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A CLASS OF RIGHT-ORDERABLE GROUPS
R. T. BOTTO MURA AND A. H. RHEMTULLA

1. Introduction. A group G is called right-orderable (or an RO-group) if
there exists an order relation = on G such that ¢ = b implies ac = bc for all
a, b, c in G. This is equivalent to the existence of a subsemigroup P of G such
that PN\ P~1 = {e} and P \U P~! = G. Given the order relation =, P can be
taken to be the set of positive elements and conversely, given P, define a £ b
if and only if ba=! € P. 4 group G together with a given right-order relation
on G is called right-ordered. A subgroup C of a right-ordered group G is called
convex if for every g in G and x in C, e < g < ¢ implies g € G. The set of all
convex subgroups of G is ordered by inclusion and closed with respect to
unions and intersections. However there is not much more one can say in
general regarding this set. We shall call a right-order P on G a C-right-order
if the set of convex subgroups form a system with torsion-free abelian factors.
P. Conrad [2] has looked at a number of equivalent conditions for a group G
to be C-right-ordered. Our main concern here is to investigate the properties
of an RO-group G in which every right-order is a C-right-order. We call such
a group a Ci-group. In Lemma 3.1 we show that a right-order P is a C-right-
order if and only if it satisfies the property:

(*) Forall x, y in P there exist u, v in sgr (x, y) (the semigroup generated
by x and y) such that ux = vy.

Thus in particular an RO-group G is a C;-group if it satisfies the property:
(**) Forall x, y in G there exist «, v in sgr (x, y) such that ux = vy.

We call G a Cs-group if it satisfies (**). Finally we denote by C, the largest
subgroup closed subclass of C;. Then RO 2D C; 2 C; D RO N (s, and all
these inclusions are proper (Corollary 3.3, Theorem 3.5).

In Section 2 we note a few properties of Cs-groups. In particular we show
that locally solvable C;-groups are locally nilpotent-by-finite (Theorem 2.6).
This is not true of Cs-groups (Theorem 3.5), however orderable locally solvable
Cs-groups are locally nilpotent and finitely generated orderable solvable C;-
groups are nilpotent (Theorem 3.6).

2. Cs;-groups. We start by observing that the class C; is subgroup-closed
and closed under periodic extensions; moreover a group G is in C; if every two-
generator subgroup of G is in C;. B. H. Neumann has shown that G is in C;
if every two-generator subgroup of G is nilpotent.
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LEMMA 2.1. Let H be a subgroup in the centre of a group G. If G/H is in Cj,
then G is in Cs.

Proof. Let x, ¥ € G. Then there exist u, v € sgr (x, ) such that ux = zvy
for some z € H. Thus vyux = uxvy with vyu, uxv € sgr (x, ).

COROLLARY 2.2. If every two-generator subgroup of G is nilpotent-by-periodic,
then G is in Cs.

LemmaA 2.3. A4 direct product of Cs-groups is in Cs.

Proof. 1t is clearly enough to show that if H;, H, are C;-groups, then so is
G = H, X H,. Take any x = x1%2, ¥ = y1y2 in G with x4, y, € H;. Since
H, € C;, there exist a = a1as, b = bibe in sgr (x, y) such that awx; = byy1.
Also, since Hy € C;, there exist (aix1)™hs, (aix1)ke in sgr {(ax, by), with m,
n positive integers, hs, k2 in H,, such that heasxs = kobeys. Then (aix;)™
hoax (arx1)™keby = (aix,)™keby (a1x1)™heax, and of course (@1x1)™ ks, ax, (@1x1)"ks
by, a, bareall in sgr (x, ¥).

LeEMMA 2.4. A polycyclic Cs-group is nilpotent-by-finile.

Proof. Let G be a counterexample with /(G) minimum where /(G) is the
number of infinite factors in any series of G with cyclic factors. Replacing G
with a suitable normal subgroup of finite index if necessary, we may assume
that it is nilpotent-by-abelian and torsion-free. Let N be the Fitting subgroup
of G. By the minimality of G, N is abelian (because G/N’ nilpotent-by-finite
implies G nilpotent-by-finite), G/N is infinite cyclic, and the centre of G is
trivial (see Lemma 2.1).

Let G = (N, t), write N additively and regard it as a module over the in-
tegral group ring Z (t). Let A be an indecomposable submodule of N. Then
A can be identified with an additive subgroup of the complex numbers on
which the action of ¢ is that of multiplication by an algebraic integer  whose
minimal polynoinial over the rationals has degree equal tol(4). If all the roots
of this polynomial have absolute value one, then by a theorem of Kronecker,
7 is an nth root of unity for some integer n. But then ¢* centralizes 4, and G; =
(N, t*) has a non-trivial centre, so that G; and hence G is nilpotent-by-finite.
Thus |7| # 1, and replacing ¢ with a suitable power of ¢, if necessary, we may
assume that |7| < 1.

Choose any non-zero a € A. By hypothesis there exist u, v € sgr (at, ta)
such that uat = vta. Then we have:

tHlarer + ...+ art Far) = T (arfr ..+ arft 4 a),

wherear = t-%at, 1 Sy £ ... 2a,1 £ =£...28,1=5Za; 21+ 1and
1 < B, =1+ 1 forall 7. But
R I S i IS (E s I S T |

o 1\ 1 7
+lrl<n; (1) +31=13
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while

e (1) 2
L T"l+1ig1—(;T|”'+...+lf|*‘“)>1—;(Z) =3

and we reach a contradiction.

LEmMA 2.5. If G = (4, t) is a Cs-group and A = {ay, ..., ;)% is abelian,
then A is finitely generated and G is nilpotent-by-finite.

Proof. The existence of u4, v; in sgr {(a, fa;) such that u,a¢ = v,ta; shows
that (a¢;)¢ = {(a,, a., ..., a;'"") for some integer 7;. The rest follows from
Lemma 2.4.

TueorEM 2.6. If G s a locally solvable Cs-group, then G is locally nilpotent-by-
fimite.

Proof. Assume, by way of induction, that the result holds for finitely
generated groups of solvability length less than r, and let G be a finitely gener-
ated group of solvability length . If 4 is the last non-trivial term in the
derived series of G, then A4 is abelian and G/A is nilpotent-by-finite. Replacing
G by a suitable subgroup of finite index if necessary, we may assume that G/4
is nilpotent. Then 4 = S¢% where S = (a1, ..., ax) for some a4, ..., ar in 4.
Also there exists a series 4 = Gy <1 G; <1 ... < G, = G such that, for all 1,
G; < G and G; = (G-, t;) for suitable ¢; in G. Repeated application of
Lemma 2.5 shows that S9: is finitely generated for all ¢ = 1, ...m. Thus G is
polycyclic and the result follows from Lemma 2.4.

3. Cyand C:-groups.

Lemma 3.1. Let P be a right-order ona group G. Then the following are equivalent.
(1) P satisfies condition (x).

(ii) For every x, vy in P\{e}, ™y > x for some n > 0.

(iii) If C and D are convex subgroups of G under P and D covers C, then C is
normal in D and D/C is isomorphic to a subgroup of the additive group of the
reals.

(iv) For all y in P\le} the set {x € G| |x] Ky} is a convex subgroup of G,
where |x| = x if x € P and x! otherwise, and |x| < y means that |x|* < y for
all n.

Proof. (i) = (ii). Suppose that "y < x for all # > 0. By hypothesis there
exist #, v € sgr {xy, x) such that uxy = vx. Since v > ¢, vx > x. On the other
hand wuxy = x*yx*?y...x*y, where «; =1 for =1, ..., r and 7 = 1,
hence uxy < x*2tly . .. x%y < ... < x, a contradiction.

That (ii) = (i) is trivial. The equivalence of (ii) and (iii) was shown in [2]
and the equivalence of (iii) and (iv) in [1]. We mentioned (iii) and (iv) be-
cause we will need them in the following.
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LeEmMmA 3.2. Let A and B be RO-groups and G a split extension of A by B.
If there exists a right-order P 4 on A, invariant under conjugation by elements of B,
such that not all the jumps in the chain of convex subgroups of A determined by
P4 are centralized by B, then G 1s not a Ci-group.

Proof. The result is obvious if P4 is not a C-order on A. Let Py be a right-
order on B and define a right-order P on G by letting g = ab (¢ € 4, b € B)
belong to P if either e # a € P, or a = ¢ and b € Py. That P is indeed a
right-order follows from the fact that P, is B-invariant. We show that it is
not a C-order. Let C—< D be a jump of convex subgroups of A under P, which
is not centralized by B, and choose ¢ < a € D\C, b € B such that [a, b] ¢ C.

Case 1. b normalizes D. In this case b normalizes C as well since P, is B-
invariant. Moreover D/C may be identified with a subgroup of the additive
group of the reals since P, is a C-order, and the action of b on D/C is that of
multiplication by some real number 8 > 1 (replacing b by b~! if necessary).
Let @ = Ca and choose d = Cd € D/C such that

dza/B—1)>0.
For instance d can be a suitable multiple of @. We show that the set
S = {x € G; |x| K d}
is not a subgroup and thus P does not satisfy Condition (iv) of Lemma 3.1.
The element ab~! belongs to S, for
(@b=1)"d! = aa®...a®" """
and

n—1
Claa®...a®'d™") = d( > ﬁi) —dp<0.

=0

The element b also belongs to S, but ¢ = (ab~1)b clearly does not.

Case 2. b does not normalize D. Since P, is B-invariant, either D* D D or
D D D’ Replacing & by b~! if necessary, assume that D* O D. We show that
the set

T = {x € G; || < a}
is not a subgroup. The element ab~! is in T since

(@b=1)"a~1 = aad...a® e~ """ € P-L
The element b also belong to T'; but ¢ = (ab~')b does not. This completes
the proof.

COROLLARY 3.3. Subgroups and direct products of Ci-groups need not be in C,.

Proof. Let Q denote the additive group of the rationals and let ¢ be the
automorphism of Q corresponding to multiplication by — 2. Then G = (Q, t)
is in C; but not in C,. That G is not in C, can be seen by applying Lemma 3.2
to the subgroup (Q, t2). To see that G € C, let P be any right-order on G.
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Without loss of generality we may assume ¢t € P. For any x € QM P,
%€ P-1 hence x < tand Q isconvex under P. This shows that P is a C-order.

Next consider the direct product of G with an infinite cyclic group: H =
G X {(z). Every element of H can be written uniquely in the form (t?z)" X #°,
where x € Q and 7 and s are integers. Let

R = {(t2%2)" X t%; either s > 0, 0or s = 0 and x > 0,
ors=x=0andr = 0}.

It is easy to check that R is a right-order on H and that
(e) = ((172)) =< ((%2), Q) < H

is its convex series. But ((£22)) is not normal in ((#%2), Q), hence by Lemma 3.1,
R is not a C-order.

Remark. There exist also polycyclic groups which are in C; but not in C,.

CoroLLARY 3.4. Let G be a finitely generated, orderable Cy-group. Then the
system of convex subgroups under any order on G, 1s ceniral.

Proof. Let P be any order on G. Since G is finitely generated, there exists
J < G such that J—< G is a convex jump under P. Thus there exists 4 > J
such that G = (4, x) and G/A4 is infinite cyclic. By Lemma 3.2, x centralizes
every convex jump in 4 determined by the restriction of P to 4, and hence
every convex jumpin G. Forany ¢ in 4, G = {4, xa} sc that xa also centralizes
every jump in G and hence so does «.

THEOREM 3.5. There exist finitely generated metabelian Co-groups which are
not nilpotent-by-finite, and therefore the class Co-contains the class R O M C,
properly.

Proof. Let G = (a, t; a”a=*a® = e, {a, a'] = ¢). Then 4 = (a)? is an
abelian group of rank 2 which can be identified with the subgroup of the
additive group of the complex numbers generated by the numbers (2 + 7)",
#n € Z on which ¢ acts as multiplication by 2 4 7. Our reason for choosing
2 + 7 is that none of its powers is real.

Let H be any subgroup of G and P any orderon H. If H < Aorif HN 4 =
(e), then H is abelian and P is a C-order. Otherwise H = {4 M H, u), where
u = bt" for some b € 4, n = 1, and u acts on 4 M H as multiplication by the
non-real gaussian integer ¢ = (2 4 )", Notice that a gaussian integer & + kz
satisfies the equation x? — 2hx + h* 4+ k? = 0, so that by choosing m > 0
such that the real part of £” is negative, we find a power of ¢ which satisfies an
equation x> 4+ 7x + s = 0 with » > 0 and s > 0. Thus for all c € 4 N\ H,
¢ et ¢ = ¢ as well as ¢ ¢ ¢ ™ = ¢, and therefore if ¢ is in P, either
™ or ¢“*™ is in P,

We now show that 4 M H is convex. By changing P to P~! if necessary,
we may assume that # € P. Suppose that b > u’d > e forsomeb,d € A M H,
JEZ If =0 then @7 > w7 >e If j =0 then bd~' > u’ = e. Thus as-
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sume that ¢ > u’ for some ¢ € A M H, j 2 0. Notice that ¢ > u’ implies
cu?! > u and ¢ ¥ > u'c¥ = ¢ u? > u?, thus if j # 0, replacing ¢ by another
suitable element of 4 M H, we may assume j = 2m. Thus we havec > u® > e
and hence cu~* > ¢ and u’c u=*> e for 1 =0, 1, ..., 2m. In particular c,
¢“™ and ¢* 7™ are all in P. This is not possible, therefore j = 0 and 4 N H is
convex. This implies that P is a C-order and hence that G is a Cs-group.

It is easy to check that G is not nilpotent-by-finite and therefore by Theorem
2.6 it is not a Cs-group.

THEOREM 3.6. Let G be a finitely generated solvable orderable Cyi-group. Then
G 1s milpotent.

Proof. Let G be a counterexample of smallest solvability length, and P any
order on G. By Corollary 3.4, the system of convex subgroups of G is central.
Moreover, as G is finitely generated, it has a descending central series

G=G0>_G1>_...Gn>_Gn+1>_...

from G to G, = Nn=o Gy, where G, > G, is a convex jump under P. If G, =
G, for some 7, then G is nilpotent and we have the required contradiction. If
G, # (e), observe that G/G, satisfies the hypotheses of the theorem since any
quotient of a C;-group is in C; if it is an R O-group. Thus we may replace G
by G/G, and assume G, = {e), so that G becomes a residually finitely generated
torsion-free nilpotent group and hence residually F, for all primes p, where
F, is the class of finite p-groups.

Let N be a maximal normal abelian subgroup of G containing the last
non-trivial subgroup of the derived series of G. By a result of Learner
(see [5, Lemma 6.25]), G/N is also residually F, for all primes p, and hence
orderable (see [3]). Also G/N € (i, and thus it is nilpotent by our choice of G.
We now use the following result to complete the proof.

LeEmMA 3.7. Let G be an orderable Ci-group. If there exists {e) # A < G, A
abelian and G/ A finitely generated torsion-free nilpotent, then Z(G) M A # {e),
where Z(G) 1s the centre of G.

The above lemma applies with 4 = N. Thus Z(G) "N = Z; # {e) and
G/Z; is again orderable since Z, is an isolated subgroup in the centre of G.
Since G satisfies the maximal condition on normal subgroups, repeated appli-
cation of Lemma 3.7 shows that N < Z;(G), the k-th centre of G, for some
finite k. Thus G is nilpotent.

Proof of Lemma 3.7. Use induction on I(G/A), the number of factors in any
infinite cyclic series of G/A. Suppose [(G/A) = 1. Then G = (4, ¢). Take
any e # ¢ in A and let 4, = {(a)¢. Let Py be any G-order on 4. Then P; can
be extended to a G-order P on A4 since G is a metabelian orderable group. By
Lemma 3.2, ¢ centralizes every jump in A determined by P and hence every
jump in A; determined by P;. Thus if 4; has finite rank then 4; N Z(G) #
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(e), as required. If A4, has infinite rank, then it is freely generated by the
elements ¢, 1 € Z. In this case let { be any positive transcendental number
and let P; consist of those elements (a"1)"t . .. (a™)"» such that Y i—; 7" =
0. This is an archimedean G-order on 4; and so 4; £ Z(G).

Now suppose that /(G/4) = n > 1. Then there exists H < G such that
A £ H, G= (H, d),and I(G/H) = 1. Any right-order on H can be extended
to a right-order on G. Thus H € C; and by the induction hypothesis, Z(H) N
A = B 5# (e). Now D = (4, d) is isolated in G and any right-order on D can
be extended to a right-order on G since there exists a series from D to G with
torsion-free abelian factors. Thus D € C; and by the first part of the proof,
for any e # b € B, Z(D) M (b)? 5# {(e). Thus Z(G) N B 5 {¢) and hence
Z(G) N A # {e).

Remark. 1t follows from Corollary 3.4 and Theorem 3.6 that if G is an
orderable C,-group, then the system of convex subgroups under any order
on G is central and G is locally nilpotent if it is locally solvable. In the latter
case every partial right-order can be extended to a total right-order (see [4]).
In general a solvable Cs-group does not have this property as can easily be
seen by considering the group (a, b; b=lab = a™1).
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