{-Afx = {-Af-"(-A)nx (n<Re<x<n + 2,«=l,2,. . .) (4.4)

where xeX and the integral in (4.3) is regarded as a strong improper Riemann integral
in X of the form

lim \X"-1[_R(X;A)-X/(l + X2)-]AxdX. (4.5)
M -> oo t
e->0 +

We remark that here, and in the sequel, any expression of the form X", where X>0
and oceC, is interpreted as exp(alog(A)) where log (A) assumes its principal branch. We
also note that Definition 4.2 can give rise to two representations for the fractional
power ( — /I)'*. For example, suppose Reae(n,n + l),n>l. If we regard this interval as a
subset of (n,n + 2) then {-AyL={-AY~"{-A)n. Alternatively, if we interpret it as a
subset of ( n - l , n + l ) then ( - A ) ' = (-Ay~n + 1(-A)"'1. We shall show later that this
does not lead to any inconsistencies.

Theorem 4.3. If AeP(X), then p*{A) is non-empty and open. Moreover,

(i) R(X;A) is a strongly holomorphic Ls(X)-valued function of X on p*(A);
(ii) for any fixed xeX, R(X; A)x is a strongly holomorphic X-valued function of X on

p*(A).
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Proof. Since (0, oo) c p*(A), it is clear that p*{A) is non-empty. The remainder of the
theorem can be deduced from Theorem 3.3.

Theorem 4.4. If AeP(X), then (— A)", defined by (4.3) and (4.4), is a continuous linear
operator on X.

Proof. Let 0 < R e a < 2 and consider the improper integral (4.5). By Lemma 2.1 and
Theorem 4.3(ii), for any fixed xeX, each integral

J X"~1 [R(X; A) - A/( 1 + X2)]Ax dX
e

exists in X as a strong Riemann integral. Moreover, if ykeS, then

M
^ 1 XRe"-1yk([R(X;A)-X/(l+X2)]Ax)dX (by Lemma 2.1)

(4.6)
E

Now, from (4.2) and the continuity of A2 on X, we can find seminorms y, and {yk{i)}T= i
in S and constants C > 0 and N(k) > 0 (independent of x) such that the expression in
(4.6) is bounded above by

t(7l(x) + N(k)max{ykii)(x)}yC + yk(x)-] J X^"~'/{\ + X2)dX. (4.7)

By letting e->0+ and M->oo, we see that the integral in (4.7) converges to
(n/2) cosec (n Re a/2). It follows from this in a routine manner that (— A)" is a continuous
linear operator on X for Re a > 0.

Theorem 4.5. / / AeP(X) and R e a e ( n - l , n ) (n= l ,2 , . . . ) , then {-Af has the
equivalent representation

( - Afx = n~1 sin (ji[a + 1 - n]) J Aa""^(A; /4)( - X)"x dX. (4.8)
o

Proof. Suppose that 0 < R e a < 1. Then, from (4.3),

( - Afx = n ~l sin (na) J Aa ~L R( X; A)( - Ax) dX
o

+ (Ax)n ~l sin (na) ] X'/( l+X2) dX - (Ax) sin (na/2)
o
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and this reduces to (4.8) with n=\ when the integral $ Xx/(1 + X2) dX is evaluated as
(7r/2)cosec([l + a]7i/2). Similarly, if we use the identity

XR(X; A){ -Ax)=-Ax- R(X; A)( - Afx,

then the result can also be verified for Re a e( 1,2). The proof now follows from (4.4).
If we now return to the question of the consistency of the definition given in (4.3) and

(4.4), then we can conclude that for Reae(n, n+ 1)

( - Afx = %~l sin (Ji[a-n])j A""""1 R{X;A){-A)n + lxdX

regardless of whether (n, n+l) is interpreted as a subset of (n— l,w + l) or as a subset of
(n,n + 2).

We shall now prove certain results concerning the operators ( — A)" which
demonstrate that they possess the fundamental properties associated with fractional
powers.

Theorem 4.6. / / AeP(X), then {-Af, defined by (4.3) and (4.4), is a strongly
holomorphic Ls(X)-valued function of a. in the region Rea>0.

Proof. We shall show that ( — A)"x is a strongly holomorphic Z-valued function in
the region Rea>0 for each fixed xeX; see (2.1). Let x be a fixed element in X and let
0 < R e a < 2 . Then, by (4.3),

( - Afx = n ~1 sin (rax) ] Xa ~l [R(X; A) - A/( 1 + A2)]( - Ax) dX
o

-(/lx)sin(7ia/2).

Since sin {na) is an entire function of a, it will suffice to verify that

T(a)x = f X" -x [R(X; A) - X/( 1 + A2)]( - Ax) dX (4.9)
o

is strongly holomorphic in X with respect to a for Re a > 0. We define

T'(<x)x = ]x*-i\og(X)[R(X;A)-X/(l+X2)J-Ax)dX (Rea>0) (4.10)
o

where (4.10) is obtained from (4.9) by differentiating formally under the integral sign
with respect to a. We shall demonstrate that, for each yk e S and for each a in the half-
plane Rea>0,

yk([T(a + h)x - T(a)x]/h - r(a)x)-»0
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as the complex increment h->0. To this end, consider

yk(lT(a + h)x - T(a)x]/h - T(a)x)

^ sup \fh(X)\jXK"-'-1yk(lR(A;A)-X/(l+X2y](-Ax))dX
0SAS1 0

+ sup \jSh(X)\]p" + '-1yk(lR(l;A)-y{l+l2y]{-Ax)dk (4.11)

where r\ and e are such that Re a — r\ e (0,2) and Re a + s e (0,2)

and

/*(A) = A»([A*-l]/fc-log(A))

g»(A) = A-'([A*-l]/fc-log(A)).

It can be shown that, as h-*0 in any manner, supog^g! \fh{X)\ and suplgA<00 \gh{X)\ both
converge to 0[6, p. 37]. Moreover, by an argument similar to that used in the proof of
Theorem 4.4, it can be verified that the integrals appearing in (4.11) are both finite. This
establishes that ( — A)ax is strongly holomorphic in X for Re a e (0,2) and the general
result follows directly from (4.4).

Theorem 4.7. Let xeX be such that yk(XR(A;A)x)^>0 as A->0+ for all ykeS. Then, if
AeP(X), ( — A)*x converges strongly to x as a—>0 in any fixed sector about 0 of the form
{a: |arg a\ < n/2 - n, 0 < n < n/2}.

Proof. Since the proof is similar to that presented in [11, p. 266] for the case when
X is a Banach space, details are omitted.

Theorem 4.8. / / a = n, where n is a positive integer, then (— A)" is equal to the nth
iterate of (— A).

Proof. In view of (4.4), it is sufficient to prove this for the case a = 1. From (4.3)

]
o

+ sin(n/2){-Ax)

= -Ax

since the integral exists in X as a strong improper Riemann integral.
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We now verify that, under suitable conditions, the fractional powers (— Af satisfy the
two index laws (-Af{-Af = (-AY+P and l(-A)^ = (~A)ali. First we require the
following lemma.

Lemma 4.9. If AeP(X), 0 < a < 1 and l>0, then the resolvent operator R(A; -(-A)")
exists in LS(X) and is given by

(xeX), (4.12)
o

where gx a is defined on [0, oo) by

gx, M = n~1sin (7ta)ua[/l2 + 2Au«cos (noc) + u2a] ~1.

Proof. If we remark that gx a possesses the properties

(i) ^ , » ^ 0 for all u^O,

(ii) Jo gx,«(«)" ~1du = r 1 for X > 0 and

(i") lo gA,i")(s + " ) ~ 1 ^ " = (A + sa)"1 [3, p. 191], then it follows that (4.12), interpreted
as an improper Riemann integral, defines an operator in LS(X). Moreover, for
xeX,

(-Ar]gxJu)R(u;A)xdu

= - n ~l sin (rox) ] ] tx ~ 1gx J(u)R(t; A)R(u; A)Ax du dt (4.13)
o o

= - it ~J sin (n«) f f " r /?(t; /4)Xx dt J gkt x(u)(u ~ t) ~x du

CO 00

-n~lsm(na)^gx x(u)R(u;A)Axdujtx-1(t-u)~1dt, (4.14)
o o

where the resolvent equation has been used in conjunction with an interchange in the
order of integration to obtain (4.14). The interchange may be justified by an application
of the Fubini-Tonelli theorem [5, pp. 128-131]. If we now use the formulae given in [2,
p. 240] relating the Hilbert transform to the Stieltjes transform, we can evaluate the
inner integrals in (4.14) obtaining
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Hence

(?J+{-AY)]gjLJu)R(u;A)xdu = x
o

for all xeX. Similarly, since the order of integration in (4.13) may be interchanged,

x, a(u)R(u; A)(U + ( - Af)x du = x (xsX).

This completes the proof.

Theorem. 4.10. If Ae P(X), x e X and Re P > 0, then

(i) (-AY(-AYx = (-AY+l!x, for Reoe>0;
(ii) 1{-A)xyx = {-A)allx, for

Proof, (i) This can be proved in the manner described in [11, p. 267]. (ii) First we
establish that - ( - A)" e P{X) for any ae(0,1). Let ykeS, A>0 and 0<<x< 1. Then, from
Lemmas 4.9 and 2.1, for xeX and n= 1,2,...,

Jgx,«M---]gk,J,un)yk{R(ul;A)...R(un;A)x)dun...dul
0 0

gXt x(ut)u; ldUl...] gx, a (u ju n - l dun ( b

= C-"yt(x).

Hence — ( — AYeP(X) and therefore, by Theorem 4.4, [( — A)ay exists as an operator in
LS(X) provided that Re/?>0. The result now follows on using a proof identical to that
given by Watanabe [10].

An inspection of Theorem 4.7 and part (i) of the previous theorem reveals that the
operators {( — A)x;Rea>0}, defined by (4.3) and (4.4), satisfy the semi-group property
( — A)"( — /!)" = ( — A)a+I' for Re a, Re/?>0, and also converge in a certain sense to the
identity operator / as <x->0. For the reasons given in Section 1, we would like to extend
this semi-group to a group of operators {(— A)"; a e C} satisfying (1.5). This extension is
carried out in the following manner.

Let A e P(X) possess an inverse A ~l e L{X). Then, for Re a > 0, the fractional power
(— A)a may be expressed as

(-AY = {-AY+\-A)-\ (4.15)

Now, from Theorem 4.6 and the fact that (— A) ~l e L(X), the right-hand side of (4.15) is
meaningful and strongly holomorphic in LS(X) for Rea> —1. Therefore we can use
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(4.15) to continue the definition of ( — A)" analytically to all values of a in the half-plane
R e a > — 1 and, by repeated application, to all complex values of a. Thus we may define
(— Ay, for any complex value of a, by

(-AYx = {-A)x + n[_(-A)-1Yx = [_(-A)-1T(-A)a+nx (xeX), (4.16)

provided only that the non-negative integer n is such that Rea + n>0 . It is a routine
matter to verify that (4.16) is independent of the integer n satisfying Rea + n>0.

We can immediately state the following facts.

Theorem 4.11. Let AeP(X) possess an inverse A~leL(X) and let { — A)" be defined
by (4.3) and (4.4) for R e a > 0 and extended via (4.16) to all complex values of a. Then

(i) (— A)" is a homeomorphism of X onto X and its inverse is given by [(— Af\ ~i =

(4.17)
(ii) ( — A)" is a strongly holomorphic Ls(X)-valued function of a in C;

(iii) ( - A)"( - A)" = ( - Af+' (a, ft e C);
(iv) (— AY = (— A)n, the nth iterate of —A when a is a positive integer n; ( — Ay =

( — A)~n, the nth iterate of —A'1 when a is a negative integer —n;
(v) [{-A)°y>=(-Aye (0<a<\,peC).

Proof. These results can be obtained in a straightforward manner by using (4.16) in
conjunction with Theorems 4.6, 4.8 and 4.10.

An interesting point emerges at this stage. From (4.17), it is seen that the inverse of
(-AY is (-A)-*. When a is an integer n, {-A)-n={-A'l)n so that [_{-A)nyl =
( — A'1)". This raises the obvious question of whether or not the same result holds for
non-integral values of a. We answer this question in the following theorem.

Theorem 4.12. If AeP{X) has an inverse A~leL(X), then A~leP{X). Moreover,
(-A)-' = (-A-xf.

Proof. From the identify

(kl-A-l)-l = -k-1{k-H-A)-lA (A>0), (4.18)

we can immediately deduce that [0, oo)cp(y4"'). Moreover, for xeX, ykeS and

^ t (
J=O\j
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~' (by (4.2))

and therefore condition (4.2) is also satisfied with A replaced by A'1. Hence A~1eP(X).
Now let Re a e(0,1). Then

{-A-lYx=-n'lsin(n<x)]^'lR{X;A-l)A-lxdX (by (4.8))
o

= n~l sin (no.)] Xa-2R(l-1;A)xdX (by (4.18))
o

CO

= n ~i sin (7ta) J u ~ "R(u; A)x du

= (-A)l-\-A)-lx = (-A)-*x (by (4.8) and (4.16))

Hence {-A)~a = {-A~lf for 0<Rea< l and, since (-A)~X and (-A'1)" are both
entire functions of a (Theorem 4.11(ii)), it follows that ( — A)~" = ( — A~l)a for all
complex values of a. This completes the proof.

As a consequence of this theorem, if A e P(X) and A ~i exists in L(X), then all the
results stated in Theorem 4.11 are valid when A is replaced by A'1. Furthermore, it is
easily shown that Theorem 4.1 l(v) extends to

j8eC). (4.19)

5. Fractional powers of operators defined on X'

Having discussed fractional powers of operators defined on an arbitrary Frechet
space, we now consider the problem of developing a similar theory within the
framework of the dual space X'. The method we adopt involves the use of adjoint
operators, where the latter are defined as in [12]. Bearing this in mind, we concentrate
on the following class of operators.

Definition 5.1. The operator A' is said to belong to the set Tl(X') if A' is the adjoint
of an operator A e P(X).

In the sequel, when we refer to an operator A'eU(X') it is understood that A' is the
adjoint of the operator AeP(X). Clearly, any operator A'eTl(X'), being the adjoint of a
continuous linear operator, is an element in L{X') [12, p. 29].

Definition 5.2. Let A'eTl(X') and let Rea>0. Then we define the fractional power
(-AT by
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(-A')*/=-n~' sin (noc)] A*''[Rib A')-1/(1+PflA'fdl
o

-sin(na/2)A'f (0<Rea<2) (5.1)

and

(-A'ff = {-A'y-n{-A')nf (n<Re«<n + 2,n = l,2,...) (5.2)

where feX' and the integral in (5.1) is interpreted as an improper Riemann integral of
the form (4.5) convergent in the weak* topology of X' [9, p. 66].

That this definition is meaningful is discussed in the proof of the following theorem.

Theorem 5.3. / / A'eU(X'), then {-A')«, defined by (5.1) and (5.2), is a continuous
linear operator on X'. Moreover, ( — A')" is the adjoint of ( — A)", where ( — A)" is defined
by (4.3) and (4.4).

Proof. First we remark that R{X;A') = [R(A;A)J exists for any X>0 since AeP(X).
Therefore the integrand in (5.1) is well-defined. Now let [eM,Mn] be a compact interval
of (0, oo) and let the operator Bn a be defined on X' by

Bn_J = M( X«-llR{l;A')-XI{X2 + \)-]{-A'f)dX (0<Reoc<2).
E

It can be shown [5, pp. 141-142] that Bna is the adjoint of the operator AnaeL(X)
given by

An,ax = Mfxx-1[R(A;A)-X/(l + X2m-Ax)dX (xeX).
e

Therefore, it follows that Bn xeL(X'). Furthermore, if {en} and {Mn} are chosen so that
en-»0+ and Mn->oo as n->co, then, for any feX',

y {yni)(An<ax-Am<xx)} (5.3)
ISi §1

where Mf is a constant and yf(i)eS(i=l,...,l) (by [12, Theorem 1.8-1]). Since {Ana\ is
a Cauchy sequence in LS(X), the right-hand side of (5.3) converges to 0 as n, m-+oo.
Hence, for each f eX', {BnaLf} is a Cauchy sequence in X', where X' is equipped with
the weak* topology, and therefore, by completeness,

BJ=\imBn,J
n~*ao

= ]x*-1£R(A;A')-X/(l +X2)]{-A'f)dX (5.4)
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exists in X'. In addition, the operator Ba defined on X' by (5.4), being the adjoint of the
operator T(a)eL(I) given by (4.9), is an element in L{X'). From this, we can conclude
that ( — A'Y is the adjoint of ( — A)" for 0 < R e a < 2 and the general result can now be
deducted readily from the definitions of ( — A)" and ( — A')" for / i<Rea<« + 2,w = l,2,....

From standard results on adjoint operators, it is an easy matter to deduce the
following facts.

Theorem 5.4. / / A' e Tl(X') and ( - A')' is defined by (5.1) and (5.2), then

(i) ( - / T ) a ( - O ' = ( - ^ T + / j
(ii) [ ( - A'ff = ( - A1)*, 0 < a < 1, Re p > 0;

(iii) for each feX', ( — A')"f is a (weak*) holomorphic X'-valued function of a. in the
region Rea>0.

Proof. As an illustration of the techniques involved in proving these results, we shall
verify (ii). By Theorem 5.3, (-A1)"" exists in L(X') and is the adjoint of (-A)"*. Hence,
for any xeX and / eX' we have

((-XT'/, *)=(/, (-/i)**)

= ( / [ ( - Affx) (by Theorem 4.10(ii))

= (K - A'Yff, x) (by Theorem 5.3)

and this establishes the result.

Suppose now that A, in addition to being an element in P(X), possesses an inverse
A~leL(X). Then (A1)'1 exists and we can define (-A')a for Re a ̂ 0 by

•(-ATf = (-Ay+"[(-Ar1Yf = (-AT+n[.(-A-1n'If, (5.5)

where feX' and the non-negative integer n is such that Rea + n>0. The family of
operators {(-/4')*;aeC} can be shown to have the following properties.

Theorem 5.5. Let AeP(X) possess an inverse A'1 eL(X) and let ( — A')" be defined by
(5.1) and (5.2) for Rea>0 and extended via (5.5) to all complex values of a. Then the
operators {-A'f satisfy (4.19) and (i), (iii) and (iv) of Theorem 4.11 with A and X
replaced by A' and X' respectively. Moreover, for each feX', ( — A')f is a (weak*) entire
X'-function of a.

Proof. If we notice that, for any complex value of a, ( — A'Y is the adjoint of ( — A)",
then this theorem may be verified by using the corresponding properties of (— A)".

6. Concluding remarks

The theory presented here provides the framework for studying fractional powers of
particular differential and integral operators defined on some specified Frechet space X.
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More importantly, when A' is a space of testing functions [12, p. 39] and the operator A
under investigation permits an extension A to the generalised function space X' via the
adjoint method described in [7, p. 7], then Definition 5.2 forms the basis for
constructing fractional powers of the extended operator — A. In essence, the problem of
obtaining a group of operators (— A)x (a e C) reduces to one of finding a space of testing
functions X which is such that the formal adjoint A* is invertible on X and also
belongs to P(X). Clearly, the conditions imposed on A* will mean that the space X (if it
exists) will be restricted in size. However, since our aim is to define fractional powers of
the extended operator — A on X', in which a large number of classical functions can
usually be identified with regular generalised functions, this presents no limitations to
the application of the theory.
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